基于GF遥感数据纹理分析识别制种玉米

仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 21; pp. 183 - 188
Main Author 张超 金虹杉 刘哲 李智晓 宁明宇 孙海艳
Format Journal Article
LanguageChinese
Published 国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125 2016
中国农业大学信息与电气工程学院,北京100083
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.21.024

Cover

Abstract 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产遥感数据的应用领域,同时也为中国玉米制种监管提供了新的技术支撑。
AbstractList S127; 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产遥感数据的应用领域,同时也为中国玉米制种监管提供了新的技术支撑。
仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产遥感数据的应用领域,同时也为中国玉米制种监管提供了新的技术支撑。
Abstract_FL In order to accurately gather the area and yield information of seed crops and guarantee the seed supplying safety, it’s necessary to use the remote sensing technology to improve the efficiency and accuracy of the traditional manual statistic survey means. However, the crop identification based on multi-temporal remote sensing data cannot be used in actual seed maize identification because of the low accuracy. Now the domestic remote sensing satellite GF-1 and GF-2 have been launched, and the data characteristic of high spatial and high temporal resolution plays an important role in the field of remote sensing for agricultural condition. With the feature of high spatial and high temporal resolution of the data, this paper builds a method to identify the seed maize focusing on the planting feature of seed maize. At first, according to regional crop calendar, use the domestic GF-1’s WFV sensor multi-temporal data ranging from April, 2015 to September, 2015 and calculate an EVI (enhanced vegetation index) image for each temporal data which corresponds to every node value at the time series EVI curve, and then extract the maize fields. Since the tassel of the seed maize is removed at the line ratio of 1:6-1:8 so that the female maize’s spectral reflectance is higher than the male maize’s, and this feature shows the straight striped texture reflected in the one-meter resolution remote sensing image. Therefore the next stage is regarding the plots as the object and making use of the one-meter spatial resolution remote sensing image of GF-2’s PAN when removing the tassel to detect the straight texture by the Sobel edge detection operator in the plot object based on the extracted maize area. Then connect the break point at the same direction around a setting appropriate threshold to a line by the Hough transform, and count the number of lines in the plot object. According to whether the sum of lines in the plot is over the setting minimum value, judge whether the crop plot is the seed maize. At last, this paper takes the key seed maize region in Kan’erzi Town, Qitai County, Xinjiang Uygur Autonomous Region as the test area to verify the above method. The final test result from the confusion matrix shows that the accuracy of classification based on the Hough transform is 90.0%, and the Kappa coefficient is 0.80, which have met the accuracy demands. This seed maize identification method constructed in this paper can obtain the seed maize area with high precision and high efficiency, which not only broadens the application field of domestic remote sensing data, but also supplies a new technology support for the regulation of seed maize. Since the texture of seed maize plot is not always regular but linear within a certain range, it’s essential to select a reasonable parameter which indicates how much extent of the scatter marked a line in the detecting process of Hough transform. But different crop has different plant regularity so that every crop presents unique texture feature in the high spatial resolution remote sensing image. This method based on the Hough transform is applicable to seed maize identification but limited for other crops, so it’s the further research to establish crop texture library based on a variety of filtering operators in the field of image process.
Author 张超 金虹杉 刘哲 李智晓 宁明宇 孙海艳
AuthorAffiliation 中国农业大学信息与电气工程学院,北京100083 国土资源部农用地质量与监控重点实验室,北京100035 全国农业技术推广服务中心,北京100125
AuthorAffiliation_xml – name: 中国农业大学信息与电气工程学院,北京100083; 国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125
Author_FL Liu Zhe
Jin Hongshan
Li Zhixiao
Zhang Chao
Ning Mingyu
Sun Haiyan
Author_FL_xml – sequence: 1
  fullname: Zhang Chao
– sequence: 2
  fullname: Jin Hongshan
– sequence: 3
  fullname: Liu Zhe
– sequence: 4
  fullname: Li Zhixiao
– sequence: 5
  fullname: Ning Mingyu
– sequence: 6
  fullname: Sun Haiyan
Author_xml – sequence: 1
  fullname: 张超 金虹杉 刘哲 李智晓 宁明宇 孙海艳
BookMark eNo9j71KA0EcxLeIYIx5CUGs7tz_ftzulRJMDARs0ofN7iZe0I3mEE0pSIhFQhpbU4mF4AeC4D2Pd6dv4UnEaobhxwyzgUpu6CxC24B9gFDw3YEfxbHzAWPiBRJCn2AIfAI-JqyEyv_5OqrGcdTFHKjAmEEZkXSZfCbzRv376j67Xma3L9nsKU8-8sUknU6yu8XXc2Ee0-l7_jDL5zf569smWuup49hW_7SC2vX9du3Aax02mrW9lqd5yDwltRVESE6x5UDAgNCYgiRCm4BrTYkxignWU9YAZZJK1g2UtpZLYwyjtIJ2VrUXyvWU63cGw_ORKwY7btzXl93fiwSKgwW5tSL10dD1z6KCPR1FJ2o07gQCCxyEhNAfh-VmXg
ClassificationCodes S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.21.024
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Seed maize identification based on texture analysis of GF remote sensing data
DocumentTitle_FL Seed maize identification based on texture analysis of GF remote sensing data
EndPage 188
ExternalDocumentID nygcxb201621024
670706922
GrantInformation_xml – fundername: 863计划课题星地遥感的农作物信息感知; 国家自然科学基金项目基于高分辨率遥感数据的农作物纹理特征表达及其类型识别研究。
  funderid: (2013AA10230103); (41171337)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c594-a8ce7278530e5121d17c031827cd65cc32dda474faed1348384b6acee58ddd433
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:07:36 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 21
Keywords 纹理
GF-2 Pan
texture
作物
remote sensing
遥感
crops
Hough transform
Hough变换
高分二号PAN
制种玉米
seed maize
高分一号WFV
GF-1 WFV
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594-a8ce7278530e5121d17c031827cd65cc32dda474faed1348384b6acee58ddd433
Notes 11-2047/S
remote sensing; crops; texture; seed maize; GF-1 WFV; GF-2 Pan; Hough transform
In order to accurately gather the area and yield information of seed crops and guarantee the seed supplying safety, it's necessary to use the remote sensing technology to improve the efficiency and accuracy of the traditional manual statistic survey means. However, the crop identification based on multi-temporal remote sensing data cannot be used in actual seed maize identification because of the low accuracy. Now the domestic remote sensing satellite GF-1 and GF-2 have been launched, and the data characteristic of high spatial and high temporal resolution plays an important role in the field of remote sensing for agricultural condition. With the feature of high spatial and high temporal resolution of the data, this paper builds a method to identify the seed maize focusing on the planting feature of seed maize. At first, according to regional crop calendar, use the domestic GF-1's WFV sensor multi-temporal data ranging fro
PageCount 6
ParticipantIDs wanfang_journals_nygcxb201621024
chongqing_primary_670706922
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125
中国农业大学信息与电气工程学院,北京100083
Publisher_xml – name: 国土资源部农用地质量与监控重点实验室,北京 100035%中国农业大学信息与电气工程学院,北京,100083%全国农业技术推广服务中心,北京,100125
– name: 中国农业大学信息与电气工程学院,北京100083
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1361547
Snippet 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫...
S127; 仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 183
SubjectTerms Hough变换
作物
制种玉米
纹理
遥感
高分一号WFV
高分二号PAN
Title 基于GF遥感数据纹理分析识别制种玉米
URI http://lib.cqvip.com/qk/90712X/201621/670706922.html
https://d.wanfangdata.com.cn/periodical/nygcxb201621024
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsAkJiB7EJ8ao5GCflo3bM_089iSzCYKeIuS2zEzPbk6bGBPQ3AQJ8ZCQi1dzEg-CDwTB_R6zq-BHWNXTOxtQgnppiura6uqq2erqR3UTcrdVslKKstvkJue4zeiaJheq6TjMHqTqKiUxG_nBQ7nyiN9fE2tTUz9PnVra2c4Xit0_5pX8j1UBB3bFLNl_sGzNFBAAg32hBAtD-Vc2pqmgpk0TS1OOpU6X2zQ1EB1SK2gqqeZYD4ARNGl5zBK1KU0VkicGAdOiWiInrT0AxCkiU01te1JlkwAkEn9lFbICQKdUez4Jo0l8Otb19MBt0UunqbGISZSXDUpozvO0IJJvV1uoGn8BnnaRWi8ItKlFw3cNBGaIMsbLD_yXQIBGEM5or5OYJlFjXJl6wHg1ecDEnhz0AIpClPZEFUY1gkzGc0-8xNAedDJ0L6yRVMmbwaGjx5c6uOXg8ScrqjvjBO3gv1n1qk4IBVj14uDvo4xRwg8z2MRC3QQeFJQLEV4CyyfDa33oUSpwr9JEEDDMRLh6NE1mbLKUtCfhK8MZeu1fGb5twCZ5zRHeWiAn00PBYnycoD7ShBv6wu_uB4HOEToW995ZwuK9Iusb_d5jiJZ88lq_m_V7p-Ks1UvkYpggzdvqa79MpnbXr5ALtrcVLokpr5Lo5HjwbXC43P7x_M3wxfHw1cfhwfvR4OvoaO9kf2_4-uj7BwDenex_Gb09GB2-HH36fI2sttPVxZVmePujWQjDm5kuSoisIZZslRCSMsdUgcNPpAonRVHEkXMZV7yblY7FXMea5zKDgE9o5xyP4-tkur_RL2-Q-Qy0JjOVO9ZVHGb7WhvuClfmSkN0z1uzZK7ufGezuuKlU9tqlswHdXTCH_9Jp_-sVzzNUX-4XsJvnslgjpxHymrV7haZ3t7aKW9DHLud3wnm_wXXUnKS
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGF%E9%81%A5%E6%84%9F%E6%95%B0%E6%8D%AE%E7%BA%B9%E7%90%86%E5%88%86%E6%9E%90%E8%AF%86%E5%88%AB%E5%88%B6%E7%A7%8D%E7%8E%89%E7%B1%B3&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E8%B6%85+%E9%87%91%E8%99%B9%E6%9D%89+%E5%88%98%E5%93%B2+%E6%9D%8E%E6%99%BA%E6%99%93+%E5%AE%81%E6%98%8E%E5%AE%87+%E5%AD%99%E6%B5%B7%E8%89%B3&rft.date=2016&rft.issn=1002-6819&rft.volume=32&rft.issue=21&rft.spage=183&rft.epage=188&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.21.024&rft.externalDocID=670706922
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg