A neural network - based algorithm for predicting stone - free status after ESWL therapy
The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Data were collected from the 203 patients includin...
Saved in:
| Published in | International Brazilian Journal of Urology Vol. 43; no. 6; pp. 1110 - 1114 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Brazil
Sociedade Brasileira de Urologia
01.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1677-5538 1677-6119 1677-6119 |
| DOI | 10.1590/S1677-5538.IBJU.2016.0630 |
Cover
| Abstract | The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones.
Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data.
Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group.
Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. |
|---|---|
| AbstractList | ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. |
| Author | Seckiner, Serap Dogan, Kazim Seckiner, Ilker Sen, Haluk Bayrak, Omer Erturhan, Sakip |
| Author_xml | – sequence: 1 givenname: Ilker surname: Seckiner fullname: Seckiner, Ilker organization: Department of Urology, Gaziantep University, Gaziantep, Turkey – sequence: 2 givenname: Serap surname: Seckiner fullname: Seckiner, Serap organization: Department of Endustrial Engineering, Gaziantep University, Gaziantep, Turkey – sequence: 3 givenname: Haluk surname: Sen fullname: Sen, Haluk organization: Department of Urology, Gaziantep University, Gaziantep, Turkey – sequence: 4 givenname: Omer surname: Bayrak fullname: Bayrak, Omer organization: Department of Urology, Gaziantep University, Gaziantep, Turkey – sequence: 5 givenname: Kazim surname: Dogan fullname: Dogan, Kazim organization: Department of Urology, Gaziantep University, Gaziantep, Turkey – sequence: 6 givenname: Sakip surname: Erturhan fullname: Erturhan, Sakip organization: Department of Urology, Gaziantep University, Gaziantep, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28727384$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkdtO3DAQhq0KVA7tK1TuA2Sx43MvKlFEy1YrcQGovbMmPuxmm00ixynat2_CUgRXY3vm_zT6fIaO2q4NCH2mZEGFIRd3VCpVCMH0Yvnt58OiJFQuiGTkHTp9aklKzdHzeR47QWfDsCWkNETR9-ik1KpUTPNT9PsSt2FM0EwlP3bpDy5wBUPwGJp1l-q82eHYJdyn4GuX63aNhzxtM43FFMJ0gTwOGGIOCV_f_VrhvAkJ-v0HdByhGcLH53qOHr5f31_dFKvbH8ury1XhhOG5iFoKpXnFONfSRK8MozoKp3yQpAQDRDvuJAD1OlRcRcGFkBGkE2BcAHaOlgeu72Br-1TvIO1tB7V9eujS2kLKtWuC9aKKzFBlPDAOTGhmHFS08o4SR6GcWF8OrLHtYf8ITfMCpMTO6u0wO7WzU1tX29HO6u2sfgp_PYT7sdoF70KbJ61vNnrbaeuNXXd_rVCME8UnwKfXgJfk_89i_wD4jZoH |
| CitedBy_id | crossref_primary_10_1007_s11934_021_01069_3 crossref_primary_10_1055_s_0040_1714148 crossref_primary_10_1097_JS9_0000000000001820 crossref_primary_10_4081_aiua_2021_4_418 crossref_primary_10_12688_f1000research_152346_1 crossref_primary_10_4103_jehp_jehp_1111_23 crossref_primary_10_1007_s13246_019_00780_3 crossref_primary_10_1097_MOU_0000000000000707 crossref_primary_10_17650_1726_9776_2024_20_3_159_167 crossref_primary_10_22465_kjuo_2022_20_3_163 crossref_primary_10_1097_MOU_0000000000000972 crossref_primary_10_1097_MOU_0000000000000896 crossref_primary_10_1097_MOU_0000000000000578 crossref_primary_10_1089_end_2019_0475 crossref_primary_10_1016_j_ajur_2023_02_002 crossref_primary_10_1097_MOU_0000000000000571 crossref_primary_10_1007_s00240_019_01167_5 crossref_primary_10_17264_stmarieng_13_101 crossref_primary_10_1016_j_csbj_2022_12_004 crossref_primary_10_1186_s12894_022_01032_5 crossref_primary_10_1007_s00345_019_03000_5 crossref_primary_10_1016_j_ucl_2023_06_004 crossref_primary_10_1177_03915603251317046 crossref_primary_10_1590_s1677_5538_ibju_2022_0450 crossref_primary_10_4103_abr_abr_121_23 crossref_primary_10_1177_03915603231162881 crossref_primary_10_1016_j_explore_2023_07_010 crossref_primary_10_1097_MOU_0000000000000584 crossref_primary_10_1080_21681163_2022_2131629 crossref_primary_10_1089_end_2022_0311 crossref_primary_10_1016_j_urology_2021_04_006 crossref_primary_10_1007_s00345_024_05268_8 crossref_primary_10_1016_j_amsu_2021_102829 |
| ContentType | Journal Article |
| Copyright | Copyright® by the International Brazilian Journal of Urology. |
| Copyright_xml | – notice: Copyright® by the International Brazilian Journal of Urology. |
| DBID | CGR CUY CVF ECM EIF NPM 5PM ADTOC UNPAY DOA |
| DOI | 10.1590/S1677-5538.IBJU.2016.0630 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1677-6119 |
| EndPage | 1114 |
| ExternalDocumentID | oai_doaj_org_article_d5bf39179da34a35839cab1bdc10c1a2 10.1590/s1677-5538.ibju.2016.0630 PMC5734074 28727384 |
| Genre | Journal Article |
| GroupedDBID | CGR CUY CVF ECM EIF NPM --- 29J 2WC 53G 5GY 5PM 5VS ABXHO ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS APOWU AZFZN BAWUL BCNDV CS3 DIK E3Z EBS EJD F5P FRP GROUPED_DOAJ HYE IPNFZ KQ8 M48 OK1 OVT PGMZT RIG RNS RPM RSC SCD TR2 W2D XSB ADTOC C1A UNPAY |
| ID | FETCH-LOGICAL-c594t-f865784b344869fd79318f5c7de602a9a08c4c6aa1d8eb47f54556fa6c5a9cea3 |
| IEDL.DBID | DOA |
| ISSN | 1677-5538 1677-6119 |
| IngestDate | Fri Oct 03 12:53:18 EDT 2025 Sun Oct 26 04:13:25 EDT 2025 Thu Aug 21 18:19:14 EDT 2025 Wed Feb 19 02:42:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Calculi; Lithotripsy therapy [Subheading] |
| Language | English |
| License | Copyright® by the International Brazilian Journal of Urology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c594t-f865784b344869fd79318f5c7de602a9a08c4c6aa1d8eb47f54556fa6c5a9cea3 |
| Notes | CONFLICT OF INTEREST None declared. |
| OpenAccessLink | https://doaj.org/article/d5bf39179da34a35839cab1bdc10c1a2 |
| PMID | 28727384 |
| PageCount | 5 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d5bf39179da34a35839cab1bdc10c1a2 unpaywall_primary_10_1590_s1677_5538_ibju_2016_0630 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5734074 pubmed_primary_28727384 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Brazil |
| PublicationPlace_xml | – name: Brazil |
| PublicationTitle | International Brazilian Journal of Urology |
| PublicationTitleAlternate | Int Braz J Urol |
| PublicationYear | 2017 |
| Publisher | Sociedade Brasileira de Urologia |
| Publisher_xml | – name: Sociedade Brasileira de Urologia |
| References | 12780841 - BJU Int. 2003 Jun;91(9):821-4 15201765 - J Urol. 2004 Jul;172(1):175-9 6108446 - Lancet. 1980 Dec 13;2(8207):1265-8 9683301 - Br J Cancer. 1998 Jul;78(2):246-50 |
| References_xml | – reference: 15201765 - J Urol. 2004 Jul;172(1):175-9 – reference: 6108446 - Lancet. 1980 Dec 13;2(8207):1265-8 – reference: 12780841 - BJU Int. 2003 Jun;91(9):821-4 – reference: 9683301 - Br J Cancer. 1998 Jul;78(2):246-50 |
| SSID | ssj0029071 |
| Score | 2.311208 |
| Snippet | The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help... ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free... |
| SourceID | doaj unpaywall pubmedcentral pubmed |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 1110 |
| SubjectTerms | Adolescent Adult Aged Algorithms Calculi Child Child, Preschool Female Humans Infant Kidney Calculi - therapy Lithotripsy Male Middle Aged Neural Networks (Computer) Original Predictive Value of Tests Regression Analysis therapy [Subheading] Young Adult |
| SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB6VIpW-IG7CpUXi1cHXru0HhFrUqlSElxK1b6vZqw0Kbuokgvx7ZmwnahASEo8-ZlfanfF8n3cOgHcODYFU7yPnMyIoZcij0hJxLdGkzjLbNvwfcvRVnYzz0wt5sQPr3JN-Aed_pXbcT2rcTIe_blYfyeA_tN17qvj9WaKKIpJkusPPh6djjtdSQ64ldQfuksOquKPDKN8cLqTEB1setpbag7f_HIqLBpfs69syqBy5dstl_RlOeW9Zz3D1E6fTW77q-AHc70GmOOi04iHs-PoR7I36Y_THcH4guI4lvVJ3UeAiEuzOnMDp5XUzWVz9EARmxaxhEQ6MFowRvYhC473gJKTlXLTtxcXR2fkX0WVxrZ7A-Pjo26eTqO-wEFlZ5YsolIosNjcZkTRVBUfGmpRB2sJ5FadYYVza3CrExJXe5EUgvCVVQGUlVtZj9hR2a5r-OQi6lNKmRRzI7AzDAJ-kMX29bChSj2oAh7xqetYV0dBc1rq9cd1c6t5KtJMmZEQgK4dZjpkk9GbRJMbZJLYJpgN41i31Zpj1pgyg2NqErXm2n9STq7aMtiwyYrMkmW22ayPF1Ij0Qc9ZHzTrg56Y70vN-qBZH17893wvYT9laNDmM76C3UWz9K8J2CzMm1ZNfwMZYvPF priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKhUu7C1h0yBxHa8zY_uYVq0qRCskiAona9Y2kDqRa1O1v573bCdK4NabPZ5F1ntv5vvstxDyySoNINU5Zl0KBCX3nOUGiGuudGINsm2N3yFPz-TJlH_-ITa8CdGrErf--SLQdbi0PpzpX234h6eVDGOZZUyghWIj41iWgIGtRgF0fEh2pAA4PiI707Ovk59ItFb9V9cyjotd8rGr-lNE4fW6Q4ATop-XDDAH1ZC_f-NQ-tdh8lFbLdXtjZrPN06j46dEr2J6eieU30Hb6MDc_Z_i8f4v-ow8GbAqnfTK9Zw8cNULsns6_I1_Sc4nFNNhQpeqdyanjOKpaKmaXyzqWXN5RQET02WNQ9C_miLUdJT52jmKsUztNe2qlNOjb-dfaB8MdvuKTI-Pvh-esKFQAzOi4A3zuQTD5zoFricLb8Hm49wLk1kno0QVKsoNN1Kp2OZO88wDbBPSK2mEKoxT6R4ZVbD8a0LhVgiTZJEH69WIJlycRLAJGp8lTskxOUDRlMs-F0eJ2bG7hkV9UQ7GVlqhfQo8tLAq5SoVAAKN0rG2Jo5MrJIx2e_luZ4GeCPGKPExybYkvbXO9pNqdtll4xZZCqQYRqZrnViPQoYFmlZ2mlaiREuUaImaVqKmvbnXqLfkcYLooguJfEdGTd2694CNGv1h0P6_GLYHrQ priority: 102 providerName: Unpaywall |
| Title | A neural network - based algorithm for predicting stone - free status after ESWL therapy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28727384 https://pubmed.ncbi.nlm.nih.gov/PMC5734074 http://www.scielo.br/pdf/ibju/v43n6/1677-5538-ibju-43-06-1110.pdf https://doaj.org/article/d5bf39179da34a35839cab1bdc10c1a2 |
| UnpaywallVersion | publishedVersion |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1677-6119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029071 issn: 1677-5538 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1677-6119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029071 issn: 1677-5538 databaseCode: KQ8 dateStart: 20030201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1677-6119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029071 issn: 1677-5538 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1677-6119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029071 issn: 1677-5538 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1677-6119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029071 issn: 1677-5538 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1677-6119 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029071 issn: 1677-5538 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1677-6119 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0029071 issn: 1677-5538 databaseCode: M48 dateStart: 20150101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcQk9guiAm2dTBkJK6BfNiOc-wmEBq0YhoV7GQ9fwFTl1Wl1cR_v_ecqmp32YWLpThynLxf7Pd-yftg7NiDRSM1hMyHCgmKjiLTDomrBlt6R2zb0nfIwVBdjMTXO3m3UuqLfMK69MCd4E69tLFCTtF4qARUEhW6A1tY74rcFZB231w3HZkidqVqinsrmi12lMr7NPnpU-qUuLZPHu3POTl0qRNKNrVI1L-iff71jHw9byfw_AfG4xW1c77Dthf2Iu939_mWbYR2l932OeWhxP628-LmGSd15DmM738j3X_4xdEY5ZMp_YYhx2ZONl7gWZyGwCmIaP7EU3lwfvb99op3UVjPe2x0fnbz5SJbVEjInGzELIta4YoTtkKSpZrocbEVOkpX-6DyEhrItRNOARReByvqiPaSVBGUk9C4ANU7ttni9B8Yx0MpXVnnEZeNJTUeijLH3cfFugygeuwzicpMuiQYhtJSpw4EyyzAMv8Dq8fed_JdXgYJGwUHiR6r1yS_Ns_6mfbxIaXBlnWFbBRHVkuMlqOI2iDyJiFvCHlDyBtC3hDyH1_icfbZm5K0fApNPGCbs-k8fEIbZWYP0-uI7eU3je1AUDu8HhyyV6Phdf_HX2h46fg |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKhUu7C1h0yBxHa8zY_uYVq0qRCskiAona9Y2kDqRa1O1v573bCdK4NabPZ5F1ntv5vvstxDyySoNINU5Zl0KBCX3nOUGiGuudGINsm2N3yFPz-TJlH_-ITa8CdGrErf--SLQdbi0PpzpX234h6eVDGOZZUyghWIj41iWgIGtRgF0fEh2pAA4PiI707Ovk59ItFb9V9cyjotd8rGr-lNE4fW6Q4ATop-XDDAH1ZC_f-NQ-tdh8lFbLdXtjZrPN06j46dEr2J6eieU30Hb6MDc_Z_i8f4v-ow8GbAqnfTK9Zw8cNULsns6_I1_Sc4nFNNhQpeqdyanjOKpaKmaXyzqWXN5RQET02WNQ9C_miLUdJT52jmKsUztNe2qlNOjb-dfaB8MdvuKTI-Pvh-esKFQAzOi4A3zuQTD5zoFricLb8Hm49wLk1kno0QVKsoNN1Kp2OZO88wDbBPSK2mEKoxT6R4ZVbD8a0LhVgiTZJEH69WIJlycRLAJGp8lTskxOUDRlMs-F0eJ2bG7hkV9UQ7GVlqhfQo8tLAq5SoVAAKN0rG2Jo5MrJIx2e_luZ4GeCPGKPExybYkvbXO9pNqdtll4xZZCqQYRqZrnViPQoYFmlZ2mlaiREuUaImaVqKmvbnXqLfkcYLooguJfEdGTd2694CNGv1h0P6_GLYHrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network+-+based+algorithm+for+predicting+stone+-free+status+after+ESWL+therapy&rft.jtitle=International+Brazilian+Journal+of+Urology&rft.au=Ilker+Seckiner&rft.au=Serap+Seckiner&rft.au=Haluk+Sen&rft.au=Omer+Bayrak&rft.date=2017-11-01&rft.pub=Sociedade+Brasileira+de+Urologia&rft.issn=1677-6119&rft.volume=43&rft.issue=6&rft.spage=1110&rft.epage=1114&rft_id=info:doi/10.1590%2Fs1677-5538.ibju.2016.0630&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d5bf39179da34a35839cab1bdc10c1a2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1677-5538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1677-5538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1677-5538&client=summon |