基于CFD的循环生物絮团系统养殖池固相分布均匀性评价
为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid dynamics)技术,对两种系统养殖池固液气三相三维流动进行了数值模拟,分析了两种养殖池的液相速度云图、液相流线图以及固相分布特性。模拟结果表明:在水力停留时间为0.90 h时,循环养殖池流场相对复杂,流向变化较乱且分布于整个空间,紊流相对剧烈,流场速度大小分布更均匀,死区相对较少,固相主要分布在中心大范围区域,便于循环,在底部未出现沉积现象,能够避免生产中由于生物絮团在桶底角处的沉积造成厌氧病菌的滋生。另外,循环养殖池生物絮...
Saved in:
Published in | 农业工程学报 Vol. 33; no. 2; pp. 252 - 258 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
美国康奈尔大学生物与环境工程系,伊萨卡 14850%中国水产科学研究院渔业机械仪器研究所,上海,200092
2017
浙江大学生物系统工程与食品科学学院,杭州,310058%浙江大学生物系统工程与食品科学学院,杭州 310058 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2017.02.035 |
Cover
Abstract | 为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid dynamics)技术,对两种系统养殖池固液气三相三维流动进行了数值模拟,分析了两种养殖池的液相速度云图、液相流线图以及固相分布特性。模拟结果表明:在水力停留时间为0.90 h时,循环养殖池流场相对复杂,流向变化较乱且分布于整个空间,紊流相对剧烈,流场速度大小分布更均匀,死区相对较少,固相主要分布在中心大范围区域,便于循环,在底部未出现沉积现象,能够避免生产中由于生物絮团在桶底角处的沉积造成厌氧病菌的滋生。另外,循环养殖池生物絮团固相体积分数约为0.1,比较适宜罗非鱼等养殖对象的生长。通过与实测数据对比,模型的模拟值误差均在20%之内,模拟结果可信,该研究说明循环生物絮团系统能够解决原位生物絮团系统中生物絮团分布不均匀以及流场死角多的问题。 |
---|---|
AbstractList | S969; 为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid dynamics)技术,对两种系统养殖池固液气三相三维流动进行了数值模拟,分析了两种养殖池的液相速度云图、液相流线图以及固相分布特性。模拟结果表明:在水力停留时间为0.90 h时,循环养殖池流场相对复杂,流向变化较乱且分布于整个空间,紊流相对剧烈,流场速度大小分布更均匀,死区相对较少,固相主要分布在中心大范围区域,便于循环,在底部未出现沉积现象,能够避免生产中由于生物絮团在桶底角处的沉积造成厌氧病菌的滋生。另外,循环养殖池生物絮团固相体积分数约为0.1,比较适宜罗非鱼等养殖对象的生长。通过与实测数据对比,模型的模拟值误差均在20%之内,模拟结果可信,该研究说明循环生物絮团系统能够解决原位生物絮团系统中生物絮团分布不均匀以及流场死角多的问题。 为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid dynamics)技术,对两种系统养殖池固液气三相三维流动进行了数值模拟,分析了两种养殖池的液相速度云图、液相流线图以及固相分布特性。模拟结果表明:在水力停留时间为0.90 h时,循环养殖池流场相对复杂,流向变化较乱且分布于整个空间,紊流相对剧烈,流场速度大小分布更均匀,死区相对较少,固相主要分布在中心大范围区域,便于循环,在底部未出现沉积现象,能够避免生产中由于生物絮团在桶底角处的沉积造成厌氧病菌的滋生。另外,循环养殖池生物絮团固相体积分数约为0.1,比较适宜罗非鱼等养殖对象的生长。通过与实测数据对比,模型的模拟值误差均在20%之内,模拟结果可信,该研究说明循环生物絮团系统能够解决原位生物絮团系统中生物絮团分布不均匀以及流场死角多的问题。 |
Abstract_FL | Biofloc technology (BFT) has been widely used in situ tilapia rearing for its benefits such as saving protein-feed and reducing the adverse impacts on environment. And biofloc concentration has huge effect on aquaculture system. More specifically, TSS(total suspend solid) and the uniformity of the biofloc distribution can greatly affect cultured animals on feeding enthusiasm, and high TSS even will threat the survival of breeding objects. In production, because of the biofloc sedimentation, the bottom of traditional BFT system usually extremely high, so the recirculating biofloc technology (RBFT) system has become a hot topic in recent study. To investigate the improvement on biofloc distribution uniformity of RBFT system compared with situ BFT system, an Euler-Euler multi-phase turbulence 3-D model combined with the kinetic theory of granular flow was applied to simulate the solid-liquid-gas three-phase flow in culture ponds of two kinds of BFT system. At first, the tank meshing was finished based on the commercial software Workbenching 15.0. The grid independent validation was done to choose the acceptable mesh. At last, the mesh was imported in numerical simulation software (Fluent) to analyze the velocity contours and streamlines of liquid phase, distribution characters of solid phase in these two models. In this simulation, pressure-based solver and second-order implicit transient formulation were adopted. The boundary conditions of water and air inlet were set as velocity, and their outlet were regard as pressure outlet equated to the local atmospheric pressure. What’s more, according to the SIM-PLE algorithm, pressure-velocity coupling was calculated. The bioflocs were regarded as to be distributed in the bottom initially. Unsteady simulations were performed when all residuals fall below 10-3, while 40 iterations per time step were used to ensure numerical stability. To have an accurate results, third-order monotone upstream-centered schemes for conservation laws (MUSCL) was used. The simulation results show that when the hydraulic retention time (HRT) of RBFT system is 0.45 h, its flow field has an irregularly varying flow directions namely spreading all over the space, and a severe turbulent flow is complex in contrast with BFT system. On one hand, this flow field results in a more homogeneous velocity distribution and less dead zone flow field in recirculating culture pond, and on the other hand, bioflocs are gathering at the main center area, which is beneficial to biofloc recirculating. What is particularly worth mentioning is that there is only a small amount of biofloc’s sedimentation at bottom in recirculating culture pond, and this result can efficiently avoid the anaerobic bacterium’s breeding caused by the biofloc sedimentation at bottom corners of culture ponds. In addition, the solid phase volume fraction is about 0.1 in recirculating culture pond’s model, and this concentration of suspended solid is suitable for growth of cultured aquatic animal like tilapia and shrimp. According to the comparison between simulation value and experimental data, the simulating value’s error is less than 20%, and the simulation results are trustworthy. In conclusion, the study shows that the RBFT system can overcome the disadvantages including uneven distribution of biofloc and too much dead zone in situ BFT system. |
Author | 史明明 阮贇杰 刘晃 郭希山 叶章颖 韩志英 朱松明 |
AuthorAffiliation | 浙江大学生物系统工程与食品科学学院,杭州310058 美国康奈尔大学生物与环境工程系,伊萨卡14850 中国水产科学研究院渔业机械仪器研究所,上海200092 |
AuthorAffiliation_xml | – name: 浙江大学生物系统工程与食品科学学院,杭州,310058%浙江大学生物系统工程与食品科学学院,杭州 310058; 美国康奈尔大学生物与环境工程系,伊萨卡 14850%中国水产科学研究院渔业机械仪器研究所,上海,200092 |
Author_FL | Guo Xishan Han Zhiying Zhu Songming Ruan Yunjie Liu Huang Ye Zhangying Shi Mingming |
Author_FL_xml | – sequence: 1 fullname: Shi Mingming – sequence: 2 fullname: Ruan Yunjie – sequence: 3 fullname: Liu Huang – sequence: 4 fullname: Guo Xishan – sequence: 5 fullname: Ye Zhangying – sequence: 6 fullname: Han Zhiying – sequence: 7 fullname: Zhu Songming |
Author_xml | – sequence: 1 fullname: 史明明 阮贇杰 刘晃 郭希山 叶章颖 韩志英 朱松明 |
BookMark | eNo9j01LAkEcxudgkJlfIohOu81_XpydY1hmIHTxLrvrais1lkuUNyF7g_AUHZIwukQdlIhIXOjTOE4fow2j0wMPP56H3xJKqaYKEFoFbANIwdcbdhhFygaMiZVzQNoEg7AxsTHlKZT-7xdRNopCD3OgAmMGaVTUg8l00ssXNs19V3-9mt7I3A7M9Yv5GOr-k3mPTTzQ5_FseDd7e9T9iemP9dWFHp_ph0t905l1nr9H3Wn8uYwWau5-FGT_MoPKha1yvmiVdrd38hsly-eSWxQz7gjKHL8KkgqW47zmgaC-FIED1PEIMCwZJcRjxJHAuSd9lwU4qLKAyyrNoLX57Imraq6qVxrN45ZKDiuqXfdPvV9xTBLthFyZk_5eU9WPwoQ9bIUHbqtdyQkgXEpC6A9R0nTX |
ClassificationCodes | S969 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.2017.02.035 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Solid phase distribution simulation of culture pond with recirculating biofloc technology based on computational fluid dynamics |
DocumentTitle_FL | Solid phase distribution simulation of culture pond with recirculating biofloc technology based on computational fluid dynamics |
EndPage | 258 |
ExternalDocumentID | nygcxb201702035 671259922 |
GrantInformation_xml | – fundername: 国家自然科学基金青年基金; 十二五科技支撑计划项目; 农业部渔业机械仪器研究所重点实验室开发基金; 中国博士后基金项目。 funderid: (31402348); (2014BAD08B09); (2015); (2014M551747)。 |
GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
ID | FETCH-LOGICAL-c595-304587348cd19374655fb173c97e8138b214094322b4289155b9ca4e0ed4e59d3 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:04:20 EDT 2025 Wed Feb 14 10:04:12 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | 流体力学 computational fluid dynamics 循环生物絮团系统 multi-phase fluid 水产养殖 culture pond aquaculture 流场 flow fields hydraulic retention time recirculating biofloc technology system 水力停留时间 养殖池 多相流 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c595-304587348cd19374655fb173c97e8138b214094322b4289155b9ca4e0ed4e59d3 |
Notes | 11-2047/S Biofloc technology(BFT) has been widely used in situ tilapia rearing for its benefits such as saving protein-feed and reducing the adverse impacts on environment. And biofloc concentration has huge effect on aquaculture system. More specifically, TSS(total suspend solid) and the uniformity of the biofloc distribution can greatly affect cultured animals on feeding enthusiasm, and high TSS even will threat the survival of breeding objects. In production, because of the biofloc sedimentation, the bottom of traditional BFT system usually extremely high, so the recirculating biofloc technology(RBFT) system has become a hot topic in recent study. To investigate the improvement on biofloc distribution uniformity of RBFT system compared with situ BFT system, an Euler-Euler multi-phase turbulence 3-D model combined with the kinetic theory of granular flow was applied to simulate the solid-liquid-gas three-phase flow in culture ponds of two kinds of BFT system. At first, the tank meshing was finished based on |
PageCount | 7 |
ParticipantIDs | wanfang_journals_nygcxb201702035 chongqing_primary_671259922 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 农业工程学报 |
PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2017 |
Publisher | 美国康奈尔大学生物与环境工程系,伊萨卡 14850%中国水产科学研究院渔业机械仪器研究所,上海,200092 浙江大学生物系统工程与食品科学学院,杭州,310058%浙江大学生物系统工程与食品科学学院,杭州 310058 |
Publisher_xml | – name: 美国康奈尔大学生物与环境工程系,伊萨卡 14850%中国水产科学研究院渔业机械仪器研究所,上海,200092 – name: 浙江大学生物系统工程与食品科学学院,杭州,310058%浙江大学生物系统工程与食品科学学院,杭州 310058 |
SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.1800807 |
Snippet | 为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid dynamics)技... S969; 为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 252 |
SubjectTerms | 养殖池 多相流 循环生物絮团系统 水产养殖 水力停留时间 流体力学 流场 |
Title | 基于CFD的循环生物絮团系统养殖池固相分布均匀性评价 |
URI | http://lib.cqvip.com/qk/90712X/201702/671259922.html https://d.wanfangdata.com.cn/periodical/nygcxb201702035 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcIgbED2IT4xRycE-ycZ59XT3sXt3liDoKUJuS-axm9OqMQHNKWB8geQUPBgk4kX0kCAihiz4NZmMn2FVzexk88AXLE1RXV1dj2a6ara7xrJueAkE9bwj6ri3133H7tQjEUMgl_iRnSqVznYwUbxzN5i659-e4TMjtbWhU0uLC9FkvHTsvZL_8SrgwK94S_YfPFsxBQTA4F9owcPQ_pWPWciZajGjWehjK8NGq8lCwRTAPvaakGmNGAlAi7p8HIIYxbRCwHCmQ2JlmHYJ4zFjCDBEzJnkhAmQUgUIGIdpuxxlaAoEJBFLJgOaHQCPaJpMCupq4NEKGA6tBoxEqVBUH_kbMRwrE33AVIN6JSqFPAXTHKfTwNwgRjeZJpGkhq7BCqLRYBsXe5REAwyAfRKFCFReMuOTiAHKauwDXCRSYY9i0hseDMrB5KWiDQIc-A2_SSmujNKqJ4OGJEhhtWKoRpVQDZoJMTY6CTE-2ajS8KjzyC7IsHIwRxcWRj9sqcqvYJUGyesToFF9ZSMZagtzOTchfeU2c3k5RaFlKXOAEhq_XHMoocBWOQdE1YUWAuU0AZla0fIKyJf-kFPJx4YAIADmxWrQ5G8cJY9jGKAR8OTqYH1I4mBIcbeBl8PU0DttLAJcD2S5c5abclEdpXz4uMM7bFHwuAzW3KLu_9E4QAlOgQDOMFnNgEc5BdXoLWrkHCq13nvSjR9HSIP_z_MT1qgrIH6tWaPaNE1rP81w8E1KtQ-6WE0i2E_buePhRyOqo2Z40ILTqYtSjJMWGwh563ciYr2Xufu97kOIYulSYa8z2-sOxb_TZ60zZeI6oYun0DlrZGnuvHVad-fL4j3pBWsq29jZ3VmFZ1D-diX78Tlf3crXNvJXn_Jvm9n6h_xrP-9vZM_6e5tv9r68z9Z38vXt7OXzbPtp9u5F9np5b_njz62V3f73i9Z0K5xuTNXLL7XUY654nU5bYJmsOIF8UGBJxk7kCC9WIpWOJyMXy-r5EDtEvivxixSRimf91E4TP-Uq8S5Ztd79XnrZmgiQSDhxkkCgkKQdpTDj4SIKFIdULh2zxiuTtB8UBXnagYA0DQtsj1kTpZHa5WP6UfuQU6_8mWTcOoVw8aL1qlVbmF9Mr0HqsRBdL1fCL2GF3LQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ECFD%E7%9A%84%E5%BE%AA%E7%8E%AF%E7%94%9F%E7%89%A9%E7%B5%AE%E5%9B%A2%E7%B3%BB%E7%BB%9F%E5%85%BB%E6%AE%96%E6%B1%A0%E5%9B%BA%E7%9B%B8%E5%88%86%E5%B8%83%E5%9D%87%E5%8C%80%E6%80%A7%E8%AF%84%E4%BB%B7&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%8F%B2%E6%98%8E%E6%98%8E&rft.au=%E9%98%AE%E8%B4%87%E6%9D%B0&rft.au=%E5%88%98%E6%99%83&rft.au=%E9%83%AD%E5%B8%8C%E5%B1%B1&rft.date=2017&rft.pub=%E7%BE%8E%E5%9B%BD%E5%BA%B7%E5%A5%88%E5%B0%94%E5%A4%A7%E5%AD%A6%E7%94%9F%E7%89%A9%E4%B8%8E%E7%8E%AF%E5%A2%83%E5%B7%A5%E7%A8%8B%E7%B3%BB%EF%BC%8C%E4%BC%8A%E8%90%A8%E5%8D%A1+14850%25%E4%B8%AD%E5%9B%BD%E6%B0%B4%E4%BA%A7%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%E6%B8%94%E4%B8%9A%E6%9C%BA%E6%A2%B0%E4%BB%AA%E5%99%A8%E7%A0%94%E7%A9%B6%E6%89%80%2C%E4%B8%8A%E6%B5%B7%2C200092&rft.issn=1002-6819&rft.volume=33&rft.issue=2&rft.spage=252&rft.epage=258&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.02.035&rft.externalDocID=nygcxb201702035 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |