农用无人机多传感器遥感辅助小麦育种信息获取

为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农业多载荷无人机遥感辅助小麦育种信息获取系统。该系统基于多旋翼无人机平台,并集成高清数码相机、多光谱仪、热像仪等多载荷传感器,提出了无地面控制点条件下的无人机遥感数据几何精校正模型,实现多载荷遥感数据几何校正。该系统操控简便,适合农田复杂环境条件作业,能够高通量获取作物倒伏面积、叶面积指数、产量及冠层温度等育种关键表型参量,为研究小麦育种基因型与表型关联规律提供辅助支持。...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 31; no. 21; pp. 184 - 190
Main Author 杨贵军 李长春 于海洋 徐波 冯海宽 高林 朱冬梅
Format Journal Article
LanguageChinese
Published 国家农业信息化工程技术研究中心,北京 100097%河南理工大学测绘与国土信息工程学院,焦作,454000%江苏里下河地区农业科学研究所/国家小麦改良中心扬州分中心,扬州,225007 2015
北京农业信息技术研究中心,北京 100097
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2015.21.024

Cover

Abstract 为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农业多载荷无人机遥感辅助小麦育种信息获取系统。该系统基于多旋翼无人机平台,并集成高清数码相机、多光谱仪、热像仪等多载荷传感器,提出了无地面控制点条件下的无人机遥感数据几何精校正模型,实现多载荷遥感数据几何校正。该系统操控简便,适合农田复杂环境条件作业,能够高通量获取作物倒伏面积、叶面积指数、产量及冠层温度等育种关键表型参量,为研究小麦育种基因型与表型关联规律提供辅助支持。
AbstractList S252+.9; 为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农业多载荷无人机遥感辅助小麦育种信息获取系统。该系统基于多旋翼无人机平台,并集成高清数码相机、多光谱仪、热像仪等多载荷传感器,提出了无地面控制点条件下的无人机遥感数据几何精校正模型,实现多载荷遥感数据几何校正。该系统操控简便,适合农田复杂环境条件作业,能够高通量获取作物倒伏面积、叶面积指数、产量及冠层温度等育种关键表型参量,为研究小麦育种基因型与表型关联规律提供辅助支持。
为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农业多载荷无人机遥感辅助小麦育种信息获取系统。该系统基于多旋翼无人机平台,并集成高清数码相机、多光谱仪、热像仪等多载荷传感器,提出了无地面控制点条件下的无人机遥感数据几何精校正模型,实现多载荷遥感数据几何校正。该系统操控简便,适合农田复杂环境条件作业,能够高通量获取作物倒伏面积、叶面积指数、产量及冠层温度等育种关键表型参量,为研究小麦育种基因型与表型关联规律提供辅助支持。
Abstract_FL To realize rapid acquisition of massive phenotypic information of wheat breeding material, the studies on UAV (unmanned aerial vehicle) platform selection, sensor integration, and remote sensing data processing and analyses were carried out respectively, and a set of multi-load agricultural UAV based remote sensing system for assisting crop breeding information acquisition was developed. The speed and height of multi-rotor UAV could be controlled easily, even at low altitude. Different kinds of sensors such as digital camera, multi-spectral camera and infrared thermal imager, could be loaded on the UAV at the same time. The above characteristics make multi-rotor UAV most suitable to acquire different kinds of farmland spatial information at different scales readily. The crop lodging area could be obtained according to the generated ortho-image based on the high-definition digital images. The crop growth status and crop coverage could be estimated through multispectral images. The canopy temperature, as an important index related to crop growth, could be rapidly acquired by a thermal infrared sensor. The developed system was used in the breeding experiments in the breeding base of Academy of Agricultural Sciences in Lixiahe, Jiangsu from March to June in 2014. In order to acquire orthophotos, canopy spectrums and temperature of wheat breeding area, the Canon PowerShot G16 digital camera, the Tetracam ADC Lite multi spectral camera and the Optris PI thermal imager were loaded on the multi-rotor UAV. The position and altitude parameters of UAV were acquired by GPS (global positioning system) and IMU (inertial measurement unit) sensor simultaneously. The ASD FieldSpec Pro spectrometer collected reflectance data of black and white calibration cloth, cement and water synchronously. The data were subsequently used in multispectral camera radiometric calibration. The data were also tested by the FLIR SC620 thermal imager and the SPOT THERMOMETER HT-11D infrared radiometer for validating the acquired temperature data. At the same time, leaf area index (LAI) data of each plot were collected, and their accurate positions were recorded by hand-held differential GPS (centimeter level). The boundary extraction of breeding subarea and the lodging area estimation were conducted by the image recognition and artificial discrimination in the study. The lodging area estimated was up to 49.88 m2. Multispectral reflectance images were generated by strict radiometric calibration after accurate geometric correction. Vegetation indices, such as normalized difference vegetation index (NDVI), optimization soil adjusted vegetation index (OSAVI) and nitrogen reflectance index (NRI), were computed, respectively. The results showed that NDVI had a strong correlation with LAI (R2=0.48, RMSE=0.27,n=8). The wheat yield forecast was carried out by the nitrogen fertilization optimization algorithm in which INSEY (in-season estimate of yield) index was calculated by the NDVI and local weather data. The yield prediction model was established(R2=0.722, RMSE=0.45,n=25). In this study, the temperature of sky and ground observed were used in the thermal imager temperature correction. Quick mosaic was done to temperature image after correction and then canopy temperature data were extracted. Wheat canopy temperature acquired synchronously by infrared radiometer was combined in the validation with the accuracy (R2=0.84 and RMSE=1.77,n=14).
Author 杨贵军 李长春 于海洋 徐波 冯海宽 高林 朱冬梅
AuthorAffiliation 北京农业信息技术研究中心,北京100097 国家农业信息化工程技术研究中心,北京100097 河南理工大学测绘与国土信息工程学院,焦作454000 江苏里下河地区农业科学研究所/国家小麦改良中心扬州分中心,扬州225007
AuthorAffiliation_xml – name: 北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097%河南理工大学测绘与国土信息工程学院,焦作,454000%江苏里下河地区农业科学研究所/国家小麦改良中心扬州分中心,扬州,225007
Author_FL Feng Haikuan
Yu Haiyang
Li Changchun
Gao Lin
Xu Bo
Zhu Dongmei
Yang Guijun
Author_FL_xml – sequence: 1
  fullname: Yang Guijun
– sequence: 2
  fullname: Li Changchun
– sequence: 3
  fullname: Yu Haiyang
– sequence: 4
  fullname: Xu Bo
– sequence: 5
  fullname: Feng Haikuan
– sequence: 6
  fullname: Gao Lin
– sequence: 7
  fullname: Zhu Dongmei
Author_xml – sequence: 1
  fullname: 杨贵军 李长春 于海洋 徐波 冯海宽 高林 朱冬梅
BookMark eNo9j8tKw0AYhWdRwVr7EoK4Svz_SSbTWYkUb1Bw033J5GaKTrVBtMuKuhC0G1GUghW81JXiRgiiL9Ok7VsYqbg6h8PHOZwZklMN5REyj6AjCs4W63oYRUpHAKpZJRQ6BWQ6RR2omSP5_3yaFKMolMDQ4AAm5slSctodXvbT694gjtNunDzcDj576fFdctMftx8zM_o6Sc5ekrfOOH4aHb0Pn88H3_dp-3V08ZF0rmbJlG9vR17xTwukurpSLa9rlc21jfJyRXOYMDWPSWqXqADHEtJ1wWUGd4WPhixxHyh1kUnTA4_7JoAwkdtMOgJdECBsCdIokIVJ7YGtfFsFtXpjv6mywZpqBc6h_P1LMXubkXMT0tlqqGAvzNjdZrhjN1s1y7IYY1yA8QMdrXDB
ClassificationCodes S252+.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2015.21.024
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate UAV based multi-load remote sensing technologies for wheat breeding information acquirement
DocumentTitle_FL UAV based multi-load remote sensing technologies for wheat breeding information acquirement
EndPage 190
ExternalDocumentID nygcxb201521024
666555790
GrantInformation_xml – fundername: 国家高技术研究发展计划; 微小型无人机遥感信息获取与作物养分管理技术; 北京市自然科学基金项目; 北京市农林科学院科技创新能力建设项目。
  funderid: (863计划); (2013AA102303); (4141001); (KJCX20140417)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c594-e5b2a8290c69bdd0d537d9f13b87f022d15b4e0e7f4009417a5bc91d0909ab0b3
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:27:59 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 21
Keywords unmanned aerial vehicle (UAV)
作物
无人机
loads
remote sensing
wheat
遥感
载荷
育种
crops
小麦
breeding
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594-e5b2a8290c69bdd0d537d9f13b87f022d15b4e0e7f4009417a5bc91d0909ab0b3
Notes 11-2047/S
Yang Guijun, Li Changchun, Yu Haiyang, Xu Bo, Feng Haikuan, Gao Lin, Zhu Dongmei (1. Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; 2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; 3. School of Surveying and Landing Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 4. Lixiahe Region Institute of Agricultural Sciences, Yangzhou Subcenter of National Wheat Improvement, Yangzhou 225007, China)
unmanned aerial vehicle(UAV); remote sensing; loads; crops; breeding; wheat
To realize rapid acquisition of massive phenotypic information of wheat breeding material, the studies on UAV(unmanned aerial vehicle) platform selection, sensor integration, and remote sensing data processing and analyses were carried out respectively, and a set of multi-load agricultural UAV based remote sensing system for assisting crop breeding information acquisition was developed. The speed and height of multi
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201521024
chongqing_primary_666555790
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2015
Publisher 国家农业信息化工程技术研究中心,北京 100097%河南理工大学测绘与国土信息工程学院,焦作,454000%江苏里下河地区农业科学研究所/国家小麦改良中心扬州分中心,扬州,225007
北京农业信息技术研究中心,北京 100097
Publisher_xml – name: 北京农业信息技术研究中心,北京 100097
– name: 国家农业信息化工程技术研究中心,北京 100097%河南理工大学测绘与国土信息工程学院,焦作,454000%江苏里下河地区农业科学研究所/国家小麦改良中心扬州分中心,扬州,225007
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0949006
Snippet 为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农业多载荷无人...
S252+.9; 为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 184
SubjectTerms 作物
小麦
无人机
育种
载荷
遥感
Title 农用无人机多传感器遥感辅助小麦育种信息获取
URI http://lib.cqvip.com/qk/90712X/201521/666555790.html
https://d.wanfangdata.com.cn/periodical/nygcxb201521024
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: Ingenta Connect
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1BdGD-Im1Kj2Y0zJ1vjJJTpLZnaEIeqrQ2zIfO9vTVmsL2ltFPQjaiyhKwQp-1JPiRVhE_5nutv0vfC-TmV1QigrLkEnyXn7Jm5n3kn3JI-QKPBcFT_zMwgCQlu-4hZWAIrLcNAPl7WXCT_Ef3Rs3g_lb_vVFtjhxxBvzWlpbTeey9T_uK_kfqUIeyBV3yf6DZGumkAFpkC9cQcJw_SsZ04hREVDZpBGn0qdK0AhuOVU2jXwaKvxFugImGFU-lUoXNXWdgArIibFISk0uwbSkio0VCRpGVDDdlqJKYiK0qYixMrBVAdYRLg1dhKE4FS3dREyVo_kAQ81HRDTkmk9MywCzlVk81hEgFBokw8qIhCMwEWr8Ld1coJGw6mHRXWxp-AAWGLCKX9gwZdA0oJUMUWGOAPKGGSMsC5AIwQXIQCAdw35LPUihR5XbMExVPFYdIEGnWg3krkLki9yBjjeqgXcquibmKJeWwYOqpZZym6nRC6g4AmG-7kZxGPVVviDlPm-jBpwy7J2xKJwyIOrvykpyprUVNjFXN4H-hmzOxbNk_ZGWrn0nYb7JGOPSPkKmXFyEmiRTKmyF8cgKdnCiX3-mHQyR4Iy2R7t4-EEwmmUyx8MYB7VnFPoFMO0kYAAdJbSCe_UwsHg8ydJyr3sHjC69B65XJL3umLm2cJKcMPOsWVW-NKfIxPrSaXJcdVfMWTOdM-Ta4PHW3vOd4cvt3X5_uNUfvHu9-317-PDN4NXOwcZ7SOz_eDR48mnwZfOg_2H_wde9j093f74dbnzef_ZtsPniLFmIo4XmvGXiiVgZk77VYamboN9AFsg0z-2ceTyXheOlghdgyuYOS_2O3eGFj_62Dk9Ymkknt6Utk9ROvXNksrfc65wns4VdeIL5PMsZnv7kpHYRdHwvSNC1kLNgmszUI9G-XR4b064FN01mzdi0zcfkbrt3v5vdS3EwcQ3Gv3AogxlyDGuWK4EXyeTqylrnEtjGq-ll8yz8AjDRiy8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%86%9C%E7%94%A8%E6%97%A0%E4%BA%BA%E6%9C%BA%E5%A4%9A%E4%BC%A0%E6%84%9F%E5%99%A8%E9%81%A5%E6%84%9F%E8%BE%85%E5%8A%A9%E5%B0%8F%E9%BA%A6%E8%82%B2%E7%A7%8D%E4%BF%A1%E6%81%AF%E8%8E%B7%E5%8F%96&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E8%B4%B5%E5%86%9B+%E6%9D%8E%E9%95%BF%E6%98%A5+%E4%BA%8E%E6%B5%B7%E6%B4%8B+%E5%BE%90%E6%B3%A2+%E5%86%AF%E6%B5%B7%E5%AE%BD+%E9%AB%98%E6%9E%97+%E6%9C%B1%E5%86%AC%E6%A2%85&rft.date=2015&rft.issn=1002-6819&rft.volume=31&rft.issue=21&rft.spage=184&rft.epage=190&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2015.21.024&rft.externalDocID=666555790
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg