影像纹理窗口大小对山地阔叶林不同群落有效叶面积指数估测的影响
森林叶面积指数是陆地表面过程和地球系统气候模型的基本参数,更是森林结构的关键参数之一,已广泛应用于辐射、植物光合作用和降雨截流估测等方面。论文以川西南山地阔叶林5种不同群落类型为研究对象,基于地面调查的112个20 m×20 m样地和SPOT 5数据,运用5种图像处理技术,包括光谱反射率、植被指数、影像单波段纹理、简单波段比纹理和主成分纹理,提取相应影像信息,建立多元回归模型估算有效叶面积指数(LAIe)。结果表明:光谱反射率、单波段纹理参数和植被指数对LAIe估测能力相对较低,利用植被指数仅获得实测LAIe约65%的精度(R^2=0.65,RMSE=0.28 m^2/m^2);更为有效的是运...
Saved in:
| Published in | 自然资源学报 Vol. 32; no. 5; pp. 877 - 888 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
四川农业大学林学院,成都,611130
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-3037 |
| DOI | 10.11849/zrzyxb.20151266 |
Cover
| Summary: | 森林叶面积指数是陆地表面过程和地球系统气候模型的基本参数,更是森林结构的关键参数之一,已广泛应用于辐射、植物光合作用和降雨截流估测等方面。论文以川西南山地阔叶林5种不同群落类型为研究对象,基于地面调查的112个20 m×20 m样地和SPOT 5数据,运用5种图像处理技术,包括光谱反射率、植被指数、影像单波段纹理、简单波段比纹理和主成分纹理,提取相应影像信息,建立多元回归模型估算有效叶面积指数(LAIe)。结果表明:光谱反射率、单波段纹理参数和植被指数对LAIe估测能力相对较低,利用植被指数仅获得实测LAIe约65%的精度(R^2=0.65,RMSE=0.28 m^2/m^2);更为有效的是运用所有比值处理的纹理特征参数值来估测LAIe,可获得实测LAIe约74%的变异(R^2=0.74,RMSE=0.20 m^2/m^2);改进最理想的是利用主成分处理建立的回归模型(R^2=0.85,RMSE=0.10 m^2/m^2)。不同群落的LAIe估测,整体上相应地优于研究区结果,其中栲群落决定系数R^2更是高达0.89(RMSE=0.07 m^2/m^2)。对于研究区阔叶林以窗口7×7、9×9比较成功,而各群落以窗口9×9较好。因此比值处理、主成分处理的纹理特征参数引入及高空间分辨率数据的使用,能显著提高LAIe估测精度。 |
|---|---|
| Bibliography: | LAIe; texture measurement; image processing techniques; montane broad-leavedforest Forest canopy leaf area index (LAI), a critical forest structural parameter, has beenproven to be representative of canopy foliage content and crown structure and has been widelyused for the estimation of radiation attenuation, plant photosynthesis, and precipitationinterception among others. It is further a fundamental parameter in land surface processes andearth system climate models. Remote sensing methods offer an opportunity to improve in eachof these requirements but are typically limited by the necessity for labor intensive validationand sparsely collected in situ measurements. This research investigates the potential of highresolution optical data from the SPOT 5 VGR sensor for LAIe estimation in five communitiesof montane broad-leaved forest in southwest Sichuan, using five different types of imageprocessing techniques including 1) spectral reflectance, 2) commonly used vegetation indices,3) texture parameters, 4) textu |
| ISSN: | 1000-3037 |
| DOI: | 10.11849/zrzyxb.20151266 |