动态模糊RBF神经网络焊接接头力学性能预测建模

建立动态模糊径向基神经网络RBF(Radial Basis Function,RBF)焊接接头力学性能预测模型,克服静态RBF和模糊神经网络(Fuzzy Neural Network,FNN)在结构辨识、动态样本训练及学习算法的不足。该模型的结构参数不再提前预设,在训练过程中动态自适应调整,适用动态样本数据学习,学习算法引入分级学习和模糊规则修剪策略,加速训练并使模型结构更加紧凑。利用三种厚度、不同工艺TC4钛合金TIG焊接试验数据对该模型进行仿真。结果表明:模型具有较高的预测精度,适用于预测焊接接头力学性能,为焊接过程在线控制开辟了新的途径。...

Full description

Saved in:
Bibliographic Details
Published in航空材料学报 Vol. 36; no. 5; pp. 26 - 30
Main Author 张永志 董俊慧 朱红玲
Format Journal Article
LanguageChinese
Published 内蒙古农业大学 机电工程学院,呼和浩特,010018%内蒙古工业大学 材料科学与工程学院,呼和浩特,010051%内蒙古大学 创业学院商学教学部,呼和浩特,010070 2016
Subjects
Online AccessGet full text
ISSN1005-5053
DOI10.11868/j.issn.1005-5053.2016.5.005

Cover

Abstract 建立动态模糊径向基神经网络RBF(Radial Basis Function,RBF)焊接接头力学性能预测模型,克服静态RBF和模糊神经网络(Fuzzy Neural Network,FNN)在结构辨识、动态样本训练及学习算法的不足。该模型的结构参数不再提前预设,在训练过程中动态自适应调整,适用动态样本数据学习,学习算法引入分级学习和模糊规则修剪策略,加速训练并使模型结构更加紧凑。利用三种厚度、不同工艺TC4钛合金TIG焊接试验数据对该模型进行仿真。结果表明:模型具有较高的预测精度,适用于预测焊接接头力学性能,为焊接过程在线控制开辟了新的途径。
AbstractList 建立动态模糊径向基神经网络RBF(Radial Basis Function,RBF)焊接接头力学性能预测模型,克服静态RBF和模糊神经网络(Fuzzy Neural Network,FNN)在结构辨识、动态样本训练及学习算法的不足。该模型的结构参数不再提前预设,在训练过程中动态自适应调整,适用动态样本数据学习,学习算法引入分级学习和模糊规则修剪策略,加速训练并使模型结构更加紧凑。利用三种厚度、不同工艺TC4钛合金TIG焊接试验数据对该模型进行仿真。结果表明:模型具有较高的预测精度,适用于预测焊接接头力学性能,为焊接过程在线控制开辟了新的途径。
TG407; 建立动态模糊径向基神经网络RBF( Radial Basis Function,RBF)焊接接头力学性能预测模型,克服静态RBF和模糊神经网络( Fuzzy Neural Network,FNN)在结构辨识、动态样本训练及学习算法的不足。该模型的结构参数不再提前预设,在训练过程中动态自适应调整,适用动态样本数据学习,学习算法引入分级学习和模糊规则修剪策略,加速训练并使模型结构更加紧凑。利用三种厚度、不同工艺TC4钛合金TIG焊接试验数据对该模型进行仿真。结果表明:模型具有较高的预测精度,适用于预测焊接接头力学性能,为焊接过程在线控制开辟了新的途径。
Abstract_FL A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the train-ing speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for pre-dicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.
Author 张永志 董俊慧 朱红玲
AuthorAffiliation 内蒙古农业大学机电工程学院,呼和浩特010018 内蒙古工业大学材料科学与工程学院,呼和浩特010051 内蒙古大学创业学院商学教学部,呼和浩特010070
AuthorAffiliation_xml – name: 内蒙古农业大学 机电工程学院,呼和浩特,010018%内蒙古工业大学 材料科学与工程学院,呼和浩特,010051%内蒙古大学 创业学院商学教学部,呼和浩特,010070
Author_FL ZHANG Yongzhi
DONG Junhui
ZHU Hongling
Author_FL_xml – sequence: 1
  fullname: ZHANG Yongzhi
– sequence: 2
  fullname: DONG Junhui
– sequence: 3
  fullname: ZHU Hongling
Author_xml – sequence: 1
  fullname: 张永志 董俊慧 朱红玲
BookMark eNo9j8FKw0AQhvdQwVr7EiJ4StzJdpPtSbRYFQqC9F52N9k2tW61QdRbiz1FUDwrgmK1F0_qxdLHSaJv4ZaKww_DDN_8w7-EcrqrA4RWAdsAzGXrbTuMIm0DxtSimBLbweDa1DZzDuX_14uoGEWhwBjAKTPK8mgjicdpf5COH7P3-GCrmo0esslNNr3NJvfZME6vR0bJ80cS3yVvL2n_9fty-vM0TD-vksmXuVpGC4p3oqD41wuoXt2uV3at2v7OXmWzZklappb0PIU59T3OSwyEzwLwIOCUUVcp4bhSMUUhCEqOBEYIl8rHpsAnvhKiJEgBrc1tz7hWXDcb7e5pT5uHjdah7JyLWVxMTUxDrsxJ2erq5klo2ONeeMR7Fw3XmwGEYvIL_OBwIg
ClassificationCodes TG407
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11868/j.issn.1005-5053.2016.5.005
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network
DocumentTitle_FL Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network
EndPage 30
ExternalDocumentID hkclxb201605005
670053350
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (51165027)
GroupedDBID -03
2B.
2C0
2RA
5VS
5XA
5XC
5XD
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
CW9
FIJ
GROUPED_DOAJ
IPNFZ
RIG
TCJ
TGT
U1G
U5L
U5M
W92
~WA
4A8
93N
ABJNI
ADMLS
PSX
ID FETCH-LOGICAL-c595-c77f0a5d7aa481bd8e171ea5856ffb26cf8f51ee42c1833acfd00001d3dfbb4b3
ISSN 1005-5053
IngestDate Thu May 29 04:00:12 EDT 2025
Wed Feb 14 10:14:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 力学性能
welding
预测
焊接
prediction
mechanical property
dynamic fuzzy RBF neural network
建模
modelling
动态模糊RBF神经网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c595-c77f0a5d7aa481bd8e171ea5856ffb26cf8f51ee42c1833acfd00001d3dfbb4b3
Notes A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for pre-dicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.
11-3159/V
ZHANG Yongzhi1 , DONG Junhui2, ZHU Hongling3(1. College
PageCount 5
ParticipantIDs wanfang_journals_hkclxb201605005
chongqing_primary_670053350
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 航空材料学报
PublicationTitleAlternate Journal of Aeronautical Materials
PublicationTitle_FL Journal of Aeronautical Materials
PublicationYear 2016
Publisher 内蒙古农业大学 机电工程学院,呼和浩特,010018%内蒙古工业大学 材料科学与工程学院,呼和浩特,010051%内蒙古大学 创业学院商学教学部,呼和浩特,010070
Publisher_xml – name: 内蒙古农业大学 机电工程学院,呼和浩特,010018%内蒙古工业大学 材料科学与工程学院,呼和浩特,010051%内蒙古大学 创业学院商学教学部,呼和浩特,010070
SSID ssib001129858
ssib051375391
ssj0000561693
ssib031741046
ssib023167179
ssib038074666
ssib017479244
Score 2.0827181
Snippet 建立动态模糊径向基神经网络RBF(Radial Basis Function,RBF)焊接接头力学性能预测模型,克服静态RBF和模糊神经网络(Fuzzy Neural Network,FNN)在结构辨识、动态样本训练...
TG407; 建立动态模糊径向基神经网络RBF( Radial Basis Function,RBF)焊接接头力学性能预测模型,克服静态RBF和模糊神经网络( Fuzzy Neural Network,FNN)在结构辨识、动态样...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 26
SubjectTerms 力学性能
动态模糊RBF神经网络
建模
焊接
预测
Title 动态模糊RBF神经网络焊接接头力学性能预测建模
URI http://lib.cqvip.com/qk/91216X/201605/670053350.html
https://d.wanfangdata.com.cn/periodical/hkclxb201605005
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  issn: 1005-5053
  databaseCode: DOA
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0000561693
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB9KC6IH8RNrVXronGTrJplJZk4y2aYUQQ9SobclmSQtKFs_WpCeKva0guJZERSrvXhSL5b-Obur_4XvTabZaSuuirAsLy8vb977vSF5M5l5IWQGhsZZFKa6UaRR2mBcw31QRnkDcnntB5GXS41TAzdvhQt32I0lvjQ2Me6sWlpfy2b1xi_3lfxLVIEHccVdsn8R2VopMICG-MI_RBj-_yjGNOFUKKoETUJcsiA8JOBQARHROICzt-N5pBWnMjHMmArDieeo9CxHtpAQDLWhqgTlhwSnitGY2eZkbDhzVIW2XRXRRFARoM5EUuWjKjgVg7wRhiZiVdvmJsTmQmAqY6S0YhJsaxoCfvJgc-Av3-8mRneLKiMbN2ksDGeeymgoItBPFdCE4RnrIWh0REJEIK7QUGg_opHQ2HcnRardmqYDGySMFtTuWxsBV8XsKUSUoT1SWfwQJOvH1f0WjdeSIVBotwkT4iAsbtZriQ2AVX4LmeBNXBGAc8viDNChzQCgpOZT6k1PUJ-PMNS2OMLQQ8GIUAK7Tm2fuR7w-u8-cG-0D0cs5tihsJO6bh00Ahs2St2eBZwDfU1ijwY3_sri6vs09jGP9Xch9w_cPKAqxGPvd9x9qIdOeli9RTyaeIhQmMwD9c_W-nHtaDiL07Z8mHDVy2BX7up7jzMUaXJTiHnCx1lFZ2LIDGogJXcqTvlYu8IbvluHAQDDhRr1MZa3ciYluBdEPLAVsaovHoRYgcksA7FmHiMz-05c-40LWH9mZbWz_ACyarPJsVOmnWUnH188RU7agfS0qu6Kp8nYxsoZcsIpr3qWXO91d_qbT_o7bwefu3AfHGy_Gey-GOy9HOy-Hmx1-8-34dd7_6XXfdX79KG_-fH7070f77b6X5_1dr_BVefI4nyy2Fpo2A_GNDSXvKGjqGymPI_SlMFoPBeFF3lFygUPyzLzQ12KkntFwXwNiUyQ6jI3LzfzIC-zjGXBeTLeWe0UF8g0K2Hkp0suPT_DvfeCaciEdCZAE08zPkmmaiTa96u6QG3c8QijZ96cJNMWm7Z9WjxqH4r1xdEiU-Q40tV87yUyvvZwvbgMI6C17IrpID8B7nnzBQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8A%A8%E6%80%81%E6%A8%A1%E7%B3%8ARBF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%84%8A%E6%8E%A5%E6%8E%A5%E5%A4%B4%E5%8A%9B%E5%AD%A6%E6%80%A7%E8%83%BD%E9%A2%84%E6%B5%8B%E5%BB%BA%E6%A8%A1&rft.jtitle=%E8%88%AA%E7%A9%BA%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E6%B0%B8%E5%BF%97&rft.au=%E8%91%A3%E4%BF%8A%E6%85%A7&rft.au=%E6%9C%B1%E7%BA%A2%E7%8E%B2&rft.date=2016&rft.pub=%E5%86%85%E8%92%99%E5%8F%A4%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010018%25%E5%86%85%E8%92%99%E5%8F%A4%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E6%9D%90%E6%96%99%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010051%25%E5%86%85%E8%92%99%E5%8F%A4%E5%A4%A7%E5%AD%A6+%E5%88%9B%E4%B8%9A%E5%AD%A6%E9%99%A2%E5%95%86%E5%AD%A6%E6%95%99%E5%AD%A6%E9%83%A8%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010070&rft.issn=1005-5053&rft.volume=36&rft.issue=5&rft.spage=26&rft.epage=30&rft_id=info:doi/10.11868%2Fj.issn.1005-5053.2016.5.005&rft.externalDocID=hkclxb201605005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F91216X%2F91216X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkclxb%2Fhkclxb.jpg