耙压式除草轮与水田土壤作用的流固耦合仿真分析及验证
为探明水稻机械除草过程中,除草轮的工作阻力大小变化及水田土壤的动态行为,该文利用 ANSYS 软件的显式动力分析模块LS-DYNA对耙压式除草轮在水田环境下的作业过程进行仿真分析。采用ALE(Arbitrary Lagrange-Euler)多物质耦合算法建立了土壤-水两物质耦合有限元模型;运用流固耦合算法分析除草轮与土壤-水模型的相互作用过程。采用有交互作用的正交试验方法选取土壤种类、水层厚度和除草轮旋转速度3个因素进行仿真试验分析,得到各因素及其一级交互作用对除草轮和土壤-水模型的耦合应力和土壤扰动率的影响规律。利用多目标优化设计方法综合评判仿真试验结果,综合评分结果表明,在不同的土壤工作...
Saved in:
| Published in | 农业工程学报 Vol. 31; no. 5; pp. 29 - 37 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
华南农业大学工程学院,广州 510642%华南农业大学工程学院,广州,510642
2015
华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.3969/j.issn.1002-6819.2015.05.005 |
Cover
| Summary: | 为探明水稻机械除草过程中,除草轮的工作阻力大小变化及水田土壤的动态行为,该文利用 ANSYS 软件的显式动力分析模块LS-DYNA对耙压式除草轮在水田环境下的作业过程进行仿真分析。采用ALE(Arbitrary Lagrange-Euler)多物质耦合算法建立了土壤-水两物质耦合有限元模型;运用流固耦合算法分析除草轮与土壤-水模型的相互作用过程。采用有交互作用的正交试验方法选取土壤种类、水层厚度和除草轮旋转速度3个因素进行仿真试验分析,得到各因素及其一级交互作用对除草轮和土壤-水模型的耦合应力和土壤扰动率的影响规律。利用多目标优化设计方法综合评判仿真试验结果,综合评分结果表明,在不同的土壤工作环境下,除草轮在水层厚度为60 mm、转速为160 r/min的作业条件下均可获得较优的工作性能。影响除草轮和土壤-水模型耦合应力的因素主次顺序为:土壤种类>水层厚度>土壤种类×水层厚度>土壤种类×除草轮转速>除草轮转速>水层厚度×除草轮转速。影响土壤扰动率的因素主次顺序为:土壤种类>除草轮转速>土壤种类×水层厚度>土壤种类×除草轮转速>水层厚度>水层厚度×除草轮转速。为验证仿真结果,进行了田间试验和土槽试验,根据仿真所得耦合应力值推导出除草轮所受土壤反作用力扭矩值,与田间实测值相对误差为8.84%;仿真所得土壤扰动率与土槽试验实测值相对误差为9.86%;仿真所得综合评分结果与试验综合评分结果相对误差为7.02%。仿真分析结果可为轻简式水稻除草机应用在不同稻区的田间作业参数提供参考。 |
|---|---|
| Bibliography: | 11-2047/S In order to investigate the variance of the resistance on the weeding roll and the dynamic behavior of the paddy soil in the condition of paddy field, LS-DYNA, the explicit analysis module of ANSYS, was adopted to simulate and analyze the operating process of the rotary harrow weeding roll in this paper. The soil model was built by MAT147 in LS-DYNA, an elastic-plastic model using the Mohr-Coulomb yield criterion. In order to simulate the paddy field in reality when weeding, a soil-water combined model was established using the Multi-Material ALE(Arbitrary Lagrange-Euler) algorithm, which was considered to be an ALE finite element model. By using the Multi-Material ALE algorithm, the different materials were allowed to exchange and transport in the ALE mesh. The interaction process between the weeding roll and the soil-water model was analyzed by the Fluid-Structure Interaction algorithm. Type of soil (factor A), thickness of water layer (factor B) and rotary velocity of weeding roll (factor |
| ISSN: | 1002-6819 |
| DOI: | 10.3969/j.issn.1002-6819.2015.05.005 |