利用红边特征参数监测小麦叶片氮素积累状况
以不同类型小麦品种在氮素差异梯度下连续3a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型红边参数及监测模型。结果表明,冠层微分光谱在红边区域内随氮素水平提高呈明显规律性变化,而原始光谱反射率的变化却较为复杂。与叶片氮积累量关系密切的常见红边参数间存在差异,其中,以GM2、SR705和FD742表现最突出,线性回归模型拟合精度(R2)分别为0.854、0.848和0.873,估计标准误差(SE)分别为1.136、1.160和1.059。基于红边双峰特征分析,构建新型红边双峰特征参数,其中,红边左偏峰面积LSDr_REPLE对叶片氮积...
Saved in:
| Published in | Nong ye gong cheng xue bao Vol. 25; no. 11; pp. 194 - 201 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
河南农业大学国家小麦工程技术研究中心,郑州,450002%南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095%河南农业大学国家小麦工程技术研究中心,郑州,450002
2009
南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.3969/j.issn.1002-6819.2009.11.035 |
Cover
| Abstract | 以不同类型小麦品种在氮素差异梯度下连续3a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型红边参数及监测模型。结果表明,冠层微分光谱在红边区域内随氮素水平提高呈明显规律性变化,而原始光谱反射率的变化却较为复杂。与叶片氮积累量关系密切的常见红边参数间存在差异,其中,以GM2、SR705和FD742表现最突出,线性回归模型拟合精度(R2)分别为0.854、0.848和0.873,估计标准误差(SE)分别为1.136、1.160和1.059。基于红边双峰特征分析,构建新型红边双峰特征参数,其中,红边左偏峰面积LSDr_REPLE对叶片氮积累量方程拟合取得很好效果,决定系数和估计标准误差分别为0.869和1.080。经不同年际独立数据的检验表明,以GM2、SR705和FD742为变量,模型预测平均相对误差(RE)分别为17.6%、17.0%和14.9%,而红边左偏峰面积LSDr_REPLE模型预测误差控制得更好,平均相对误差RE为14.5%。以上表明,红边参数GM2、SR705和FD742可以对小麦叶片氮素状况进行有效监测,而红边左偏峰面积LSDr_REPLE模型预测更为准确可靠。 |
|---|---|
| AbstractList | S511%S127; 以不同类型小麦品种在氮素差异梯度下连续3 a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型红边参数及监测模型.结果表明,冠层微分光谱在红边区域内随氮素水平提高呈明显规律性变化,而原始光谱反射率的变化却较为复杂.与叶片氮积累量关系密切的常见红边参数间存在差异,其中,以GM2、SR705和FD742表现最突出,线性回归模型拟合精度(R~2)分别为0.854、0.848和0.873,估计标准误差(SE)分别为1.136、1.160和1.059.基于红边双峰特征分析,构建新型红边双峰特征参数,其中,红边左偏峰面积LSDr_REP_(LE)对叶片氮积累量方程拟合取得很好效果,决定系数和估计标准误差分别为0.869和1.080.经不同年际独立数据的检验表明,以GM2、SR705和FD742为变量,模型预测平均相对误差(RE)分别为17.6%、17.0%和14.9%,而红边左偏峰面积LSDr_REP_(LE)模型预测误差控制得更好,平均相对误差RE为14.5%.以上表明,红边参数GM2、SR705和FD742可以对小麦叶片氮素状况进行有效监测,而红边左偏峰面积LSDr_REP_(LE)模型预测更为准确可靠. 以不同类型小麦品种在氮素差异梯度下连续3a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型红边参数及监测模型。结果表明,冠层微分光谱在红边区域内随氮素水平提高呈明显规律性变化,而原始光谱反射率的变化却较为复杂。与叶片氮积累量关系密切的常见红边参数间存在差异,其中,以GM2、SR705和FD742表现最突出,线性回归模型拟合精度(R2)分别为0.854、0.848和0.873,估计标准误差(SE)分别为1.136、1.160和1.059。基于红边双峰特征分析,构建新型红边双峰特征参数,其中,红边左偏峰面积LSDr_REPLE对叶片氮积累量方程拟合取得很好效果,决定系数和估计标准误差分别为0.869和1.080。经不同年际独立数据的检验表明,以GM2、SR705和FD742为变量,模型预测平均相对误差(RE)分别为17.6%、17.0%和14.9%,而红边左偏峰面积LSDr_REPLE模型预测误差控制得更好,平均相对误差RE为14.5%。以上表明,红边参数GM2、SR705和FD742可以对小麦叶片氮素状况进行有效监测,而红边左偏峰面积LSDr_REPLE模型预测更为准确可靠。 |
| Abstract_FL | Three field experiments were conducted with different nitrogen application rates and wheat cultivars across three growing seasons, and time-course measurements were taken on canopy spectral reflectance, leaf dry weight and leaf nitrogen concentration under the various treatments. The primary objective of this study was to explore the optimum red edge characteristics parameters and quantitative models for estimating leaf nitrogen accumulation in wheat (Triticum aestivum L.). The results showed that the first derivative of the reflectance spectra changes regularly with increasing N rates in red edge region, and canopy spectral reflectance changes complexly. The analyses on relationships between the vegetable indices reported to leaf N accumulation indicated that red edge spectral parameters related most significantly to leaf N accumulation, differed among red edge spectral parameters. An integrated linear regression equation of leaf N accumulation to GM2, SR705 and FD742 described the dynamic pattern of change in leaf N accumulation in wheat, giving the determination of coefficients(R~2)as 0.854, 0.848 and 0.873, respectively, and the standard errors (SE) as 1.136, 1.160 and 1.059, respectively. The two peak spectral parameters in red edge region were constructed on analysis of red edge characteristics, and differential vegetation index of two peak in red edge region LSDr_REP_(LE) was highly correlated with leaf N accumulation with 0.868 of R2 and 1.080 of SE. When independent data were fit to the derived equations, the average relative error (RE) values as 17.6%, 17.0%, 14.9% and 14.5% between measured and estimated N accumulation using spectral parameters GM2, SR705, FD742 and LSDr_REP_(LE), respectively, indicating a good fit and better in LSDr_REP_(LE). The result indicated that those models could be used to reliably estimate the leaf N states in wheat, and especially LSDr_REP_(LE) of new extracted parameters could indicate further steadily dynamic changes in leaf N accumulation. |
| Author | 冯伟 朱艳 姚霞 田永超 郭天财 曹卫星 |
| AuthorAffiliation | 南京农业大学江苏省信息农业高技术研究重点实验室,南京210095 河南农业大学国家小麦工程技术研究中心,郑州450002 |
| AuthorAffiliation_xml | – name: 南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095;河南农业大学国家小麦工程技术研究中心,郑州,450002%南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095%河南农业大学国家小麦工程技术研究中心,郑州,450002 |
| Author_FL | Guo Tiancai Cao Weixing Tian Yongchao Feng Wei Yao Xia Zhu Yan |
| Author_FL_xml | – sequence: 1 fullname: Feng Wei – sequence: 2 fullname: Zhu Yan – sequence: 3 fullname: Yao Xia – sequence: 4 fullname: Tian Yongchao – sequence: 5 fullname: Guo Tiancai – sequence: 6 fullname: Cao Weixing |
| Author_xml | – sequence: 1 fullname: 冯伟 朱艳 姚霞 田永超 郭天财 曹卫星 |
| BookMark | eNo9j7tKA0EARaeIYIz5CRGsdp3HzswO2EjwBQGb9GF2MhM3hgm6iFpqoUaLRdDKRix8NCZFEkiK_M1m9C9ciVhduBzu5SyBgu1YDcAqgj4RTKy3_DhJrI8gxB4LkfAxhMJHyIeEFkDxv18E5SSJI4h4wEPEcRFsZDcf7uHdTV6-pmPXHWfTiyy9nD323dP9bHiX9dPvyWuWjlz3etb_dINn99Zzg567HWVXw2WwYGQ70eW_LIHa9latsutV93f2KptVT1FBPUq4oogyFoSK6EhCyDVqYK0MY1xDrBlERjKhZYiNgqEmPAx4A5lA4DDimpTA2nz2VFojbbPe6pwc2_ywbs-b6iz6lUUoV83JlTmpDjq2eRTnbCTVoYnbuk4wYVjQgPwAEF5u6A |
| ClassificationCodes | S511%S127 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1002-6819.2009.11.035 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitleAlternate | Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters |
| DocumentTitle_FL | Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters |
| EndPage | 201 |
| ExternalDocumentID | nygcxb200911035 32362954 |
| GrantInformation_xml | – fundername: 国家自然科学基金(30671215; 30900867); 江苏省自然科学基金(BK2005212; BK2003079) funderid: 国家自然科学基金(30671215; 30900867); 江苏省自然科学基金(BK2005212; BK2003079) |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CDYEO CHDYS CQIGP CUKSK CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ABJNI ACUHS PSX |
| ID | FETCH-LOGICAL-c595-537c5156648c3eba007e1d2ecf667e02e601fa69ea82fc08e37847d1f4928b7e3 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:04:16 EDT 2025 Thu Nov 24 20:32:37 EST 2022 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Keywords | models spectrum analysis leaf nitrogen accumulation 监测 红边特征参数 模型 叶片氮积累量 光谱分析 wheat red edge characteristic indices 小麦 monitoring |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c595-537c5156648c3eba007e1d2ecf667e02e601fa69ea82fc08e37847d1f4928b7e3 |
| Notes | models spectrum analysis leaf nitrogen accumulation S511 S127 11-2047/S wheat red edge characteristic indices monitoring monitoring; models; spectrum analysis; wheat; red edge characteristic indices; leaf nitrogen accumulation |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_nygcxb200911035 chongqing_backfile_32362954 |
| PublicationCentury | 2000 |
| PublicationDate | 2009 |
| PublicationDateYYYYMMDD | 2009-01-01 |
| PublicationDate_xml | – year: 2009 text: 2009 |
| PublicationDecade | 2000 |
| PublicationTitle | Nong ye gong cheng xue bao |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationTitle_FL | TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING |
| PublicationYear | 2009 |
| Publisher | 河南农业大学国家小麦工程技术研究中心,郑州,450002%南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095%河南农业大学国家小麦工程技术研究中心,郑州,450002 南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095 |
| Publisher_xml | – name: 河南农业大学国家小麦工程技术研究中心,郑州,450002%南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095%河南农业大学国家小麦工程技术研究中心,郑州,450002 – name: 南京农业大学江苏省信息农业高技术研究重点实验室,南京,210095 |
| SSID | ssib017478172 ssj0041925 ssib001101065 ssib023167668 ssib051370041 |
| Score | 1.8575546 |
| Snippet | 以不同类型小麦品种在氮素差异梯度下连续3a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型红边参数及监... S511%S127; 以不同类型小麦品种在氮素差异梯度下连续3 a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 194 |
| SubjectTerms | 光谱分析 叶片氮积累量 小麦 模型 监测 红边特征参数 |
| Title | 利用红边特征参数监测小麦叶片氮素积累状况 |
| URI | http://lib.cqvip.com/qk/90712X/200911/32362954.html https://d.wanfangdata.com.cn/periodical/nygcxb200911035 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals issn: 1002-6819 databaseCode: FIJ dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 20151231 titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 omitProxy: true ssIdentifier: ssj0041925 providerName: Ingenta |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0ApFQnBAPEUpoB7qU5Sy9u56bYnLbrpRqURPQeot2t14UwkpFSWR2t7gABQOFRKcuCAOPC60h7ZSe-h_8AHpwl8w43XTUKEKUCLHGs-MxzNee9aOx4RMOTwN2jJJa9Jj7RrMUF5NZjrFu154IqWbexoPCj-YF7MPvbkFf6FS-T7yr6V-L53O1v54ruR_rAowsCuekv0Hyw6ZAgDyYF9IwcKQ_pWNaexTKWmoaBxQ5dFQYiYKachpLGkU08gUSWUyPkIkM1QNKgFHUAVAx5BHVDGERFAaGWQH0WJlGApLFQnLUAYG2aFhbCqF2g2fEL6NI4jJyNBQATkyH_WG5_Gio1Vd7eAv9B5IV_q6miZLR_3AkiEjj0Z1qhpVI3WdRgybiC1zq4gF9aoQpYUyFVetRrBtRspIGo0IKv0qYkmXhjOGzjP6k0ZeXnKPrLrkDA0jA5FQ828LJGpkNMfhXkimRjsyGxmuWXnBsp35ebmscnJScZVQZlJBntNDnmWsU4wAW8ZbORG22-XgGijfO0POclwqwgik9-eOPVWGL-PDoZThNQbs-AgzxwAF5i720qnAvXrfbNzb2s-RKSva3dMEw4ghi2DDx-AHmWNp3TzpdkY8qOYlctG--kyGZT--TCpri1fIhbCzbMO_6Kvk3uDl1-Ltl2L_44-DvWJ9b3DwdLDx7PDdVvH-zeHO68HWxs_9T4ON3WL9xeHWt2L7Q_F5s9jeLF7tDp7vXCPNRtysz9bs_R61zFd-zXeDzMflA09mrk4T8FY1a3Od5UIE2uFaOCxPhNKJ5HnmSO0G4Eq1We4pLtNAu9fJWHepq2-QSeWytkh5O9NJ7gUiSDh8XI8nCQuEDvJxMjFUA7iH2SMMetY6MtE4mbSKadmH-0mru9rJVlLUJFjK9W-eymCCnC83GXFl7hYZ6y339W3wVXvpHWP1X08UdhA |
| linkProvider | Ingenta |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%88%A9%E7%94%A8%E7%BA%A2%E8%BE%B9%E7%89%B9%E5%BE%81%E5%8F%82%E6%95%B0%E7%9B%91%E6%B5%8B%E5%B0%8F%E9%BA%A6%E5%8F%B6%E7%89%87%E6%B0%AE%E7%B4%A0%E7%A7%AF%E7%B4%AF%E7%8A%B6%E5%86%B5&rft.jtitle=Nong+ye+gong+cheng+xue+bao&rft.au=%E5%86%AF%E4%BC%9F+%E6%9C%B1%E8%89%B3+%E5%A7%9A%E9%9C%9E+%E7%94%B0%E6%B0%B8%E8%B6%85+%E9%83%AD%E5%A4%A9%E8%B4%A2+%E6%9B%B9%E5%8D%AB%E6%98%9F&rft.date=2009&rft.issn=1002-6819&rft.issue=11&rft.spage=194&rft.epage=201&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2009.11.035&rft.externalDocID=32362954 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |