基于AdaBoost模型和mRMR算法的小麦白粉病遥感监测

除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和A...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 5; pp. 162 - 169
Main Author 马慧琴 黄文江 景元书 董莹莹 张竞成 聂臣巍 唐翠翠 赵晋陵 黄林生
Format Journal Article
LanguageChinese
Published 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094 2017
安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039
南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.05.024

Cover

Abstract 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和AdaBoost 3种方法,构建小麦白粉病发生严重程度监测模型,并对其进行精度验证与对比分析。结果表明,2种AdaBoost模型对小麦白粉病发生严重程度的总体监测精度分别比FLDA模型和SVM模型高出27.9%、27.9%和14.0%、9.3%,mRMR算法筛选特征所建FLDA、SVM及AdaBoost监测模型的总体监测精度分别比CA筛选特征所建模型高出7.0%、11.7%和7.0%,且mRMR算法筛选特征结合AdaBoost方法所建监测模型的精度和Kappa系数分别为88.4%和0.807,为所有模型中最高。说明将AdaBoost方法用于作物病害遥感监测效果较好,在作物病害监测模型的特征变量选择中mRMR算法比常用CA算法更具优势。研究结果可为其他作物病害遥感监测提供方法参考。
AbstractList 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和AdaBoost 3种方法,构建小麦白粉病发生严重程度监测模型,并对其进行精度验证与对比分析。结果表明,2种AdaBoost模型对小麦白粉病发生严重程度的总体监测精度分别比FLDA模型和SVM模型高出27.9%、27.9%和14.0%、9.3%,mRMR算法筛选特征所建FLDA、SVM及AdaBoost监测模型的总体监测精度分别比CA筛选特征所建模型高出7.0%、11.7%和7.0%,且mRMR算法筛选特征结合AdaBoost方法所建监测模型的精度和Kappa系数分别为88.4%和0.807,为所有模型中最高。说明将AdaBoost方法用于作物病害遥感监测效果较好,在作物病害监测模型的特征变量选择中mRMR算法比常用CA算法更具优势。研究结果可为其他作物病害遥感监测提供方法参考。
S4%TP79; 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用.选取陕西省关中平原两部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和AdaBoost 3种方法,构建小麦白粉病发生严重程度监测模型,并对其进行精度验证与对比分析.结果表明,2种AdaBoost模型对小麦白粉病发生严重程度的总体监测精度分别比FLDA模型和SVM模型高出27.9%、27.9%和 14.0%、9.3%,mRMR算法筛选特征所建FLDA、SVM及AdaBoost监测模型的总体监测精度分别比CA筛选特征所建模型高出7.0%、11.7%和7.0%,且mRMR算法筛选特征结合AdaBoost方法所建监测模型的精度和Kappa系数分别为88.4%和0.807,为所有模型中最高.说明将AdaBoost方法用于作物病害遥感监测效果较好,在作物病害监测模型的特征变量选择中mRMR算法比常用CA算法更具优势.研究结果可为其他作物病害遥感监测提供方法参考.
Abstract_FL Wheat powdery mildew has become one of the most serious wheat diseases in China,so it is necessary for using modern remote sensing information technology to improve the monitoring ability of the disease for guiding disease prevention and ensuring Chinese grain production safety.Feature selection was one of the key issues for establishing inversion models,and the use of good feature selection method would make a direct impact on disease classification accuracy.In this study,the Landsat 8 remote sensing image was used to extract total eighteen characteristic variables.Then,we got two groups different features,and Wetness,land surface temperature (LST) and shortwave infrared water stress index (SIWSI) were obtained by correlation analysis (CA) algorithm,and Greenness,Wetness,LST,re-normalized difference vegetation index (RDVI) and simple ratio (SR) were obtained by minimum redundancy maximum relevance (mRMR) algorithm.The basic idea of AdaBoost method was through a certain category by using numbers of weak classification classifiers to get a strong classifier which has great classification ability for improving classification accuracy.It generally was used to solve the binary classification problem,and we reformed it to solve three classification problems through dichotomous dismantling way of one against all.Then,we used it and common classification method Fisher linear discriminant analysis (FLDA) and support vector machine (SVM) to monitor wheat powdery mildew occurrence severity (healthy,slight,severe) in westem Guanzhong Plain,Shaanxi province,China through two group features obtained by two different feature selection methods mentioned above.Model with mRMR algorithm combining AdaBoost method (mRMR-AdaBoost model) produced the highest Spearman relevance value (0.868) in six models.Moreover,the values of Somers'D,Goodman-Kruskal Gamma,and Kendal's Tau-c of mRMR-AdaBoost model were the highest than those of models with CA algorithm and models with mRMR algorithm which constructed by FLDA and SVM methods.It indicated that mRMR-AdaBoost model had a better performance than the other five models.The validation results showed that,the overall accuracies and the Kappa coefficient of AdaBoost models with CA and mRMR algorithms were 81.4%,0.685 and 88.4%,0.807,respectively,and they were higher by 27.9%,27.9%,14.0% and 9.3% than those of FLDA and SVM models with corresponding selection algorithms.The overall accuracies of FLDA,SVM and AdaBoost models with mRMR algorithm were higher by 7.0%,11.7% and 7.0% than those of the corresponding methodological models with CA algorithm.Furthermore,mRMR-AdaBoost model had the lowest omission and commission error in all six models.Additionally,compared with the spatial distribution results of wheat powdery mildew severities which mapped by SVM and AdaBoost models and combined with surface survey results of wheat powdery mildew occurrence severity,the mapping results of mRMR-SVM model and two AdaBoost models were similar and close to ground survey results,and among them,the results of mRMR-AdaBoost model was the closest to ground reality than the others'.These results revealed that for remote sensing monitoring of crop disease,the application of AdaBoost method had a good prospect,and for feature variables selecting of crop disease monitoring model,the minimal redundancy maximal relevance algorithm had more advantages than CA algorithm.The study results can provide a method reference for monitoring of other crop diseases.
Author 马慧琴 黄文江 景元书 董莹莹 张竞成 聂臣巍 唐翠翠 赵晋陵 黄林生
AuthorAffiliation 南京信息工程大学应用气象学院、气象灾害预报预警与评估协同创新中心,南京210044 中国科学院遥感与数字地球研究所、数字地球重点实验室,北京100094 杭州电子科技大学生命信息与仪器工程学院,杭州310018 安徽大学电子信息工程学院,合肥230039
AuthorAffiliation_xml – name: 南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044;中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094;安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039
Author_xml – sequence: 1
  fullname: 马慧琴 黄文江 景元书 董莹莹 张竞成 聂臣巍 唐翠翠 赵晋陵 黄林生
BookMark eNo9j81Kw0AcxPdQwVr7EoJ4Svxvk93NnqQWv6AilN7LbjapKXajjaI9FupBKoqCFBUsHhRPIoqXgm9jEvoWRipeZmD4McPMoZwOtYfQIgYTY87IcssMokibGKBkUAdzswSYmUBMKNk5lP_PZ1ExigIJBFsMwMZ5tBKPxt_ji7ISq2EYHSYvj_HDIL4-b9e2a-nrMPm4Se_68dvlZPyc3n6l72fp8HTSe0r6o_T-KvkczKMZX-xFXvHPC6i-vlavbBrVnY2tSrlquITbhk2IcrkHQHxfUapc6vpSKpsJcLhQIAVjnsUZpVL4lq9sR4AlLcwcrphDpVVAS9PaY6F9oZuNVnjU0dlgQ3eb7on8_Qske5uRC1PS3Q118yDI2P1O0BadboMyzCjP1PoBofhtRg
ClassificationCodes S4%TP79
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.05.024
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Remote sensing monitoring of wheat powdery mildew based on AdaBoost model combining mRMR algorithm
DocumentTitle_FL Remote sensing monitoring of wheat powdery mildew based on AdaBoost model combining mRMR algorithm
EndPage 169
ExternalDocumentID nygcxb201705024
671769671
GrantInformation_xml – fundername: 中国科学院国际合作局对外合作重点项目; 国家重点研发计划项目; 国家自然科学基金国际合作项目; 国家自然科学基金项目; 江苏省普通高校自然科学研究资助项目
  funderid: (131211KYSB20150034); (2016YFD030702); (61661136004); (41271412、41601467); (15KJA170003)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c594-455dc9e005ffd66dc6cfbbd47a089ad0ba77e39766baf3fd48a03b31789d786b3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:03:05 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 病害
AdaBoost method
监测
AdaBoost方法
diseases
remote sensing
wheat
遥感
小麦
monitoring
mRMR algorithm
mRMR算法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594-455dc9e005ffd66dc6cfbbd47a089ad0ba77e39766baf3fd48a03b31789d786b3
Notes diseases; remote sensing; monitoring; wheat; mRMR algorithm; AdaBoost method
Wheat powdery mildew has become one of the most serious wheat diseases in China,so it is necessary for using modern remote sensing information technology to improve the monitoring ability of the disease for guiding disease prevention and ensuring Chinese grain production safety.Feature selection was one of the key issues for establishing inversion models,and the use of good feature selection method would make a direct impact on disease classification accuracy.In this study,the Landsat 8 remote sensing image was used to extract total eighteen characteristic variables.Then,we got two groups different features,and Wetness,land surface temperature(LST)and shortwave infrared water stress index(SIWSI)were obtained by correlation analysis(CA)algorithm,and Greenness,Wetness,LST,re-normalized difference vegetation index(RDVI)and simple ratio(SR)were obtained by minimum redundancy maximum relevance(mR MR)algorithm.The basic idea of AdaBoost met
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201705024
chongqing_primary_671769671
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094
安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039
南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044
Publisher_xml – name: 安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039
– name: 南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044
– name: 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.180415
Snippet 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影...
S4%TP79; 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用.选取陕西省关中平原两部小麦白粉病为对象,基于Landsat...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 162
SubjectTerms AdaBoost方法
mRMR算法
小麦
病害
监测
遥感
Title 基于AdaBoost模型和mRMR算法的小麦白粉病遥感监测
URI http://lib.cqvip.com/qk/90712X/201705/671769671.html
https://d.wanfangdata.com.cn/periodical/nygcxb201705024
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw5V1LaxRBEB40ouBBfGJ8kYN93Dg9O_06Sc9kFhH0IBG8hXltcnGjMYJ6E_QgiqIgooLiQfEkongJ-G9M1vwLq6p7N5O4xug1MAy93dX1-Kpmprq3pycITkMKUHHIg1uQaotWLOuwlUcKHSKLqpuX3NS0yveiPHc5Pn9FXNmx-2dj1dLNxWKyvDPyvZL_8SrUgV_xLdl_8OyQKVRAGfwLZ_AwnLfkY5YJZjossSyL8awzW-XJPL7HkUlmNbOcSDKmEypETKdXL124xDLFbMaMQrqkzYzAGgMcYqRLQqY7LDPI00pqgvIUFhJgYahGMS2QRnNmBfKBvqAMNiXMcOIsQHAz_UXmWjKTksIaJaI4RRwUauwUtVMkF3iCAmIQFCjNwpFSC1ApkhayJG6SJAmZAWKAylnIQbM1Eonm2A4pA0eblIEauUai0QLbxoLOsHFQaM6SuNdBKaK9PaA3wpx4sEBBwxv2GBIcjUKNuoMEVI4c4HqhhwTihTVkK6oLnENmYiqAvQ4pg4tWonRrHAwio0lJHZF9ggIiI4whDlJfY2PiKbAGWVGc2ZTTYlEWiW1suEA-jSYqdOiak2Rm5w_BHVPkDsER2N0ZBWcgw4h1ZmoMXTsKSWfvRjKFcpPMm5CQvUDsLge6lho1esBz6AKNOmMT1KQeSbBRkyEIoANEo6Pd9YU0jQAA8wFkj9s6cCLaM5Jwg45TA3pFyJPhiRg4LmyEEKmtw1G4US_jdOMUeL_jPzQtxtuCpdsNAqg3ve-sB3mDtlGK_1ZyvW2Dv5HHYqIrtc9GfaLrdhzyD3TRyFq5T4hr_8uMzq2NEpRco4TJoQRcHu12v3abYWz4fEHv9mx5q4ho2zag2BnsihSMCceCXTaZSjprQ3eOs5PD3DLCHVrk2lSY4G38EMtw-SYuXhK0ksmrsSdgAyXPbKYi7qE0N9-bvQ4jQ3pRt9fNe7ONMeX0_mCfnwyasO7JfiDYcWfuYLDXzi74DbHqQ8HZ5bdLP5YeD57rKx_fLb95uPzsET7F-59erHx93n91b_nzk9WlD_2X3_tfHvRf3F-9-37l3tv-66cr3x4eDqY72XR6ruU_etQqhYlbsRBVaWrIjbvdSsqqlGW3KKpY5aE2eRUWuVI1ziHIIu-2u1Ws87BdtLnSplJaFu0jwVhvvlcfDSZMXnbDvIABO4zhuSm0MmFdCFUawctalOPB8SESM9fc3lYzUnElDZzHgwmPzYzPeG7MbPDlsb-THMd5cFr6DseJYGxx4WZ9Ekbxi8UpHwC_ANAdhPI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EAdaBoost%E6%A8%A1%E5%9E%8B%E5%92%8CmRMR%E7%AE%97%E6%B3%95%E7%9A%84%E5%B0%8F%E9%BA%A6%E7%99%BD%E7%B2%89%E7%97%85%E9%81%A5%E6%84%9F%E7%9B%91%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%A9%AC%E6%85%A7%E7%90%B4&rft.au=%E9%BB%84%E6%96%87%E6%B1%9F&rft.au=%E6%99%AF%E5%85%83%E4%B9%A6&rft.au=%E8%91%A3%E8%8E%B9%E8%8E%B9&rft.date=2017&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC100094%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC100094%25%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E6%B0%94%E8%B1%A1%E5%AD%A6%E9%99%A2%2C%E6%B0%94%E8%B1%A1%E7%81%BE%E5%AE%B3%E9%A2%84%E6%8A%A5%E9%A2%84%E8%AD%A6%E4%B8%8E%E8%AF%84%E4%BC%B0%E5%8D%8F%E5%90%8C%E5%88%9B%E6%96%B0%E4%B8%AD%E5%BF%83%2C%E5%8D%97%E4%BA%AC210044%25%E6%9D%AD%E5%B7%9E%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%9F%E5%91%BD%E4%BF%A1%E6%81%AF%E4%B8%8E%E4%BB%AA%E5%99%A8%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%9D%AD%E5%B7%9E%2C310018%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC100094&rft.issn=1002-6819&rft.volume=33&rft.issue=5&rft.spage=162&rft.epage=169&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.05.024&rft.externalDocID=nygcxb201705024
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg