基于GF遥感数据纹理分析识别制种玉米
仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产...
        Saved in:
      
    
          | Published in | 农业工程学报 Vol. 32; no. 21; pp. 183 - 188 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125
    
        2016
     中国农业大学信息与电气工程学院,北京100083  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1002-6819 | 
| DOI | 10.11975/j.issn.1002-6819.2016.21.024 | 
Cover
| Abstract | 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产遥感数据的应用领域,同时也为中国玉米制种监管提供了新的技术支撑。 | 
    
|---|---|
| AbstractList | S127; 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产遥感数据的应用领域,同时也为中国玉米制种监管提供了新的技术支撑。 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产遥感数据的应用领域,同时也为中国玉米制种监管提供了新的技术支撑。  | 
    
| Abstract_FL | In order to accurately gather the area and yield information of seed crops and guarantee the seed supplying safety, it’s necessary to use the remote sensing technology to improve the efficiency and accuracy of the traditional manual statistic survey means. However, the crop identification based on multi-temporal remote sensing data cannot be used in actual seed maize identification because of the low accuracy. Now the domestic remote sensing satellite GF-1 and GF-2 have been launched, and the data characteristic of high spatial and high temporal resolution plays an important role in the field of remote sensing for agricultural condition. With the feature of high spatial and high temporal resolution of the data, this paper builds a method to identify the seed maize focusing on the planting feature of seed maize. At first, according to regional crop calendar, use the domestic GF-1’s WFV sensor multi-temporal data ranging from April, 2015 to September, 2015 and calculate an EVI (enhanced vegetation index) image for each temporal data which corresponds to every node value at the time series EVI curve, and then extract the maize fields. Since the tassel of the seed maize is removed at the line ratio of 1:6-1:8 so that the female maize’s spectral reflectance is higher than the male maize’s, and this feature shows the straight striped texture reflected in the one-meter resolution remote sensing image. Therefore the next stage is regarding the plots as the object and making use of the one-meter spatial resolution remote sensing image of GF-2’s PAN when removing the tassel to detect the straight texture by the Sobel edge detection operator in the plot object based on the extracted maize area. Then connect the break point at the same direction around a setting appropriate threshold to a line by the Hough transform, and count the number of lines in the plot object. According to whether the sum of lines in the plot is over the setting minimum value, judge whether the crop plot is the seed maize. At last, this paper takes the key seed maize region in Kan’erzi Town, Qitai County, Xinjiang Uygur Autonomous Region as the test area to verify the above method. The final test result from the confusion matrix shows that the accuracy of classification based on the Hough transform is 90.0%, and the Kappa coefficient is 0.80, which have met the accuracy demands. This seed maize identification method constructed in this paper can obtain the seed maize area with high precision and high efficiency, which not only broadens the application field of domestic remote sensing data, but also supplies a new technology support for the regulation of seed maize. Since the texture of seed maize plot is not always regular but linear within a certain range, it’s essential to select a reasonable parameter which indicates how much extent of the scatter marked a line in the detecting process of Hough transform. But different crop has different plant regularity so that every crop presents unique texture feature in the high spatial resolution remote sensing image. This method based on the Hough transform is applicable to seed maize identification but limited for other crops, so it’s the further research to establish crop texture library based on a variety of filtering operators in the field of image process. | 
    
| Author | 张超 金虹杉 刘哲 李智晓 宁明宇 孙海艳 | 
    
| AuthorAffiliation | 中国农业大学信息与电气工程学院,北京100083 国土资源部农用地质量与监控重点实验室,北京100035 全国农业技术推广服务中心,北京100125 | 
    
| AuthorAffiliation_xml | – name: 中国农业大学信息与电气工程学院,北京100083; 国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125 | 
    
| Author_FL | Liu Zhe Jin Hongshan Li Zhixiao Zhang Chao Ning Mingyu Sun Haiyan  | 
    
| Author_FL_xml | – sequence: 1 fullname: Zhang Chao – sequence: 2 fullname: Jin Hongshan – sequence: 3 fullname: Liu Zhe – sequence: 4 fullname: Li Zhixiao – sequence: 5 fullname: Ning Mingyu – sequence: 6 fullname: Sun Haiyan  | 
    
| Author_xml | – sequence: 1 fullname: 张超 金虹杉 刘哲 李智晓 宁明宇 孙海艳  | 
    
| BookMark | eNo9j71KA0EcxLeIYIx5CUGs7tz_ftzulRJMDARs0ofN7iZe0I3mEE0pSIhFQhpbU4mF4AeC4D2Pd6dv4UnEaobhxwyzgUpu6CxC24B9gFDw3YEfxbHzAWPiBRJCn2AIfAI-JqyEyv_5OqrGcdTFHKjAmEEZkXSZfCbzRv376j67Xma3L9nsKU8-8sUknU6yu8XXc2Ee0-l7_jDL5zf569smWuup49hW_7SC2vX9du3Aax02mrW9lqd5yDwltRVESE6x5UDAgNCYgiRCm4BrTYkxignWU9YAZZJK1g2UtpZLYwyjtIJ2VrUXyvWU63cGw_ORKwY7btzXl93fiwSKgwW5tSL10dD1z6KCPR1FJ2o07gQCCxyEhNAfh-VmXg | 
    
| ClassificationCodes | S127 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.11975/j.issn.1002-6819.2016.21.024 | 
    
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| DocumentTitleAlternate | Seed maize identification based on texture analysis of GF remote sensing data | 
    
| DocumentTitle_FL | Seed maize identification based on texture analysis of GF remote sensing data | 
    
| EndPage | 188 | 
    
| ExternalDocumentID | nygcxb201621024 670706922  | 
    
| GrantInformation_xml | – fundername: 863计划课题星地遥感的农作物信息感知; 国家自然科学基金项目基于高分辨率遥感数据的农作物纹理特征表达及其类型识别研究。 funderid: (2013AA10230103); (41171337)。  | 
    
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX  | 
    
| ID | FETCH-LOGICAL-c594-a8ce7278530e5121d17c031827cd65cc32dda474faed1348384b6acee58ddd433 | 
    
| ISSN | 1002-6819 | 
    
| IngestDate | Thu May 29 04:04:20 EDT 2025 Wed Feb 14 10:07:36 EST 2024  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Keywords | 纹理 GF-2 Pan texture 作物 remote sensing 遥感 crops Hough transform Hough变换 高分二号PAN 制种玉米 seed maize 高分一号WFV GF-1 WFV  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c594-a8ce7278530e5121d17c031827cd65cc32dda474faed1348384b6acee58ddd433 | 
    
| Notes | 11-2047/S remote sensing; crops; texture; seed maize; GF-1 WFV; GF-2 Pan; Hough transform In order to accurately gather the area and yield information of seed crops and guarantee the seed supplying safety, it's necessary to use the remote sensing technology to improve the efficiency and accuracy of the traditional manual statistic survey means. However, the crop identification based on multi-temporal remote sensing data cannot be used in actual seed maize identification because of the low accuracy. Now the domestic remote sensing satellite GF-1 and GF-2 have been launched, and the data characteristic of high spatial and high temporal resolution plays an important role in the field of remote sensing for agricultural condition. With the feature of high spatial and high temporal resolution of the data, this paper builds a method to identify the seed maize focusing on the planting feature of seed maize. At first, according to regional crop calendar, use the domestic GF-1's WFV sensor multi-temporal data ranging fro  | 
    
| PageCount | 6 | 
    
| ParticipantIDs | wanfang_journals_nygcxb201621024 chongqing_primary_670706922  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016 | 
    
| PublicationDateYYYYMMDD | 2016-01-01 | 
    
| PublicationDate_xml | – year: 2016 text: 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 农业工程学报 | 
    
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering | 
    
| PublicationYear | 2016 | 
    
| Publisher | 国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125 中国农业大学信息与电气工程学院,北京100083  | 
    
| Publisher_xml | – name: 国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125 – name: 中国农业大学信息与电气工程学院,北京100083  | 
    
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668  | 
    
| Score | 2.1361547 | 
    
| Snippet | 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫... S127; 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时...  | 
    
| SourceID | wanfang chongqing  | 
    
| SourceType | Aggregation Database Publisher  | 
    
| StartPage | 183 | 
    
| SubjectTerms | Hough变换 作物 制种玉米 纹理 遥感 高分一号WFV 高分二号PAN  | 
    
| Title | 基于GF遥感数据纹理分析识别制种玉米 | 
    
| URI | http://lib.cqvip.com/qk/90712X/201621/670706922.html https://d.wanfangdata.com.cn/periodical/nygcxb201621024  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsAkJiB7EJ8ao5GCflo3bM_089iSzCYKeIuS2zEzPbk6bGBPQ3AQJ8ZCQi1dzEg-CDwTB_R6zq-BHWNXTOxtQgnppiura6uqq2erqR3UTcrdVslKKstvkJue4zeiaJheq6TjMHqTqKiUxG_nBQ7nyiN9fE2tTUz9PnVra2c4Xit0_5pX8j1UBB3bFLNl_sGzNFBAAg32hBAtD-Vc2pqmgpk0TS1OOpU6X2zQ1EB1SK2gqqeZYD4ARNGl5zBK1KU0VkicGAdOiWiInrT0AxCkiU01te1JlkwAkEn9lFbICQKdUez4Jo0l8Otb19MBt0UunqbGISZSXDUpozvO0IJJvV1uoGn8BnnaRWi8ItKlFw3cNBGaIMsbLD_yXQIBGEM5or5OYJlFjXJl6wHg1ecDEnhz0AIpClPZEFUY1gkzGc0-8xNAedDJ0L6yRVMmbwaGjx5c6uOXg8ScrqjvjBO3gv1n1qk4IBVj14uDvo4xRwg8z2MRC3QQeFJQLEV4CyyfDa33oUSpwr9JEEDDMRLh6NE1mbLKUtCfhK8MZeu1fGb5twCZ5zRHeWiAn00PBYnycoD7ShBv6wu_uB4HOEToW995ZwuK9Iusb_d5jiJZ88lq_m_V7p-Ks1UvkYpggzdvqa79MpnbXr5ALtrcVLokpr5Lo5HjwbXC43P7x_M3wxfHw1cfhwfvR4OvoaO9kf2_4-uj7BwDenex_Gb09GB2-HH36fI2sttPVxZVmePujWQjDm5kuSoisIZZslRCSMsdUgcNPpAonRVHEkXMZV7yblY7FXMea5zKDgE9o5xyP4-tkur_RL2-Q-Qy0JjOVO9ZVHGb7WhvuClfmSkN0z1uzZK7ufGezuuKlU9tqlswHdXTCH_9Jp_-sVzzNUX-4XsJvnslgjpxHymrV7haZ3t7aKW9DHLud3wnm_wXXUnKS | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGF%E9%81%A5%E6%84%9F%E6%95%B0%E6%8D%AE%E7%BA%B9%E7%90%86%E5%88%86%E6%9E%90%E8%AF%86%E5%88%AB%E5%88%B6%E7%A7%8D%E7%8E%89%E7%B1%B3&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E8%B6%85+%E9%87%91%E8%99%B9%E6%9D%89+%E5%88%98%E5%93%B2+%E6%9D%8E%E6%99%BA%E6%99%93+%E5%AE%81%E6%98%8E%E5%AE%87+%E5%AD%99%E6%B5%B7%E8%89%B3&rft.date=2016&rft.issn=1002-6819&rft.volume=32&rft.issue=21&rft.spage=183&rft.epage=188&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.21.024&rft.externalDocID=670706922 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg  |