FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803

Cyanobacteria possess a complex CO₂-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (ΔSlr0228) and Deg-G (ΔSlr1204/ΔSll1679/ΔSll142...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 65; no. 3; pp. 728 - 740
Main Authors Zhang, Pengpeng, Sicora, Cosmin I, Vorontsova, Natalia, Allahverdiyeva, Yagut, Battchikova, Natalia, Nixon, Peter J, Aro, Eva-Mari
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.08.2007
Blackwell Publishing Ltd
Blackwell Science
Subjects
Online AccessGet full text
ISSN0950-382X
1365-2958
DOI10.1111/j.1365-2958.2007.05822.x

Cover

Abstract Cyanobacteria possess a complex CO₂-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (ΔSlr0228) and Deg-G (ΔSlr1204/ΔSll1679/ΔSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO₂ and then shifted to low CO₂, followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO₂, whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO₂, indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO₂, possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO₂ conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO₂.
AbstractList Cyanobacteria possess a complex CO(2)-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (DeltaSlr0228) and Deg-G (DeltaSlr1204/DeltaSll1679/DeltaSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO(2) and then shifted to low CO(2), followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO(2), whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO(2), indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO(2), possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO(2) conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO(2).Cyanobacteria possess a complex CO(2)-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (DeltaSlr0228) and Deg-G (DeltaSlr1204/DeltaSll1679/DeltaSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO(2) and then shifted to low CO(2), followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO(2), whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO(2), indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO(2), possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO(2) conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO(2).
Cyanobacteria possess a complex CO₂-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (ΔSlr0228) and Deg-G (ΔSlr1204/ΔSll1679/ΔSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO₂ and then shifted to low CO₂, followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO₂, whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO₂, indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO₂, possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO₂ conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO₂.
Cyanobacteria possess a complex ...-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (...) and Deg-G (...) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high ... and then shifted to low ..., followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low ..., whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low ..., indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low ..., possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high ... conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high ... (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.)
Summary Cyanobacteria possess a complex CO2‐concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (ΔSlr0228) and Deg‐G (ΔSlr1204/ΔSll1679/ΔSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO2 and then shifted to low CO2, followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO2, whereas the Deg‐G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO2, indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO2, possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO2 conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO2.
Cyanobacteria possess a complex CO(2)-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (DeltaSlr0228) and Deg-G (DeltaSlr1204/DeltaSll1679/DeltaSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO(2) and then shifted to low CO(2), followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO(2), whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO(2), indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO(2), possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO(2) conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO(2).
Cyanobacteria possess a complex CO(2)-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (∆Slr0228) and Deg-G (∆Slr1204/∆Sll1679/∆Sll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO(2) and then shifted to low CO(2), followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO(2), whereas the Deg-G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO(2), indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO(2), possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO(2) conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO(2).
Cyanobacteria possess a complex CO 2 ‐concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of proteases in the processes of induction and degradation of the CCM complexes, we studied the FtsH2 (ΔSlr0228) and Deg‐G (ΔSlr1204/ΔSll1679/ΔSll1427) protease mutants of Synechocystis sp. PCC 6803. WT and protease mutant cells were grown under high CO 2 and then shifted to low CO 2 , followed by a proteome analysis of the membrane protein complexes. Interestingly, in the FtsH2 protease mutant, inducible CCM complexes were not detected upon shift to low CO 2 , whereas the Deg‐G mutant behaved like WT. Also the transcripts of the inducible CCM genes and their regulator ndhR failed to accumulate upon shift of FtsH2 mutant cells from high to low CO 2 , indicating that the regulation by the FtsH2 protease is upstream of NdhR. Moreover, functional photosynthesis was shown a prerequisite for induction of CCM in WT at low CO 2 , possibly via generation of oxidative stress, which was shown here to enhance the expression of inducible CCM genes even at high CO 2 conditions. Once synthesized, the CCM complexes were not subject to proteolytic degradation, even when dispensable upon a shift of cells to high CO 2 .
Author Allahverdiyeva, Yagut
Battchikova, Natalia
Vorontsova, Natalia
Nixon, Peter J
Aro, Eva-Mari
Sicora, Cosmin I
Zhang, Pengpeng
Author_xml – sequence: 1
  fullname: Zhang, Pengpeng
– sequence: 2
  fullname: Sicora, Cosmin I
– sequence: 3
  fullname: Vorontsova, Natalia
– sequence: 4
  fullname: Allahverdiyeva, Yagut
– sequence: 5
  fullname: Battchikova, Natalia
– sequence: 6
  fullname: Nixon, Peter J
– sequence: 7
  fullname: Aro, Eva-Mari
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18921687$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17635189$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1vFCEUhompsdvqX1BionczHhhg4EITs7G2SRtNahPvCMMwlc3ssIWZuPvvZbqrTXpjueDzOS8cznuCjoYwOIQwgZLk9mFVkkrwgiouSwpQl8AlpeX2GVr8OzhCC1AcikrSn8foJKUVAKlAVC_QMalFxYlUCxTOxnSONzGMziSHfcLR3U0-uhZ3IWI_tJMdfRhw6PIixFszeIutiU3eMzajyd-f27De9G7rUsbw9W5w9lewuzRmxbQp8fflEgsJ1Uv0vDN9cq8O4ym6OfvyY3leXH77erH8fFlYrjgtlOiYY8ox1hDKOtJAnR_ctJy1TLGmUcBI3di2dYIA8EZx1kFNO95SCw5kdYre73VzaneTS6Ne-2Rd35vBhSnpOtNKcPJfkNWVFIJBBt8-AldhikNOQpOsROvcZej1AZqatWv1Jvq1iTv998Mz8O4AmGRN30UzWJ8eOKkoEbLOnNxzNoaUouseENCzB_RKz6XWc6n17AF97wG9zaGfHoVaP5q5SGM0vn-KwMe9wG_fu92TL9ZXVxfzLMe_2cd3JmhzG3N-N9d0Nh_UilAF1R_88dH3
CitedBy_id crossref_primary_10_1111_j_1365_313X_2011_04833_x
crossref_primary_10_1016_j_isci_2019_04_033
crossref_primary_10_3390_life11040279
crossref_primary_10_1104_pp_108_129403
crossref_primary_10_1111_j_1365_2958_2008_06137_x
crossref_primary_10_1016_j_bbamcr_2011_08_015
crossref_primary_10_1007_s11120_010_9608_y
crossref_primary_10_1371_journal_pone_0005331
crossref_primary_10_1093_pcp_pcae042
crossref_primary_10_1007_s11434_011_4929_6
crossref_primary_10_1007_s10811_012_9946_6
crossref_primary_10_1093_femsre_fuaa029
crossref_primary_10_1105_tpc_112_100891
crossref_primary_10_1111_mmi_12782
crossref_primary_10_3390_app142210402
crossref_primary_10_1007_s00425_012_1720_0
crossref_primary_10_3389_fpls_2022_837528
crossref_primary_10_3389_fmicb_2018_01121
crossref_primary_10_1016_j_bbabio_2014_04_006
crossref_primary_10_3390_life10110297
Cites_doi 10.1023/A:1025865500026
10.1104/pp.96.1.280
10.1074/jbc.M112468200
10.1104/pp.105.069146
10.1074/jbc.M601064200
10.1093/oxfordjournals.pcp.a077003
10.1111/j.1365-313X.2003.02014.x
10.1111/j.1462-5822.2007.00901.x
10.1093/jxb/eri021
10.1046/j.1365-2958.2001.02239.x
10.1046/j.1365-2958.1999.01457.x
10.1105/tpc.104.026526
10.1073/pnas.96.23.13571
10.1093/jxb/erg076
10.1016/j.pbi.2006.03.010
10.1023/A:1025850230977
10.1105/tpc.13.4.793
10.1074/jbc.M105878200
10.1104/pp.99.4.1604
10.1071/PP01188
10.1139/b05-050
10.1104/pp.103.029728
10.1104/pp.80.2.525
10.1046/j.1365-2958.2002.02753.x
10.1093/pcp/pci147
10.1016/j.bbabio.2005.11.002
10.1128/JB.183.6.1891-1898.2001
10.1146/annurev.arplant.50.1.539
10.1074/jbc.M503852200
10.1073/pnas.0405211101
10.1146/annurev.mi.47.100193.003121
10.1002/elps.1150080203
10.1104/pp.101.3.1047
10.1016/S0014-5793(00)01871-8
10.1105/tpc.5.12.1853
10.1016/j.febslet.2005.03.021
10.1073/pnas.191258298
10.1074/jbc.M410914200
10.1074/jbc.M003706200
10.1104/pp.97.3.851
10.1071/PP01229
10.1007/978-94-011-0227-8_15
10.1104/pp.103.032326
10.1139/b90-165
10.1073/pnas.88.10.4275
10.1016/0005-2728(85)90029-5
10.1111/j.1365-2958.2006.05495.x
10.1074/jbc.M311336200
10.1093/jxb/eri286
10.1016/0076-6879(88)67088-1
10.1105/tpc.012609
10.1042/BJ20050390
10.1104/pp.019349
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright Blackwell Publishing Aug 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright Blackwell Publishing Aug 2007
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1365-2958.2007.05822.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts

MEDLINE
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 740
ExternalDocumentID 1306313211
17635189
18921687
10_1111_j_1365_2958_2007_05822_x
MMI5822
US201300791290
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/E006388/1
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XFK
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c5952-96f4e49e44b124f1b07351bd54d494bb90417bcdde61005b954f072f5d2c0e083
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Fri Jul 11 11:33:15 EDT 2025
Fri Jul 11 16:57:35 EDT 2025
Fri Jul 25 10:42:20 EDT 2025
Mon Jul 21 05:51:53 EDT 2025
Mon Jul 21 09:17:32 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Tue Jul 01 03:38:02 EDT 2025
Wed Jan 22 17:07:25 EST 2025
Wed Dec 27 19:06:45 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Peptidases
Bacteria
Hydrolases
Synechocystis
Enzyme
Cyanobacteria
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5952-96f4e49e44b124f1b07351bd54d494bb90417bcdde61005b954f072f5d2c0e083
Notes http://dx.doi.org/10.1111/j.1365-2958.2007.05822.x
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2007.05822.x
PMID 17635189
PQID 196527965
PQPubID 35968
PageCount 13
ParticipantIDs proquest_miscellaneous_70729651
proquest_miscellaneous_47386640
proquest_journals_196527965
pubmed_primary_17635189
pascalfrancis_primary_18921687
crossref_primary_10_1111_j_1365_2958_2007_05822_x
crossref_citationtrail_10_1111_j_1365_2958_2007_05822_x
wiley_primary_10_1111_j_1365_2958_2007_05822_x_MMI5822
fao_agris_US201300791290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2007
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: August 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Science
References 2001; 183
1987; 8
1991; 97
1985; 808
2002; 277
2005; 579
2003; 15
1992; 99
1985; 26
2003; 54
2002a; 277
1993; 5
2004; 134
1986; 80
1991a; 88
2006; 1757
2004; 37
2002; 43
1999; 96
2006; 281
1999; 50
2007; 63
2001; 13
2001; 98
2004; 101
1993; 47
2005; 390
2006; 57
2005b; 139
2000; 479
2006; 9
1988; 167
1994
2000; 275
1991b; 96
1992; 33
2005a; 83
1970; 227
2003; 133
2003; 132
2003; 77
1993; 101
2005; 46
2005; 280
1990; 68
2002; 29
2004; 279
2004; 16
1999; 32
2001; 39
1998; 76
2005; 56
2002b; 29
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Mi H. (e_1_2_6_24_1) 1992; 33
Price G.D. (e_1_2_6_37_1) 1998; 76
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 68
  start-page: 1291
  year: 1990
  end-page: 1302
  article-title: Physiological aspects of CO and HCO transport by canobacteria: a review
  publication-title: Can J Bot
– volume: 43
  start-page: 425
  year: 2002
  end-page: 435
  article-title: Novel gene products associated with NdhD3/D4‐containing NDH‐1 complexes are involved in photosynthetic CO hydration in the cyanobacterium, sp. PCC7942
  publication-title: Mol Microbiol
– volume: 96
  start-page: 280
  year: 1991b
  end-page: 284
  article-title: Cloning and inactivation of a gene essential to inorganic carbon transport of PCC6803
  publication-title: Plant Physiol
– volume: 280
  start-page: 2587
  year: 2005
  end-page: 2595
  article-title: Identification of NdhL and Ssl1690 (NdhO) in NDH‐1L and NDH‐1M complexes of synechocystis sp. PCC 6803
  publication-title: J Biol Chem
– volume: 16
  start-page: 3326
  year: 2004
  end-page: 3340
  article-title: Expression and functional roles of the two distinct NDH‐1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in sp PCC 6803
  publication-title: Plant Cell
– volume: 96
  start-page: 13571
  year: 1999
  end-page: 13576
  article-title: Identification of an ATP‐binding cassette transporter involved in bicarbonate uptake in the cyanobacterium sp. strain PCC 7942
  publication-title: Proc Natl Acad Sci USA
– volume: 101
  start-page: 1047
  year: 1993
  end-page: 1053
  article-title: High CO concentration alleviates the block in photosynthetic electron transport in an ‐inactivated mutant of sp. PCC 7942
  publication-title: Plant Physiol
– volume: 50
  start-page: 539
  year: 1999
  end-page: 570
  article-title: CO concentrating mechanisms in photosynthetic microorganisms
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– start-page: 469
  year: 1994
  end-page: 485
– volume: 33
  start-page: 1233
  year: 1992
  end-page: 1237
  article-title: Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium PCC 6803
  publication-title: Plant Cell Physiol
– volume: 808
  start-page: 77
  year: 1985
  end-page: 84
  article-title: Photosystem‐I‐driven inorganic carbon transport in the cyanobacterium,
  publication-title: Biochim Biophys Acta – Bioenergetics
– volume: 80
  start-page: 525
  year: 1986
  end-page: 530
  article-title: Biosynthesis of a 42KD polypeptide in the cytoplasmic membrane of the cyanobacterium strain R during adaptation to low CO concentration
  publication-title: Plant Physiol
– volume: 37
  start-page: 864
  year: 2004
  end-page: 876
  article-title: The FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes
  publication-title: Plant J
– volume: 32
  start-page: 1305
  year: 1999
  end-page: 1315
  article-title: The involvement of NAD (P) H dehydrogenase subunits, NdhD3 and NdhF3, in high‐affinity CO uptake in sp. PCC7002 gives evidence for multiple NDH‐1 complexes with specific roles in cyanobacteria
  publication-title: Mol Microbiol
– volume: 133
  start-page: 2069
  year: 2003
  end-page: 2080
  article-title: Inorganic carbon limitation induces transcripts encoding components of the CO ‐concentrating mechanism in sp. PCC7942 through a redox‐independent pathway
  publication-title: Plant Physiol
– volume: 167
  start-page: 766
  year: 1988
  end-page: 778
  article-title: Construction of specific mutations in PSII photosynthetic reaction center by genetic engineering
  publication-title: Methods Enzymol
– volume: 390
  start-page: 513
  year: 2005
  end-page: 520
  article-title: Isolation, subunit composition and interaction of the NDH‐1 complexes from BP‐1
  publication-title: Biochem J
– volume: 47
  start-page: 597
  year: 1993
  end-page: 626
  article-title: Molecular biology of the LysR family of transcriptional regulators
  publication-title: Annu Rev Microbiol
– volume: 139
  start-page: 1959
  year: 2005b
  end-page: 1969
  article-title: Sensing of inorganic carbon limitation in PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen
  publication-title: Plant Physiol
– volume: 277
  start-page: 18658
  year: 2002a
  end-page: 18664
  article-title: Genes essential to sodium‐dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis
  publication-title: J Biol Chem
– volume: 281
  start-page: 1145
  year: 2006
  end-page: 1151
  article-title: The FtsH protease Slr0228 is important for quality control of photosystem II in the thylakoid membrane of sp. PCC 6803
  publication-title: J Biol Chem
– volume: 97
  start-page: 851
  year: 1991
  end-page: 855
  article-title: Physiological and molecular aspects of the inorganic carbon concentrating mechanism in cyanobacteria
  publication-title: Plant Physiol
– volume: 76
  start-page: 973
  year: 1998
  end-page: 1002
  article-title: The functioning of the CO concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances
  publication-title: Can J Bot
– volume: 46
  start-page: 1433
  year: 2005
  end-page: 1436
  article-title: Open reading frame is required for antimycin A‐sensitive photosystem I‐driven cyclic electron flow in the cyanobacterium sp. PCC 6803
  publication-title: Plant Cell Physiol
– volume: 15
  start-page: 2152
  year: 2003
  end-page: 2164
  article-title: FtsH is involved in the early stages of repair of photosystem II in sp. PCC 6803
  publication-title: Plant Cell
– volume: 54
  start-page: 609
  year: 2003
  end-page: 622
  article-title: CO concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution
  publication-title: J Exp Bot
– volume: 183
  start-page: 1891
  year: 2001
  end-page: 1898
  article-title: Involvement of a CbbR homolog in low CO ‐induced activation of the bicarbonate transporter operon in cyanobacteria
  publication-title: J Bacteriol
– volume: 8
  start-page: 93
  year: 1987
  end-page: 99
  article-title: Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels
  publication-title: Electrophoresis
– volume: 275
  start-page: 31630
  year: 2000
  end-page: 31634
  article-title: Two types of functionally distinct NAD (P) H dehydrogenases in sp. strain PCC 6803
  publication-title: J Biol Chem
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
– volume: 5
  start-page: 1853
  year: 1993
  end-page: 1863
  article-title: sp. PCC 6803 strains lacking photosystem I and phycobilisome function
  publication-title: Plant Cell
– volume: 26
  start-page: 1075
  year: 1985
  end-page: 1081
  article-title: Changes in the polypeptide composition of the cytoplasmic membrane in the cyanobacterium during adaptation to low CO conditions
  publication-title: Plant Cell Physiol
– volume: 479
  start-page: 72
  year: 2000
  end-page: 77
  article-title: Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium sp. PCC 6803
  publication-title: FEBS Lett
– volume: 277
  start-page: 2006
  year: 2002
  end-page: 2011
  article-title: A critical role for the Var2 FtsH homologue of in the photosystem II repair cycle
  publication-title: J Biol Chem
– volume: 101
  start-page: 18228
  year: 2004
  end-page: 18233
  article-title: Identification of a SulP‐type bicarbonate transporter in marine cyanobacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 131
  year: 2002
  end-page: 149
  article-title: Modes of active inorganic carbon uptake in the cyanobacterium, sp. PCC7942
  publication-title: Funct Plant Biol
– volume: 88
  start-page: 4275
  year: 1991a
  end-page: 4279
  article-title: A gene homologous to the subunit‐2 gene of NADH dehydrogenase is essential to inorganic carbon transport of PCC6803
  publication-title: Proc Natl Acad Sci USA
– volume: 77
  start-page: 117
  year: 2003
  end-page: 126
  article-title: Characterisation of CO and HCO uptake in the cyanobacterium sp. PCC6803
  publication-title: Photosynth Res
– volume: 579
  start-page: 2289
  year: 2005
  end-page: 2293
  article-title: The chlorophyll‐binding protein IsiA is inducible by high light and protects the cyanobacterium PCC6803 from photooxidative stress
  publication-title: FEBS Lett
– volume: 9
  start-page: 234
  year: 2006
  end-page: 240
  article-title: Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts
  publication-title: Curr Opin Plant Biol
– volume: 13
  start-page: 793
  year: 2001
  end-page: 806
  article-title: DNA microarray analysis of cyanobacterial gene expression during acclimation to high light
  publication-title: Plant Cell
– volume: 134
  start-page: 470
  year: 2004
  end-page: 481
  article-title: Towards functional proteomics of membrane protein complexes in sp. PCC 6803
  publication-title: Plant Physiol
– volume: 77
  start-page: 105
  year: 2003
  end-page: 115
  article-title: Inorganic carbon acquisition systems in cyanobacteria
  publication-title: Photosynth Res
– volume: 98
  start-page: 11789
  year: 2001
  end-page: 11794
  article-title: Distinct constitutive and low‐CO ‐induced CO uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms
  publication-title: Proc Natl Acad Sci USA
– volume: 99
  start-page: 1604
  year: 1992
  end-page: 1608
  article-title: Identification and characterization of the gene product essential to inorganic carbon transport of sp. strain PCC6803
  publication-title: Plant Physiol
– volume: 279
  start-page: 5739
  year: 2004
  end-page: 5751
  article-title: Alterations in global patterns of gene expression in sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of , a LysR family regulator
  publication-title: J Biol Chem
– volume: 63
  start-page: 86
  year: 2007
  end-page: 102
  article-title: A membrane‐bound FtsH protease is involved in osmoregulation in sp. PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis
  publication-title: Mol Microbiol
– volume: 83
  start-page: 698
  year: 2005a
  end-page: 710
  article-title: Regulation of cyanobacterial CO ‐concentrating mechanisms through transcriptional induction of high‐affinity Ci‐transport systems
  publication-title: Can J Bot
– volume: 29
  start-page: 123
  year: 2002b
  end-page: 129
  article-title: Two CO uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in sp. strain PCC6803
  publication-title: Funct Plant Biol
– volume: 132
  start-page: 218
  year: 2003
  end-page: 229
  article-title: Inorganic carbon limitation and light control the expression of transcripts related to the CO ‐concentrating mechanism in the cyanobacterium sp. strain PCC6803
  publication-title: Plant Physiol
– volume: 56
  start-page: 357
  year: 2005
  end-page: 363
  article-title: FtsH‐mediated repair of the photosystem II complex in response to light stress
  publication-title: J Exp Bot
– volume: 281
  start-page: 30347
  year: 2006
  end-page: 30355
  article-title: The deg proteases protect Synechocystis SP. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle
  publication-title: J Biol Chem
– volume: 39
  start-page: 455
  year: 2001
  end-page: 468
  article-title: Characterization and analysis of an NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing inorganic carbon starvation and osmotic stress
  publication-title: Mol Microbiol
– volume: 57
  start-page: 249
  year: 2006
  end-page: 265
  article-title: The environmental plasticity and ecological genomics of the cyanobacterial CO concentrating mechanism
  publication-title: J Exp Bot
– volume: 1757
  start-page: 47
  year: 2006
  end-page: 56
  article-title: Cyanobacterial families in and encode trace, constitutive and UVB‐induced D1 isoforms
  publication-title: Biochim Biophys Acta – Bioenergetics
– ident: e_1_2_6_30_1
  doi: 10.1023/A:1025865500026
– ident: e_1_2_6_28_1
  doi: 10.1104/pp.96.1.280
– ident: e_1_2_6_43_1
  doi: 10.1074/jbc.M112468200
– ident: e_1_2_6_52_1
  doi: 10.1104/pp.105.069146
– ident: e_1_2_6_6_1
  doi: 10.1074/jbc.M601064200
– ident: e_1_2_6_34_1
  doi: 10.1093/oxfordjournals.pcp.a077003
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1365-313X.2003.02014.x
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1462-5822.2007.00901.x
– ident: e_1_2_6_26_1
  doi: 10.1093/jxb/eri021
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1365-2958.2001.02239.x
– ident: e_1_2_6_17_1
  doi: 10.1046/j.1365-2958.1999.01457.x
– ident: e_1_2_6_55_1
  doi: 10.1105/tpc.104.026526
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.96.23.13571
– ident: e_1_2_6_3_1
  doi: 10.1093/jxb/erg076
– ident: e_1_2_6_2_1
  doi: 10.1016/j.pbi.2006.03.010
– volume: 33
  start-page: 1233
  year: 1992
  ident: e_1_2_6_24_1
  article-title: Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803
  publication-title: Plant Cell Physiol
– ident: e_1_2_6_8_1
  doi: 10.1023/A:1025850230977
– ident: e_1_2_6_13_1
  doi: 10.1105/tpc.13.4.793
– ident: e_1_2_6_5_1
  doi: 10.1074/jbc.M105878200
– ident: e_1_2_6_29_1
  doi: 10.1104/pp.99.4.1604
– ident: e_1_2_6_44_1
  doi: 10.1071/PP01188
– ident: e_1_2_6_51_1
  doi: 10.1139/b05-050
– ident: e_1_2_6_50_1
  doi: 10.1104/pp.103.029728
– ident: e_1_2_6_35_1
  doi: 10.1104/pp.80.2.525
– ident: e_1_2_6_21_1
  doi: 10.1046/j.1365-2958.2002.02753.x
– ident: e_1_2_6_53_1
  doi: 10.1093/pcp/pci147
– ident: e_1_2_6_45_1
  doi: 10.1016/j.bbabio.2005.11.002
– ident: e_1_2_6_33_1
  doi: 10.1128/JB.183.6.1891-1898.2001
– ident: e_1_2_6_14_1
  doi: 10.1146/annurev.arplant.50.1.539
– volume: 76
  start-page: 973
  year: 1998
  ident: e_1_2_6_37_1
  article-title: The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances
  publication-title: Can J Bot
– ident: e_1_2_6_18_1
  doi: 10.1074/jbc.M503852200
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.0405211101
– ident: e_1_2_6_40_1
  doi: 10.1146/annurev.mi.47.100193.003121
– ident: e_1_2_6_9_1
  doi: 10.1002/elps.1150080203
– ident: e_1_2_6_23_1
  doi: 10.1104/pp.101.3.1047
– ident: e_1_2_6_22_1
  doi: 10.1016/S0014-5793(00)01871-8
– ident: e_1_2_6_41_1
  doi: 10.1105/tpc.5.12.1853
– ident: e_1_2_6_11_1
  doi: 10.1016/j.febslet.2005.03.021
– ident: e_1_2_6_42_1
  doi: 10.1073/pnas.191258298
– ident: e_1_2_6_7_1
  doi: 10.1074/jbc.M410914200
– ident: e_1_2_6_32_1
  doi: 10.1074/jbc.M003706200
– ident: e_1_2_6_15_1
  doi: 10.1104/pp.97.3.851
– ident: e_1_2_6_38_1
  doi: 10.1071/PP01229
– ident: e_1_2_6_16_1
  doi: 10.1007/978-94-011-0227-8_15
– ident: e_1_2_6_12_1
  doi: 10.1104/pp.103.032326
– ident: e_1_2_6_25_1
  doi: 10.1139/b90-165
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.88.10.4275
– ident: e_1_2_6_31_1
  doi: 10.1016/0005-2728(85)90029-5
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1365-2958.2006.05495.x
– ident: e_1_2_6_48_1
  doi: 10.1074/jbc.M311336200
– ident: e_1_2_6_4_1
  doi: 10.1093/jxb/eri286
– ident: e_1_2_6_49_1
  doi: 10.1016/0076-6879(88)67088-1
– ident: e_1_2_6_46_1
  doi: 10.1105/tpc.012609
– ident: e_1_2_6_56_1
  doi: 10.1042/BJ20050390
– ident: e_1_2_6_20_1
  doi: 10.1104/pp.019349
SSID ssj0013063
Score 1.9935517
Snippet Cyanobacteria possess a complex CO₂-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of...
Summary Cyanobacteria possess a complex CO2‐concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement...
Cyanobacteria possess a complex CO 2 ‐concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of...
Cyanobacteria possess a complex CO(2)-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of...
Cyanobacteria possess a complex ...-concentrating mechanism (CCM), which is induced by low inorganic carbon conditions. To investigate the involvement of...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 728
SubjectTerms Autoradiography
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biochemistry
Biological and medical sciences
Carbon Compounds, Inorganic - metabolism
Carbon dioxide
Carbon Dioxide - metabolism
Diuron - pharmacology
Environment
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial - drug effects
Genes, Bacterial
Inorganic carbon
Microbiology
Miscellaneous
Models, Biological
Mutants
Mutation - genetics
Oxidative stress
Paraquat - pharmacology
Photosynthesis
Proteases
Protein Biosynthesis - drug effects
Proteome - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Synechocystis - cytology
Synechocystis - drug effects
Synechocystis - enzymology
Synechocystis - genetics
Title FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2007.05822.x
https://www.ncbi.nlm.nih.gov/pubmed/17635189
https://www.proquest.com/docview/196527965
https://www.proquest.com/docview/47386640
https://www.proquest.com/docview/70729651
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgEhIv3GHZYPiB11SJ60v8OBWqglSEGJX6ZvmKpqFkalpp5ddzHKctQUOaEC9RLrYTO8fHX-wv30HonYXv6KCJzh2g4ZyG0uaGGptrMS4dEabi3UL7_DOfLeinJVv2_Kf4L0zSh9hPuMWe0fnr2MG1aYedvGNoSVb1SoQMBrtRxJNwIcrov_9KDgsKfVA1yaKcLFkOST23FjQYqe4H3UTepG6h6UKKeXEbKB1i3G6Qmj5GV7vqJW7K1WizNiP78w_lx_9T_yfoUY9l8Xkyvqfonq-foQcpuuX2OWqm63aGOyEIGCrxZYtXPvKOvcOAlPFl7ZJyLW4CHKTwUhZbvTJwTltImvhkuKO9-xvfQjJ8sa09uGy7Bd_U4vZ6hL9MJphXxfgFWkw_fJvM8j6-Q26ZZCSXPFBPpafUAMoIpQF3w0rjGHVUUmNkQUthLDhgwHgFM5LRUAgSmCO28IAdX6Kjuqn9MbzLYB3TvPAuUEjEKq0Jd7wwgCgdFeMMid27VLYXP48xOH6o3z6CoDlVbM4YmlOorjnVTYbKfc7rJAByhzzHYC5Kfwc_rRYXJJpfIWSc8svQ2cCGDmVWkpS8Ehk63RmV6t1Jq6LsIxGwydDb_VXwA3FxR9e-2bSKxuitnBZ_TyGiSDxnZYZeJVs93DuqEsIDZIh3Fnfniqr5_GPcO_nXjKfoYZosj4zK1-hovdr4N4Dy1uas67-_AEp3PxE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCMHLuLMw2PzAa6rE9SV5RBVVB-uE2Cr1zfIVTUzJ1LTSyq_fcZy2BA1pQrxEudi5nBwff7FPvg-hjwa-o70iKrWAhlPqc5Nqqk2qxDC3ROiCtxPt0zM-mdEvczbv5IDCvzCRH2I74BZaRhuvQwMPA9L9Vt6maJWs6KgIGfR2AwCUj9rpuoCQvpPdlEInq1ayQChL5v20njvP1OurHnpVh8xJ1YDxfFS9uAuW9lFu202Nn6GrzQPG7JSfg9VSD8yvP7gf_5MFnqP9Ds7iT9H_XqAHrnqJHkeBy_UrVI-XzQS3XBDQW-LLBi9cSD12FgNYxpeVjeS1uPawERWmDDZqoWGfMlA0ppThNvPd3bgGiuHzdeUgaps1hKcGN9cD_G00wrzIhq_RbPz5YjRJO4mH1LCSkbTknjpaOko1AA2fa4g4LNeWUUtLqnWZ0VxoAzEYYF7GdMmozwTxzBKTOYCPb9BeVVfuAF6mN5YpnjnrKRRihVKEW55pAJWWimGCxOZlStPxnwcZjiv523cQmFMGcwZ1TiFbc8qbBOXbmteRA-QedQ7AX6T6AaFazs5J8L9MlGHUL0FHPSfanbMoSc4LkaDDjVfJLqI0MjA_EgGLBB1vj0IoCPM7qnL1qpE0CLhymv29hAg88ZzlCXobnXV37UBMCDeQIN663L0fVE6nJ2Ht3b9WPEZPJhfTU3l6cvb1ED2NY-chwfI92lsuVu4DgL6lPmob8y1HykMv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCMQLd1gYbH7gNVXi-pI8okLVAZ0mRqW-Wb6iaSipmlZa-fUcx2lL0JAmxEuVJnbSnByf88X--h2E3hl4j_aKqNQCGk6pz02qqTapEsPcEqEL3i60T8_4ZEY_zdm84z-F_8JEfYjdhFsYGW28DgN8YX1_kLcMrZIVnRIhg2Q3ADx5j3LImgEgfSX7FYWuqlrJgp4smfdZPTeeqZeq7npVB-KkasB2Pha9uAmV9kFum6XGj9HV9v4iOeVqsF7pgfn5h_Tj_zHAE_SoA7P4ffS-p-iOq56h-7G85eY5qserZoJbJQjIlfiywUsXiMfOYoDK-LKyUboW1x6-xPpSBhu11LBPGWgaCWW45b27a9dAM3yxqRzEbLOB4NTgZjHA56MR5kU2fIFm44_fRpO0K_CQGlYykpbcU0dLR6kGmOFzDfGG5doyamlJtS4zmgttIAIDyMuYLhn1mSCeWWIyB-DxJTqo6sodwrP0xjLFM2c9hUasUIpwyzMNkNJSMUyQ2D5LaTr181CE44f87S0IzCmDOUNtTiFbc8rrBOW7nouoAHKLPofgLlJ9h0AtZxckuF8myjDnl6Djng_tz1mUJOeFSNDR1qlkF08aGXQfiYCPBJ3sjkIgCKs7qnL1upE0lG_lNPt7CxFU4jnLE_Qq-ur-2kGWEH5Agnjrcbe-UTmdnoat1__a8QQ9OP8wll9Ozz4foYdx4jywK9-gg9Vy7d4C4lvp43Yo_wIr5UHe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FtsH+protease+is+required+for+induction+of+inorganic+carbon+acquisition+complexes+in+Synechocystis+sp.+PCC+6803&rft.jtitle=Molecular+microbiology&rft.au=Zhang%2C+Pengpeng&rft.au=Sicora%2C+Cosmin+I.&rft.au=Vorontsova%2C+Natalia&rft.au=Allahverdiyeva%2C+Yagut&rft.date=2007-08-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=65&rft.issue=3&rft.spage=728&rft.epage=740&rft_id=info:doi/10.1111%2Fj.1365-2958.2007.05822.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2958_2007_05822_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon