基于AdaBoost模型和mRMR算法的小麦白粉病遥感监测
除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和A...
Saved in:
Published in | 农业工程学报 Vol. 33; no. 5; pp. 162 - 169 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094
2017
安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039 南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2017.05.024 |
Cover
Abstract | 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和AdaBoost 3种方法,构建小麦白粉病发生严重程度监测模型,并对其进行精度验证与对比分析。结果表明,2种AdaBoost模型对小麦白粉病发生严重程度的总体监测精度分别比FLDA模型和SVM模型高出27.9%、27.9%和14.0%、9.3%,mRMR算法筛选特征所建FLDA、SVM及AdaBoost监测模型的总体监测精度分别比CA筛选特征所建模型高出7.0%、11.7%和7.0%,且mRMR算法筛选特征结合AdaBoost方法所建监测模型的精度和Kappa系数分别为88.4%和0.807,为所有模型中最高。说明将AdaBoost方法用于作物病害遥感监测效果较好,在作物病害监测模型的特征变量选择中mRMR算法比常用CA算法更具优势。研究结果可为其他作物病害遥感监测提供方法参考。 |
---|---|
AbstractList | 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和AdaBoost 3种方法,构建小麦白粉病发生严重程度监测模型,并对其进行精度验证与对比分析。结果表明,2种AdaBoost模型对小麦白粉病发生严重程度的总体监测精度分别比FLDA模型和SVM模型高出27.9%、27.9%和14.0%、9.3%,mRMR算法筛选特征所建FLDA、SVM及AdaBoost监测模型的总体监测精度分别比CA筛选特征所建模型高出7.0%、11.7%和7.0%,且mRMR算法筛选特征结合AdaBoost方法所建监测模型的精度和Kappa系数分别为88.4%和0.807,为所有模型中最高。说明将AdaBoost方法用于作物病害遥感监测效果较好,在作物病害监测模型的特征变量选择中mRMR算法比常用CA算法更具优势。研究结果可为其他作物病害遥感监测提供方法参考。 S4%TP79; 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用.选取陕西省关中平原两部小麦白粉病为对象,基于Landsat 8遥感影像共提取了18个特征变量,通过相关性分析(correlation analysis,CA)和最小冗余最大相关(minimum redundancy maximum relevance,mRMR)2种特征选择算法筛选出了2组不同的特征变量,分别将其输入Fisher线性判别分析(Fisher linear discriminant analysis,FLDA)、支持向量机(support vector machine,SVM)和AdaBoost 3种方法,构建小麦白粉病发生严重程度监测模型,并对其进行精度验证与对比分析.结果表明,2种AdaBoost模型对小麦白粉病发生严重程度的总体监测精度分别比FLDA模型和SVM模型高出27.9%、27.9%和 14.0%、9.3%,mRMR算法筛选特征所建FLDA、SVM及AdaBoost监测模型的总体监测精度分别比CA筛选特征所建模型高出7.0%、11.7%和7.0%,且mRMR算法筛选特征结合AdaBoost方法所建监测模型的精度和Kappa系数分别为88.4%和0.807,为所有模型中最高.说明将AdaBoost方法用于作物病害遥感监测效果较好,在作物病害监测模型的特征变量选择中mRMR算法比常用CA算法更具优势.研究结果可为其他作物病害遥感监测提供方法参考. |
Abstract_FL | Wheat powdery mildew has become one of the most serious wheat diseases in China,so it is necessary for using modern remote sensing information technology to improve the monitoring ability of the disease for guiding disease prevention and ensuring Chinese grain production safety.Feature selection was one of the key issues for establishing inversion models,and the use of good feature selection method would make a direct impact on disease classification accuracy.In this study,the Landsat 8 remote sensing image was used to extract total eighteen characteristic variables.Then,we got two groups different features,and Wetness,land surface temperature (LST) and shortwave infrared water stress index (SIWSI) were obtained by correlation analysis (CA) algorithm,and Greenness,Wetness,LST,re-normalized difference vegetation index (RDVI) and simple ratio (SR) were obtained by minimum redundancy maximum relevance (mRMR) algorithm.The basic idea of AdaBoost method was through a certain category by using numbers of weak classification classifiers to get a strong classifier which has great classification ability for improving classification accuracy.It generally was used to solve the binary classification problem,and we reformed it to solve three classification problems through dichotomous dismantling way of one against all.Then,we used it and common classification method Fisher linear discriminant analysis (FLDA) and support vector machine (SVM) to monitor wheat powdery mildew occurrence severity (healthy,slight,severe) in westem Guanzhong Plain,Shaanxi province,China through two group features obtained by two different feature selection methods mentioned above.Model with mRMR algorithm combining AdaBoost method (mRMR-AdaBoost model) produced the highest Spearman relevance value (0.868) in six models.Moreover,the values of Somers'D,Goodman-Kruskal Gamma,and Kendal's Tau-c of mRMR-AdaBoost model were the highest than those of models with CA algorithm and models with mRMR algorithm which constructed by FLDA and SVM methods.It indicated that mRMR-AdaBoost model had a better performance than the other five models.The validation results showed that,the overall accuracies and the Kappa coefficient of AdaBoost models with CA and mRMR algorithms were 81.4%,0.685 and 88.4%,0.807,respectively,and they were higher by 27.9%,27.9%,14.0% and 9.3% than those of FLDA and SVM models with corresponding selection algorithms.The overall accuracies of FLDA,SVM and AdaBoost models with mRMR algorithm were higher by 7.0%,11.7% and 7.0% than those of the corresponding methodological models with CA algorithm.Furthermore,mRMR-AdaBoost model had the lowest omission and commission error in all six models.Additionally,compared with the spatial distribution results of wheat powdery mildew severities which mapped by SVM and AdaBoost models and combined with surface survey results of wheat powdery mildew occurrence severity,the mapping results of mRMR-SVM model and two AdaBoost models were similar and close to ground survey results,and among them,the results of mRMR-AdaBoost model was the closest to ground reality than the others'.These results revealed that for remote sensing monitoring of crop disease,the application of AdaBoost method had a good prospect,and for feature variables selecting of crop disease monitoring model,the minimal redundancy maximal relevance algorithm had more advantages than CA algorithm.The study results can provide a method reference for monitoring of other crop diseases. |
Author | 马慧琴 黄文江 景元书 董莹莹 张竞成 聂臣巍 唐翠翠 赵晋陵 黄林生 |
AuthorAffiliation | 南京信息工程大学应用气象学院、气象灾害预报预警与评估协同创新中心,南京210044 中国科学院遥感与数字地球研究所、数字地球重点实验室,北京100094 杭州电子科技大学生命信息与仪器工程学院,杭州310018 安徽大学电子信息工程学院,合肥230039 |
AuthorAffiliation_xml | – name: 南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044;中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094;安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039 |
Author_xml | – sequence: 1 fullname: 马慧琴 黄文江 景元书 董莹莹 张竞成 聂臣巍 唐翠翠 赵晋陵 黄林生 |
BookMark | eNo9j81Kw0AcxPdQwVr7EoJ4Svxvk93NnqQWv6AilN7LbjapKXajjaI9FupBKoqCFBUsHhRPIoqXgm9jEvoWRipeZmD4McPMoZwOtYfQIgYTY87IcssMokibGKBkUAdzswSYmUBMKNk5lP_PZ1ExigIJBFsMwMZ5tBKPxt_ji7ISq2EYHSYvj_HDIL4-b9e2a-nrMPm4Se_68dvlZPyc3n6l72fp8HTSe0r6o_T-KvkczKMZX-xFXvHPC6i-vlavbBrVnY2tSrlquITbhk2IcrkHQHxfUapc6vpSKpsJcLhQIAVjnsUZpVL4lq9sR4AlLcwcrphDpVVAS9PaY6F9oZuNVnjU0dlgQ3eb7on8_Qske5uRC1PS3Q118yDI2P1O0BadboMyzCjP1PoBofhtRg |
ClassificationCodes | S4%TP79 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.2017.05.024 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Remote sensing monitoring of wheat powdery mildew based on AdaBoost model combining mRMR algorithm |
DocumentTitle_FL | Remote sensing monitoring of wheat powdery mildew based on AdaBoost model combining mRMR algorithm |
EndPage | 169 |
ExternalDocumentID | nygcxb201705024 671769671 |
GrantInformation_xml | – fundername: 中国科学院国际合作局对外合作重点项目; 国家重点研发计划项目; 国家自然科学基金国际合作项目; 国家自然科学基金项目; 江苏省普通高校自然科学研究资助项目 funderid: (131211KYSB20150034); (2016YFD030702); (61661136004); (41271412、41601467); (15KJA170003) |
GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
ID | FETCH-LOGICAL-c594-455dc9e005ffd66dc6cfbbd47a089ad0ba77e39766baf3fd48a03b31789d786b3 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:04:20 EDT 2025 Wed Feb 14 10:03:05 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | 病害 AdaBoost method 监测 AdaBoost方法 diseases remote sensing wheat 遥感 小麦 monitoring mRMR algorithm mRMR算法 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c594-455dc9e005ffd66dc6cfbbd47a089ad0ba77e39766baf3fd48a03b31789d786b3 |
Notes | diseases; remote sensing; monitoring; wheat; mRMR algorithm; AdaBoost method Wheat powdery mildew has become one of the most serious wheat diseases in China,so it is necessary for using modern remote sensing information technology to improve the monitoring ability of the disease for guiding disease prevention and ensuring Chinese grain production safety.Feature selection was one of the key issues for establishing inversion models,and the use of good feature selection method would make a direct impact on disease classification accuracy.In this study,the Landsat 8 remote sensing image was used to extract total eighteen characteristic variables.Then,we got two groups different features,and Wetness,land surface temperature(LST)and shortwave infrared water stress index(SIWSI)were obtained by correlation analysis(CA)algorithm,and Greenness,Wetness,LST,re-normalized difference vegetation index(RDVI)and simple ratio(SR)were obtained by minimum redundancy maximum relevance(mR MR)algorithm.The basic idea of AdaBoost met |
PageCount | 8 |
ParticipantIDs | wanfang_journals_nygcxb201705024 chongqing_primary_671769671 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 农业工程学报 |
PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2017 |
Publisher | 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094 安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039 南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044 |
Publisher_xml | – name: 安徽大学电子信息工程学院,合肥230039%安徽大学电子信息工程学院,合肥,230039 – name: 南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044 – name: 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094%南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044%杭州电子科技大学生命信息与仪器工程学院,杭州,310018%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094 |
SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.180415 |
Snippet | 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用。选取陕西省关中平原西部小麦白粉病为对象,基于Landsat 8遥感影... S4%TP79; 除选择合适的建模方法外,选择合适的特征选择算法来优选建模特征对提高作物病害的遥感监测水平具有重要作用.选取陕西省关中平原两部小麦白粉病为对象,基于Landsat... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 162 |
SubjectTerms | AdaBoost方法 mRMR算法 小麦 病害 监测 遥感 |
Title | 基于AdaBoost模型和mRMR算法的小麦白粉病遥感监测 |
URI | http://lib.cqvip.com/qk/90712X/201705/671769671.html https://d.wanfangdata.com.cn/periodical/nygcxb201705024 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw5V1LaxRBEB40ouBBfGJ8kYN93Dg9O_06Sc9kFhH0IBG8hXltcnGjMYJ6E_QgiqIgooLiQfEkongJ-G9M1vwLq6p7N5O4xug1MAy93dX1-Kpmprq3pycITkMKUHHIg1uQaotWLOuwlUcKHSKLqpuX3NS0yveiPHc5Pn9FXNmx-2dj1dLNxWKyvDPyvZL_8SrUgV_xLdl_8OyQKVRAGfwLZ_AwnLfkY5YJZjossSyL8awzW-XJPL7HkUlmNbOcSDKmEypETKdXL124xDLFbMaMQrqkzYzAGgMcYqRLQqY7LDPI00pqgvIUFhJgYahGMS2QRnNmBfKBvqAMNiXMcOIsQHAz_UXmWjKTksIaJaI4RRwUauwUtVMkF3iCAmIQFCjNwpFSC1ApkhayJG6SJAmZAWKAylnIQbM1Eonm2A4pA0eblIEauUai0QLbxoLOsHFQaM6SuNdBKaK9PaA3wpx4sEBBwxv2GBIcjUKNuoMEVI4c4HqhhwTihTVkK6oLnENmYiqAvQ4pg4tWonRrHAwio0lJHZF9ggIiI4whDlJfY2PiKbAGWVGc2ZTTYlEWiW1suEA-jSYqdOiak2Rm5w_BHVPkDsER2N0ZBWcgw4h1ZmoMXTsKSWfvRjKFcpPMm5CQvUDsLge6lho1esBz6AKNOmMT1KQeSbBRkyEIoANEo6Pd9YU0jQAA8wFkj9s6cCLaM5Jwg45TA3pFyJPhiRg4LmyEEKmtw1G4US_jdOMUeL_jPzQtxtuCpdsNAqg3ve-sB3mDtlGK_1ZyvW2Dv5HHYqIrtc9GfaLrdhzyD3TRyFq5T4hr_8uMzq2NEpRco4TJoQRcHu12v3abYWz4fEHv9mx5q4ho2zag2BnsihSMCceCXTaZSjprQ3eOs5PD3DLCHVrk2lSY4G38EMtw-SYuXhK0ksmrsSdgAyXPbKYi7qE0N9-bvQ4jQ3pRt9fNe7ONMeX0_mCfnwyasO7JfiDYcWfuYLDXzi74DbHqQ8HZ5bdLP5YeD57rKx_fLb95uPzsET7F-59erHx93n91b_nzk9WlD_2X3_tfHvRf3F-9-37l3tv-66cr3x4eDqY72XR6ruU_etQqhYlbsRBVaWrIjbvdSsqqlGW3KKpY5aE2eRUWuVI1ziHIIu-2u1Ws87BdtLnSplJaFu0jwVhvvlcfDSZMXnbDvIABO4zhuSm0MmFdCFUawctalOPB8SESM9fc3lYzUnElDZzHgwmPzYzPeG7MbPDlsb-THMd5cFr6DseJYGxx4WZ9Ekbxi8UpHwC_ANAdhPI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EAdaBoost%E6%A8%A1%E5%9E%8B%E5%92%8CmRMR%E7%AE%97%E6%B3%95%E7%9A%84%E5%B0%8F%E9%BA%A6%E7%99%BD%E7%B2%89%E7%97%85%E9%81%A5%E6%84%9F%E7%9B%91%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%A9%AC%E6%85%A7%E7%90%B4&rft.au=%E9%BB%84%E6%96%87%E6%B1%9F&rft.au=%E6%99%AF%E5%85%83%E4%B9%A6&rft.au=%E8%91%A3%E8%8E%B9%E8%8E%B9&rft.date=2017&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC100094%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC100094%25%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E6%B0%94%E8%B1%A1%E5%AD%A6%E9%99%A2%2C%E6%B0%94%E8%B1%A1%E7%81%BE%E5%AE%B3%E9%A2%84%E6%8A%A5%E9%A2%84%E8%AD%A6%E4%B8%8E%E8%AF%84%E4%BC%B0%E5%8D%8F%E5%90%8C%E5%88%9B%E6%96%B0%E4%B8%AD%E5%BF%83%2C%E5%8D%97%E4%BA%AC210044%25%E6%9D%AD%E5%B7%9E%E7%94%B5%E5%AD%90%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%9F%E5%91%BD%E4%BF%A1%E6%81%AF%E4%B8%8E%E4%BB%AA%E5%99%A8%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%9D%AD%E5%B7%9E%2C310018%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E7%A0%94%E7%A9%B6%E6%89%80%2C%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC100094&rft.issn=1002-6819&rft.volume=33&rft.issue=5&rft.spage=162&rft.epage=169&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.05.024&rft.externalDocID=nygcxb201705024 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |