A neural network - based algorithm for predicting stone - free status after ESWL therapy

The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Data were collected from the 203 patients includin...

Full description

Saved in:
Bibliographic Details
Published inInternational Brazilian Journal of Urology Vol. 43; no. 6; pp. 1110 - 1114
Main Authors Seckiner, Ilker, Seckiner, Serap, Sen, Haluk, Bayrak, Omer, Dogan, Kazim, Erturhan, Sakip
Format Journal Article
LanguageEnglish
Published Brazil Sociedade Brasileira de Urologia 01.11.2017
Subjects
Online AccessGet full text
ISSN1677-5538
1677-6119
1677-6119
DOI10.1590/S1677-5538.IBJU.2016.0630

Cover

Abstract The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones.
AbstractList ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones.
The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones.
Author Seckiner, Serap
Dogan, Kazim
Seckiner, Ilker
Sen, Haluk
Bayrak, Omer
Erturhan, Sakip
Author_xml – sequence: 1
  givenname: Ilker
  surname: Seckiner
  fullname: Seckiner, Ilker
  organization: Department of Urology, Gaziantep University, Gaziantep, Turkey
– sequence: 2
  givenname: Serap
  surname: Seckiner
  fullname: Seckiner, Serap
  organization: Department of Endustrial Engineering, Gaziantep University, Gaziantep, Turkey
– sequence: 3
  givenname: Haluk
  surname: Sen
  fullname: Sen, Haluk
  organization: Department of Urology, Gaziantep University, Gaziantep, Turkey
– sequence: 4
  givenname: Omer
  surname: Bayrak
  fullname: Bayrak, Omer
  organization: Department of Urology, Gaziantep University, Gaziantep, Turkey
– sequence: 5
  givenname: Kazim
  surname: Dogan
  fullname: Dogan, Kazim
  organization: Department of Urology, Gaziantep University, Gaziantep, Turkey
– sequence: 6
  givenname: Sakip
  surname: Erturhan
  fullname: Erturhan, Sakip
  organization: Department of Urology, Gaziantep University, Gaziantep, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28727384$$D View this record in MEDLINE/PubMed
BookMark eNpVkdtO3DAQhq0KVA7tK1TuA2Sx43MvKlFEy1YrcQGovbMmPuxmm00ixynat2_CUgRXY3vm_zT6fIaO2q4NCH2mZEGFIRd3VCpVCMH0Yvnt58OiJFQuiGTkHTp9aklKzdHzeR47QWfDsCWkNETR9-ik1KpUTPNT9PsSt2FM0EwlP3bpDy5wBUPwGJp1l-q82eHYJdyn4GuX63aNhzxtM43FFMJ0gTwOGGIOCV_f_VrhvAkJ-v0HdByhGcLH53qOHr5f31_dFKvbH8ury1XhhOG5iFoKpXnFONfSRK8MozoKp3yQpAQDRDvuJAD1OlRcRcGFkBGkE2BcAHaOlgeu72Br-1TvIO1tB7V9eujS2kLKtWuC9aKKzFBlPDAOTGhmHFS08o4SR6GcWF8OrLHtYf8ITfMCpMTO6u0wO7WzU1tX29HO6u2sfgp_PYT7sdoF70KbJ61vNnrbaeuNXXd_rVCME8UnwKfXgJfk_89i_wD4jZoH
CitedBy_id crossref_primary_10_1007_s11934_021_01069_3
crossref_primary_10_1055_s_0040_1714148
crossref_primary_10_1097_JS9_0000000000001820
crossref_primary_10_4081_aiua_2021_4_418
crossref_primary_10_12688_f1000research_152346_1
crossref_primary_10_4103_jehp_jehp_1111_23
crossref_primary_10_1007_s13246_019_00780_3
crossref_primary_10_1097_MOU_0000000000000707
crossref_primary_10_17650_1726_9776_2024_20_3_159_167
crossref_primary_10_22465_kjuo_2022_20_3_163
crossref_primary_10_1097_MOU_0000000000000972
crossref_primary_10_1097_MOU_0000000000000896
crossref_primary_10_1097_MOU_0000000000000578
crossref_primary_10_1089_end_2019_0475
crossref_primary_10_1016_j_ajur_2023_02_002
crossref_primary_10_1097_MOU_0000000000000571
crossref_primary_10_1007_s00240_019_01167_5
crossref_primary_10_17264_stmarieng_13_101
crossref_primary_10_1016_j_csbj_2022_12_004
crossref_primary_10_1186_s12894_022_01032_5
crossref_primary_10_1007_s00345_019_03000_5
crossref_primary_10_1016_j_ucl_2023_06_004
crossref_primary_10_1177_03915603251317046
crossref_primary_10_1590_s1677_5538_ibju_2022_0450
crossref_primary_10_4103_abr_abr_121_23
crossref_primary_10_1177_03915603231162881
crossref_primary_10_1016_j_explore_2023_07_010
crossref_primary_10_1097_MOU_0000000000000584
crossref_primary_10_1080_21681163_2022_2131629
crossref_primary_10_1089_end_2022_0311
crossref_primary_10_1016_j_urology_2021_04_006
crossref_primary_10_1007_s00345_024_05268_8
crossref_primary_10_1016_j_amsu_2021_102829
ContentType Journal Article
Copyright Copyright® by the International Brazilian Journal of Urology.
Copyright_xml – notice: Copyright® by the International Brazilian Journal of Urology.
DBID CGR
CUY
CVF
ECM
EIF
NPM
5PM
ADTOC
UNPAY
DOA
DOI 10.1590/S1677-5538.IBJU.2016.0630
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1677-6119
EndPage 1114
ExternalDocumentID oai_doaj_org_article_d5bf39179da34a35839cab1bdc10c1a2
10.1590/s1677-5538.ibju.2016.0630
PMC5734074
28727384
Genre Journal Article
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
---
29J
2WC
53G
5GY
5PM
5VS
ABXHO
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APOWU
AZFZN
BAWUL
BCNDV
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M48
OK1
OVT
PGMZT
RIG
RNS
RPM
RSC
SCD
TR2
W2D
XSB
ADTOC
C1A
UNPAY
ID FETCH-LOGICAL-c594t-f865784b344869fd79318f5c7de602a9a08c4c6aa1d8eb47f54556fa6c5a9cea3
IEDL.DBID DOA
ISSN 1677-5538
1677-6119
IngestDate Fri Oct 03 12:53:18 EDT 2025
Sun Oct 26 04:13:25 EDT 2025
Thu Aug 21 18:19:14 EDT 2025
Wed Feb 19 02:42:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Calculi; Lithotripsy
therapy [Subheading]
Language English
License Copyright® by the International Brazilian Journal of Urology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-f865784b344869fd79318f5c7de602a9a08c4c6aa1d8eb47f54556fa6c5a9cea3
Notes CONFLICT OF INTEREST
None declared.
OpenAccessLink https://doaj.org/article/d5bf39179da34a35839cab1bdc10c1a2
PMID 28727384
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_d5bf39179da34a35839cab1bdc10c1a2
unpaywall_primary_10_1590_s1677_5538_ibju_2016_0630
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5734074
pubmed_primary_28727384
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Brazil
PublicationPlace_xml – name: Brazil
PublicationTitle International Brazilian Journal of Urology
PublicationTitleAlternate Int Braz J Urol
PublicationYear 2017
Publisher Sociedade Brasileira de Urologia
Publisher_xml – name: Sociedade Brasileira de Urologia
References 12780841 - BJU Int. 2003 Jun;91(9):821-4
15201765 - J Urol. 2004 Jul;172(1):175-9
6108446 - Lancet. 1980 Dec 13;2(8207):1265-8
9683301 - Br J Cancer. 1998 Jul;78(2):246-50
References_xml – reference: 15201765 - J Urol. 2004 Jul;172(1):175-9
– reference: 6108446 - Lancet. 1980 Dec 13;2(8207):1265-8
– reference: 12780841 - BJU Int. 2003 Jun;91(9):821-4
– reference: 9683301 - Br J Cancer. 1998 Jul;78(2):246-50
SSID ssj0029071
Score 2.311208
Snippet The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help...
ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free...
SourceID doaj
unpaywall
pubmedcentral
pubmed
SourceType Open Website
Open Access Repository
Index Database
StartPage 1110
SubjectTerms Adolescent
Adult
Aged
Algorithms
Calculi
Child
Child, Preschool
Female
Humans
Infant
Kidney Calculi - therapy
Lithotripsy
Male
Middle Aged
Neural Networks (Computer)
Original
Predictive Value of Tests
Regression Analysis
therapy [Subheading]
Young Adult
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VIpW-IG7CpUXi1cHXru0HhFrUqlSElxK1b6vZqw0Kbuokgvx7ZmwnahASEo8-ZlfanfF8n3cOgHcODYFU7yPnMyIoZcij0hJxLdGkzjLbNvwfcvRVnYzz0wt5sQPr3JN-Aed_pXbcT2rcTIe_blYfyeA_tN17qvj9WaKKIpJkusPPh6djjtdSQ64ldQfuksOquKPDKN8cLqTEB1setpbag7f_HIqLBpfs69syqBy5dstl_RlOeW9Zz3D1E6fTW77q-AHc70GmOOi04iHs-PoR7I36Y_THcH4guI4lvVJ3UeAiEuzOnMDp5XUzWVz9EARmxaxhEQ6MFowRvYhC473gJKTlXLTtxcXR2fkX0WVxrZ7A-Pjo26eTqO-wEFlZ5YsolIosNjcZkTRVBUfGmpRB2sJ5FadYYVza3CrExJXe5EUgvCVVQGUlVtZj9hR2a5r-OQi6lNKmRRzI7AzDAJ-kMX29bChSj2oAh7xqetYV0dBc1rq9cd1c6t5KtJMmZEQgK4dZjpkk9GbRJMbZJLYJpgN41i31Zpj1pgyg2NqErXm2n9STq7aMtiwyYrMkmW22ayPF1Ij0Qc9ZHzTrg56Y70vN-qBZH17893wvYT9laNDmM76C3UWz9K8J2CzMm1ZNfwMZYvPF
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKhUu7C1h0yBxHa8zY_uYVq0qRCskiAona9Y2kDqRa1O1v573bCdK4NabPZ5F1ntv5vvstxDyySoNINU5Zl0KBCX3nOUGiGuudGINsm2N3yFPz-TJlH_-ITa8CdGrErf--SLQdbi0PpzpX234h6eVDGOZZUyghWIj41iWgIGtRgF0fEh2pAA4PiI707Ovk59ItFb9V9cyjotd8rGr-lNE4fW6Q4ATop-XDDAH1ZC_f-NQ-tdh8lFbLdXtjZrPN06j46dEr2J6eieU30Hb6MDc_Z_i8f4v-ow8GbAqnfTK9Zw8cNULsns6_I1_Sc4nFNNhQpeqdyanjOKpaKmaXyzqWXN5RQET02WNQ9C_miLUdJT52jmKsUztNe2qlNOjb-dfaB8MdvuKTI-Pvh-esKFQAzOi4A3zuQTD5zoFricLb8Hm49wLk1kno0QVKsoNN1Kp2OZO88wDbBPSK2mEKoxT6R4ZVbD8a0LhVgiTZJEH69WIJlycRLAJGp8lTskxOUDRlMs-F0eJ2bG7hkV9UQ7GVlqhfQo8tLAq5SoVAAKN0rG2Jo5MrJIx2e_luZ4GeCPGKPExybYkvbXO9pNqdtll4xZZCqQYRqZrnViPQoYFmlZ2mlaiREuUaImaVqKmvbnXqLfkcYLooguJfEdGTd2694CNGv1h0P6_GLYHrQ
  priority: 102
  providerName: Unpaywall
Title A neural network - based algorithm for predicting stone - free status after ESWL therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/28727384
https://pubmed.ncbi.nlm.nih.gov/PMC5734074
http://www.scielo.br/pdf/ibju/v43n6/1677-5538-ibju-43-06-1110.pdf
https://doaj.org/article/d5bf39179da34a35839cab1bdc10c1a2
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1677-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029071
  issn: 1677-5538
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1677-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029071
  issn: 1677-5538
  databaseCode: KQ8
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1677-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029071
  issn: 1677-5538
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1677-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029071
  issn: 1677-5538
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1677-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029071
  issn: 1677-5538
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1677-6119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029071
  issn: 1677-5538
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1677-6119
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0029071
  issn: 1677-5538
  databaseCode: M48
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcQk9guiAm2dTBkJK6BfNiOc-wmEBq0YhoV7GQ9fwFTl1Wl1cR_v_ecqmp32YWLpThynLxf7Pd-yftg7NiDRSM1hMyHCgmKjiLTDomrBlt6R2zb0nfIwVBdjMTXO3m3UuqLfMK69MCd4E69tLFCTtF4qARUEhW6A1tY74rcFZB231w3HZkidqVqinsrmi12lMr7NPnpU-qUuLZPHu3POTl0qRNKNrVI1L-iff71jHw9byfw_AfG4xW1c77Dthf2Iu939_mWbYR2l932OeWhxP628-LmGSd15DmM738j3X_4xdEY5ZMp_YYhx2ZONl7gWZyGwCmIaP7EU3lwfvb99op3UVjPe2x0fnbz5SJbVEjInGzELIta4YoTtkKSpZrocbEVOkpX-6DyEhrItRNOARReByvqiPaSVBGUk9C4ANU7ttni9B8Yx0MpXVnnEZeNJTUeijLH3cfFugygeuwzicpMuiQYhtJSpw4EyyzAMv8Dq8fed_JdXgYJGwUHiR6r1yS_Ns_6mfbxIaXBlnWFbBRHVkuMlqOI2iDyJiFvCHlDyBtC3hDyH1_icfbZm5K0fApNPGCbs-k8fEIbZWYP0-uI7eU3je1AUDu8HhyyV6Phdf_HX2h46fg
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKhUu7C1h0yBxHa8zY_uYVq0qRCskiAona9Y2kDqRa1O1v573bCdK4NabPZ5F1ntv5vvstxDyySoNINU5Zl0KBCX3nOUGiGuudGINsm2N3yFPz-TJlH_-ITa8CdGrErf--SLQdbi0PpzpX234h6eVDGOZZUyghWIj41iWgIGtRgF0fEh2pAA4PiI707Ovk59ItFb9V9cyjotd8rGr-lNE4fW6Q4ATop-XDDAH1ZC_f-NQ-tdh8lFbLdXtjZrPN06j46dEr2J6eieU30Hb6MDc_Z_i8f4v-ow8GbAqnfTK9Zw8cNULsns6_I1_Sc4nFNNhQpeqdyanjOKpaKmaXyzqWXN5RQET02WNQ9C_miLUdJT52jmKsUztNe2qlNOjb-dfaB8MdvuKTI-Pvh-esKFQAzOi4A3zuQTD5zoFricLb8Hm49wLk1kno0QVKsoNN1Kp2OZO88wDbBPSK2mEKoxT6R4ZVbD8a0LhVgiTZJEH69WIJlycRLAJGp8lTskxOUDRlMs-F0eJ2bG7hkV9UQ7GVlqhfQo8tLAq5SoVAAKN0rG2Jo5MrJIx2e_luZ4GeCPGKPExybYkvbXO9pNqdtll4xZZCqQYRqZrnViPQoYFmlZ2mlaiREuUaImaVqKmvbnXqLfkcYLooguJfEdGTd2694CNGv1h0P6_GLYHrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network+-+based+algorithm+for+predicting+stone+-free+status+after+ESWL+therapy&rft.jtitle=International+Brazilian+Journal+of+Urology&rft.au=Ilker+Seckiner&rft.au=Serap+Seckiner&rft.au=Haluk+Sen&rft.au=Omer+Bayrak&rft.date=2017-11-01&rft.pub=Sociedade+Brasileira+de+Urologia&rft.issn=1677-6119&rft.volume=43&rft.issue=6&rft.spage=1110&rft.epage=1114&rft_id=info:doi/10.1590%2Fs1677-5538.ibju.2016.0630&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d5bf39179da34a35839cab1bdc10c1a2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1677-5538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1677-5538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1677-5538&client=summon