盐渍化土壤水分微波雷达反演与验证
土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据模拟土壤介电特性,进而反演土壤水分的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,首先回归分析了介电常数实部与SAR四极化后向散射系数、地表粗糙度的复杂关系,并与Oh经验模型对照,其决定系数R2为0.859 7,模拟精度较高;然后验证常用的2个介电常数模型,Dobson半经验模型、Hallikainen简化实部经验模型模拟的介电常数实部与实测值的决定系数...
Saved in:
Published in | 农业工程学报 Vol. 33; no. 11; pp. 108 - 114 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
内蒙古农业大学水利与土木建筑工程学院,呼和浩特,010018
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2017.11.014 |
Cover
Abstract | 土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据模拟土壤介电特性,进而反演土壤水分的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,首先回归分析了介电常数实部与SAR四极化后向散射系数、地表粗糙度的复杂关系,并与Oh经验模型对照,其决定系数R2为0.859 7,模拟精度较高;然后验证常用的2个介电常数模型,Dobson半经验模型、Hallikainen简化实部经验模型模拟的介电常数实部与实测值的决定系数R~2分别为0.935 9、0.869,表明2个模型均能模拟地表土壤水分与介电常数实部的密切关系;最后构建了Dobson模型、Hallikainen简化实部模型反演土壤含水率的模型,并与统计回归模型比照,其模拟数值与土壤实测值的决定系数R2分别为0.803 8、0.737 4、0.842 1,均方根误差RMSE分别为5.2%、5.7%、5%。Dobson模型与统计回归模型反演结果与实地土壤墒情分布较为吻合,具有良好的精度和适用性,从而建立了一个较为完整的土壤介电特性研究体系,为微波遥感监测土壤水分奠定了基础。 |
---|---|
AbstractList | S152.7%P628.2; 土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要.该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据模拟土壤介电特性,进而反演土壤水分的性能.以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,首先回归分析了介电常数实部与SAR四极化后向散射系数、地表粗糙度的复杂关系,并与Oh经验模型对照,其决定系数R2为0.8597,模拟精度较高;然后验证常用的2个介电常数模型,Dobson半经验模型、Hallikainen简化实部经验模型模拟的介电常数实部与实测值的决定系数R2分别为0.9359、0.869,表明2个模型均能模拟地表土壤水分与介电常数实部的密切关系;最后构建了Dobson模型、Hallikainen简化实部模型反演土壤含水率的模型,并与统计回归模型比照,其模拟数值与土壤实测值的决定系数R2分别为0.8038、0.7374、0.8421,均方根误差RMSE分别为5.2%、5.7%、5%.Dobson模型与统计回归模型反演结果与实地土壤墒情分布较为吻合,具有良好的精度和适用性,从而建立了一个较为完整的土壤介电特性研究体系,为微波遥感监测土壤水分奠定了基础. 土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据模拟土壤介电特性,进而反演土壤水分的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,首先回归分析了介电常数实部与SAR四极化后向散射系数、地表粗糙度的复杂关系,并与Oh经验模型对照,其决定系数R2为0.859 7,模拟精度较高;然后验证常用的2个介电常数模型,Dobson半经验模型、Hallikainen简化实部经验模型模拟的介电常数实部与实测值的决定系数R~2分别为0.935 9、0.869,表明2个模型均能模拟地表土壤水分与介电常数实部的密切关系;最后构建了Dobson模型、Hallikainen简化实部模型反演土壤含水率的模型,并与统计回归模型比照,其模拟数值与土壤实测值的决定系数R2分别为0.803 8、0.737 4、0.842 1,均方根误差RMSE分别为5.2%、5.7%、5%。Dobson模型与统计回归模型反演结果与实地土壤墒情分布较为吻合,具有良好的精度和适用性,从而建立了一个较为完整的土壤介电特性研究体系,为微波遥感监测土壤水分奠定了基础。 |
Abstract_FL | the real part of the dielectric constant is of great significance to the research of the soil dielectric characteristics.Main aim of this study was to investigate capability of C-band RADARSAT-2 SAR (synthetic aperture radar) data applied in the soil dielectric characteristics monitoring and the soil moisture inversion over agricultural fields. Bare area of Jiefangzha sub-district of Hetao Irrigation District in Inner Mongolia of China was selected as the study region, which was influenced by soil salinization seriously. In order to achieve above purposes, an image of Radarsat-2 SAR was bought in April 2016, which has a kind of four fine polarization SLC (single look complex) format, covering an area of 25 km × 25 km with 8 meter ground resolution. Taking spatial uneven distribution of the saline soil into account, 100 sampling points were designed in the study area, and soil digging depth was 10 cm. Hand-held GPS (global positioning system) receiver was used to record coordinates of the sampling points. The experiment data included the soil dielectric real constant, surface roughness, surface temperature,percentages of clay and sand particles, soil bulk density and soil moisture. Agilent microwave network analyzer was used to measure the real part value of soil dielectric constant with coaxial probe method. Surface roughness was measured using centimeter grid profile plate to calculate the value of RMS (root mean square) height and the correlation length, and then composite roughness was got to represent the surface roughness in later research. Real-time ground temperature of the sampling points was measured by geothermometer. Particle analysis was fulfilled with laser particle size analyzer named Helos/B, obtaining the percentage content of clay and sand particles. Soil bulk density was measured by ring cutter. Soil moisture was measured by way of drying. SAR scape module of ENVI software was mainly used to perform the radar image processing, including radiometric calibration, geometric correction, slant range turning and filtering. Four polarization back scatter coefficient values corresponding to the sampling points were extracted based on previous results by spatial analysis module of ArcGIS software. In order to analyze complex relationship between the real part of the dielectric constant with SAR four polarization back scattering coefficients and surface roughness, firstly Oh empirical model was established, for which the relative relationship was significant between simulated and measured soil moisture, and the value of R2 was 0.8209. Results showed that Oh model can offer precise real part value of the dielectric constant to inverse the soil moisture based on the soil dielectric model by means of the remote sensing and surface roughness data. Then Dobson semi-empirical dielectric models and simplified Hallikainen real part experience model were verified, and the R2 between the measured and simulated real part values was 0.9359 and 0.869 respectively, which indicated that the 2 models can simulate close relationship of the surface soil moisture and the real part of the dielectric constant. Finally Dobson model and Hallikainen simplified real part soil moisture inversion model were constructed. Compared with the statistical regression model, it looked like that relative relationship between simulated and measured value was significant, and the value of R2 was 0.8038, 0.7374, and 0.8421, respectively, for the former 2 models and the statistical regression model, the RMSE (root mean square error) value was 5.2%, 5.7%, and 5% respectively. The inversion results of Dobson model and statistical regression model were similar with the field soil moisture distribution, so they had good precision and applicability. Without considering the surface roughness, the simulation result of Hallikainen simplified real part model was then slightly worse than the other 2 models. The soil dielectric characteristics researching system and the moisture retrieval models established in this study can promote the application of the microwave remote sensing in the soil moisture monitoring. |
Author | 王学 刘全明 屈忠义 王丽萍 李相君 王耀强 |
AuthorAffiliation | 内蒙古农业大学水利与土木建筑工程学院,呼和浩特010018 |
AuthorAffiliation_xml | – name: 内蒙古农业大学水利与土木建筑工程学院,呼和浩特,010018 |
Author_FL | Wang Xue Li Xiangjun Wang Liping Liu Quanming Wang Yaoqiang Qu Zhongyi |
Author_FL_xml | – sequence: 1 fullname: Wang Xue – sequence: 2 fullname: Liu Quanming – sequence: 3 fullname: Qu Zhongyi – sequence: 4 fullname: Wang Liping – sequence: 5 fullname: Li Xiangjun – sequence: 6 fullname: Wang Yaoqiang |
Author_xml | – sequence: 1 fullname: 王学 刘全明 屈忠义 王丽萍 李相君 王耀强 |
BookMark | eNo9j79Lw0AcxW-oYK39JwRxSvx-73LJ3SjFX1Bw6R4u1zSm6EUTRDu6iEOrDuJSQVAnBxUU7CD9a0xs_wsjFacH7314j7dAKiYxISHLCDai9Phq146zzNgIQC1XoLQpoFdmNqBTIdV_f57UsywOgCPzABysEvgeXhWjQd6_yW_v8ofH4vU9Pz_Lx8_F2_10-DEZj_PLQfF5_TW6mD71Jy-ni2Suo_aysP6nNdLaWG81tqzmzuZ2Y61paS4dS1PBkEkGGAhsB1xw6nSoQC24S7lSnGLAdOi60A4ZBRloDiF3NCjmKJAuq5GVWe2xMh1lIr-bHKWmHPRNL9Inwe9BxPJeSS7NSL2bmOgwLtmDNN5Xac93PVouC8nZD-HnZU0 |
ClassificationCodes | S152.7%P628.2 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.2017.11.014 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Inversion and verification of salinity soil moisture using microwave radar |
DocumentTitle_FL | Inversion and verification of salinity soil moisture using microwave radar |
EndPage | 114 |
ExternalDocumentID | nygcxb201711014 672585895 |
GrantInformation_xml | – fundername: 国家自然科学基金项目; 内蒙古自然科学基金项目; "十三五"国家重点研发计划项目 funderid: (51249007、51569018、51169016); (2013MS0609); (216YFC0501301) |
GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
ID | FETCH-LOGICAL-c594-c283139301b81db58524f281c85625aa521b3ce660de3209bc50e54c0a34a0963 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:04:20 EDT 2025 Wed Feb 14 10:00:07 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | 土壤介电特性 models 土壤水分 soil moisture 模型 remote sensing 遥感 salinization Oh模型 Dobson模型 Oh model 盐渍化 Hallikainen simplifiedreal part model Dobson model Hallikainen简化实部模型 soil dielectric properties |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c594-c283139301b81db58524f281c85625aa521b3ce660de3209bc50e54c0a34a0963 |
Notes | 11-2047/S Soil dielectric constant is the physical basis for soil moisture simulation based on microwave remote sensing,and especially the real part of the dielectric constant is of great significance to the research of the soil dielectric characteristics.Main aim of this study was to investigate capability of C-band RADARSAT-2 SAR(synthetic aperture radar) data applied in the soil dielectric characteristics monitoring and the soil moisture inversion over agricultural fields.Bare area of Jiefangzha sub-district of Hetao Irrigation District in Inner Mongolia of China was selected as the study region,which was influenced by soil salinization seriously.In order to achieve above purposes,an image of Radarsat-2 SAR was bought in April 2016,which has a kind of four fine polarization SLC(single look complex) format,covering an area of 25 km×25 km with 8 meter ground resolution.Taking spatial uneven distribution of the saline soil into account,100 sampling points were designed in the study area,and soil digging depth |
PageCount | 7 |
ParticipantIDs | wanfang_journals_nygcxb201711014 chongqing_primary_672585895 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 农业工程学报 |
PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2017 |
Publisher | 内蒙古农业大学水利与土木建筑工程学院,呼和浩特,010018 |
Publisher_xml | – name: 内蒙古农业大学水利与土木建筑工程学院,呼和浩特,010018 |
SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.1801848 |
Snippet | 土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要。该文目的是试验与评价C波段RADARSAT-2... S152.7%P628.2; 土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要.该文目的是试验与评价C波... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 108 |
SubjectTerms | Dobson模型 Hallikainen简化实部模型 Oh模型 土壤介电特性 土壤水分 模型 盐渍化 遥感 |
Title | 盐渍化土壤水分微波雷达反演与验证 |
URI | http://lib.cqvip.com/qk/90712X/201711/672585895.html https://d.wanfangdata.com.cn/periodical/nygcxb201711014 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELb6kBAcEE9RCigHfExZe22vffQmG1VIcCpSb9Gus0lPKZRWgt64IA4tcEBcioQEnDjwEEj0gPJrSGj_BTPebbotVXlIUTRaf54Zz2QzY8seE3LddYULITTDiyS7dWE6aV0zxeu5clkWGa5zgweFb91W83fEzUW5ODH5ubJraW01m3PrR54r-R-vwjPwK56S_QfPjpnCA6DBv_ANHobvv_IxTSJqYmoCmigaa6qbNJFUN6hRSBggWkjYkFrhMQGNhccA2GPihNrENwGG08QgwziiicYm-CC45TkDBhhCd-FlJQi2FsUB2AKGVTNd31GhDgXeWC8uolai2hY4xF63JrUKmWsLTXv-RwhIqED2W7z2RntCIiPobFChKiRmiEKiRW3gdTBUmyP4e-3iJg4CDKmb1XWQ4sCn_82W4wGJCOTUmNI0Vhw9VHhuowMjrFrfmoodx67yTGyhN7jBeks1qWHH2s6gMuA83vCsGPoJCe59A3KlFwcjNmgFf9N6cCAeYcBSuowqZcAqKofsvZisEn5YoCuZDCuO5_4eJE0kfZREEXNjEbjPMZrDkrZFv0N1yPsPe-5BhhiG9ztPkmkeQXI3RaZt3Ixb-zk4w2WGcZDgWGpB7c9pJQvxRoXxPizchSD9loRSjROE7il54zgVsRjK0nK_dw9SPH_irt9N-71KcrhwhpwuZ3U1W7yiZ8nE-tI5csr2VsrKNvl5Evzcej7a3hxuvBy-ej18-2706evwyePh4MPoy5vdrW87g8Hw2ebo-4sf209332_sfHx0gSy0koXGfL28rqTupBF1B4k6TKcgYGYwB8xgGs5Fl2vmNK4xpCnkyVnocqWCTh7ywGROBrkULkhDkQYQBy-Sqf5yP79Earwb8awTSadNJvJUpR3BhO6EXazW51IxQ2bHQ2_fLarStFXEQaY2cobUSmO0y_-q--1Dzrv8Z8gsOYl0sdp4hUytrqzlVyH_Xs2ulR7_BX70nyg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%9B%90%E6%B8%8D%E5%8C%96%E5%9C%9F%E5%A3%A4%E6%B0%B4%E5%88%86%E5%BE%AE%E6%B3%A2%E9%9B%B7%E8%BE%BE%E5%8F%8D%E6%BC%94%E4%B8%8E%E9%AA%8C%E8%AF%81&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%AD%A6&rft.au=%E5%88%98%E5%85%A8%E6%98%8E&rft.au=%E5%B1%88%E5%BF%A0%E4%B9%89&rft.au=%E7%8E%8B%E4%B8%BD%E8%90%8D&rft.date=2017&rft.pub=%E5%86%85%E8%92%99%E5%8F%A4%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%88%A9%E4%B8%8E%E5%9C%9F%E6%9C%A8%E5%BB%BA%E7%AD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010018&rft.issn=1002-6819&rft.volume=33&rft.issue=11&rft.spage=108&rft.epage=114&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.11.014&rft.externalDocID=nygcxb201711014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |