土壤有机质含量可见-近红外光谱反演模型校正集优选方法

土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)〉2.0的前提下减...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 6; pp. 107 - 114
Main Author 陈奕云 齐天赐 黄颖菁 万远 赵瑞瑛 亓林 张超 费腾
Format Journal Article
LanguageChinese
Published 武汉大学资源与环境科学学院,武汉 430079 2017
武汉大学教育部地理信息系统重点实验室,武汉430079%武汉大学资源与环境科学学院,武汉 430079
浙江大学农业遥感与信息技术应用研究所,杭州 310058%武汉大学资源与环境科学学院,武汉 430079
土壤与农业可持续发展国家重点实验室,南京 210008
武汉大学苏州研究院,苏州 215123
中国科学院地理科学与资源研究所,北京 100101%武汉大学资源与环境科学学院,武汉 430079
武汉大学地球空间信息技术协同创新中心,武汉 430079
湖泊与环境国家重点实验室(中国科学院南京地理与湖泊研究所),南京 210008%武汉大学资源与环境科学学院,武汉,430079%湖北师范大学,城市与环境学院,黄石 435002%武汉大学资源与环境科学学院,武汉 430079
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.06.014

Cover

Abstract 土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)〉2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD〉2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。
AbstractList S151.9; 土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响.以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型.结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)>2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD>2.0),最多减少总校正集70%的样本,对应模型RPD为2.212.当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性.
土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)〉2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD〉2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。
Abstract_FL Soil organic matter (SOM) is not only an important indicator of soil fertility but also an important source and sink of the global carbon cycle. Therefore, it is essential to acquire the information of SOM for soil management. Visible and near-infrared (VIS-NIR) reflectance spectroscopy, known as a novel, rapid, accurate, environment-friendly and efficient approach compared with conventional laboratory analyses, has proven to be promising in the acquisition of various soil properties. Construction of a calibration set is key to the VIS-NIR quantitative analysis in building up a prediction model of high quality. The aim of this paper was to explore how the sample selection method and the number of samples may affect the accuracy of VIS-NIR models for SOM estimation. A total of 100 paddy soil samples (0-15 cm) were collected from the Honghu City, which is located in the Jianghan Plain, China. After air drying, grinding and sieving (0.25 mm), reflectance of these pretreated samples was measured with FieldSpec3 (Analytical Spectral Devices Inc., America). Three samples were neglected after outlier detections of spectra and SOM content. Out of the remaining 97 samples, 20 samples were selected by means of concentration gradient, which then formed the validation sample set. The remaining 77 samples formed the total calibration set. With SOM content or soil spectral information as inputs, 3 sample selection methods, namely Kennard-Stone (KS), sample set partitioning based on joint X-Y distance (SPXY) and Rank-KS, were used in the construction of calibration subsets with different proportions of the samples in total calibration set, such as 10% and 20%. Based on the different calibration subsets, partial least squares regression (PLSR) was used for model calibrations. Results showed that the calibration set selected by KS approach could not improve model predictive capability compared with the total calibration set. The KS approach, however, could reduce as many as 30% samples of the total calibration set while the ratio of performance to standard deviation (RPD) was retained above 2.0. The SPXY approach performed the best when 50% samples of the total calibration set were selected in the model calibration. The determination coefficient for calibration (Rc2) reached 0.922, the determination coefficient for prediction (Rp2) was 0.848, and the RPD reached 2.557. This was because the SPXY approach took into account both SOM content and soil spectra in the sample selection process. With only 30% samples of the total calibration set selected by the Rank-KS method, it had the lowest cost of calibration with satisfactory performance (Rc2=0.872,Rp2=0.802 and RPD=2.212). Overall, such results indicate that it is possible to reduce the number of calibration samples while retaining or even improving the predictive capacity of VIS-NIR models for SOM estimation. All the 3 calibration selection approaches have been proven to be useful for the improvement of model practicability.
Author 陈奕云 齐天赐 黄颖菁 万远 赵瑞瑛 亓林 张超 费腾
AuthorAffiliation 武汉大学资源与环境科学学院,武汉430079 土壤与农业可持续发展国家重点实验室,南京210008 武汉大学苏州研究院,苏州215123 武汉大学地球空间信息技术协同创新中心,武汉430079 武汉大学教育部地理信息系统重点实验室,武汉430079 湖泊与环境国家重点实验室中国科学院南京地理与湖泊研究所,南京210008 湖北师范大学、城市与环境学院,黄石435002 浙江大学农业遥感与信息技术应用研究所,杭州310058 中国科学院地理科学与资源研究所,北京100101
AuthorAffiliation_xml – name: 武汉大学资源与环境科学学院,武汉 430079;土壤与农业可持续发展国家重点实验室,南京 210008;武汉大学苏州研究院,苏州 215123;武汉大学地球空间信息技术协同创新中心,武汉 430079;武汉大学教育部地理信息系统重点实验室,武汉430079%武汉大学资源与环境科学学院,武汉 430079;湖泊与环境国家重点实验室(中国科学院南京地理与湖泊研究所),南京 210008%武汉大学资源与环境科学学院,武汉,430079%湖北师范大学,城市与环境学院,黄石 435002%武汉大学资源与环境科学学院,武汉 430079;浙江大学农业遥感与信息技术应用研究所,杭州 310058%武汉大学资源与环境科学学院,武汉 430079;中国科学院地理科学与资源研究所,北京 100101%武汉大学资源与环境科学学院,武汉 430079;武汉大学苏州研究院,苏州 215123
Author_xml – sequence: 1
  fullname: 陈奕云 齐天赐 黄颖菁 万远 赵瑞瑛 亓林 张超 费腾
BookMark eNo9j01LAkEAhudgkJl_IohOu82487FzDOkLhC7eZd3ZsZUayyXKWx0qJMKCkiCpTCEhoqIuidCfaab1X2QYnV54eXhfnimQUBUVADCLoI0QZ2S-bIdRpGwEYcaiLuJ2BiJmQ2pDhBMg-d9PgnQUhUVIkMMgxCgJcrp1qztd06qbVj9-7-mzx-FxQzee44cDK_48_-7f625TH9bjl1fdODWDC9Nr65sTc9c2T53h9dHX4Gq4XzfND_N2OQ0mpLcRBem_TIH80mI-u2Ll1pZXsws5yyccWw6XrqAUUi6EoAQLFLicCepxD3kBD5BLKJa-xIwIn0nJGBZSOtxxocudwHdSYG48u-sp6alSoVzZqarRYUHVSv5e8Vce0pH6iJwZk_56RZW2wxG7VQ03vWqtQBlihBNMnB-22Hnw
ClassificationCodes S151.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.06.014
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Optimization method of calibration dataset for VIS-NIR spectral inversion model of soil organ ic matter content
DocumentTitle_FL Optimization method of calibration dataset for VIS-NIR spectral inversion model of soil organic matter content
EndPage 114
ExternalDocumentID nygcxb201706014
671759545
GrantInformation_xml – fundername: 国家自然科学基金项目; 苏州市应用基础农业项目
  funderid: (41501444); (SYN201422,SYN201309)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c594-39f8d66069ddd654d1e897d6a9a1ae9e18564fcf475dc7ff774dff39380893ec3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:04:18 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords models
partial least squares regression
模型
可见-近红外反射光谱
有机质
organic matter
校正集优选
visible and near-infrared reflectance spectrum
soils
偏最小二乘回归
optimization of calibration set
土壤
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594-39f8d66069ddd654d1e897d6a9a1ae9e18564fcf475dc7ff774dff39380893ec3
Notes 11-2047/S
Chen Yiyun1,2,3,4,5, Qi Tianci1,6, Huang Yingjing1, Wan Yuan7, Zhao Ruiying1,8, Qi Lin1,9, Zhang Chao1, Fei Teng1,3 (1. School of Resource and Environment Science, Wuhan University, Wuhan 430079, China; 2. State Key Laboratory of Soil and Sustainable Agriculture, Nanjing 210008, China; 3. Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China; 4. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China; 5. Key Laboratory of Geographic Information System of Ministry of Education, Wuhan University, Wuhan 430079, China; 6. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 7. College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China; 8. Institute of AgriculturaI Remote Sensing and Information Technology Application, Zhejiang University, Hangzhou 310058, China; 9. Institute of Geographic Sciences and Natural Resources R
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201706014
chongqing_primary_671759545
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 武汉大学资源与环境科学学院,武汉 430079
武汉大学教育部地理信息系统重点实验室,武汉430079%武汉大学资源与环境科学学院,武汉 430079
浙江大学农业遥感与信息技术应用研究所,杭州 310058%武汉大学资源与环境科学学院,武汉 430079
土壤与农业可持续发展国家重点实验室,南京 210008
武汉大学苏州研究院,苏州 215123
中国科学院地理科学与资源研究所,北京 100101%武汉大学资源与环境科学学院,武汉 430079
武汉大学地球空间信息技术协同创新中心,武汉 430079
湖泊与环境国家重点实验室(中国科学院南京地理与湖泊研究所),南京 210008%武汉大学资源与环境科学学院,武汉,430079%湖北师范大学,城市与环境学院,黄石 435002%武汉大学资源与环境科学学院,武汉 430079
Publisher_xml – name: 浙江大学农业遥感与信息技术应用研究所,杭州 310058%武汉大学资源与环境科学学院,武汉 430079
– name: 武汉大学教育部地理信息系统重点实验室,武汉430079%武汉大学资源与环境科学学院,武汉 430079
– name: 武汉大学资源与环境科学学院,武汉 430079
– name: 中国科学院地理科学与资源研究所,北京 100101%武汉大学资源与环境科学学院,武汉 430079
– name: 武汉大学地球空间信息技术协同创新中心,武汉 430079
– name: 武汉大学苏州研究院,苏州 215123
– name: 土壤与农业可持续发展国家重点实验室,南京 210008
– name: 湖泊与环境国家重点实验室(中国科学院南京地理与湖泊研究所),南京 210008%武汉大学资源与环境科学学院,武汉,430079%湖北师范大学,城市与环境学院,黄石 435002%武汉大学资源与环境科学学院,武汉 430079
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.177294
Snippet 土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)...
S151.9; 土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响.以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 107
SubjectTerms 偏最小二乘回归
可见-近红外反射光谱
土壤
有机质
校正集优选
模型
Title 土壤有机质含量可见-近红外光谱反演模型校正集优选方法
URI http://lib.cqvip.com/qk/90712X/201706/671759545.html
https://d.wanfangdata.com.cn/periodical/nygcxb201706014
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKgtiB7ET6xV6cE5SWo-JsnMcbKbpYh6qtDbskk27WmrtQXtSQ8qRaQKWgSLWluwIKKiF0tB_C8mbv-F771k19iKX5fhMfu-5r3MvjfDzBvGzpipD4EpNg2ViNQQIrYMaaWuoWSUiCiNTeXjbeSLl7zxy-L8pDs5sOdL5dTS_Fw0Fi_88l7J_3gV-sCveEv2HzzbZwodAIN_oQUPQ_tXPuahy1WNqwYC2uFa8NDDHqlKINA8lDwQXEtCNrkOeKi49LkkKmh1A3E09FgGYTe4snjoI7G2ibXgyiNsl1gDjskDq6SXdRQWgB4kHiRp-kmFXAbUY1IPAHXUEsSrgEtgKIhKkkJmT2lgRUDg8OJhzF7uTOJoVEgoudLYE_hcu6gtyEVxLknxkIME_d3eF0ViQQ7ZASiUS2w0V1YVJaijkYox62KoaLafUEB5gQAYB80iyQgVLqQdWLi0Za26s1JcIaVZ0LMI6QrWxPEXcv3KMEgBSZZFZc0e-xDHDK0unG9z6ZAVfHJen7wP0OgBza7tlntWOJDEqUqAwgjmyTLMlBGsKCVSztRqOCpfFC4zG6u4rrs7aCrfpaiJEsb6EvDco0_FbQu6HXXJOzem4uuRXdRfwqfkh2zcEhtkQzqoB40fObmF2w79oGFj6QXvxxrXtRx8YaF_LgtPJbh0RKFUYy_jPSXP_U5FLI4yPdOZugopH93A66StzlQlWZw4yA6Uq7xRXUzZQ2xgYfow26-nZstKN-0j7EK28jxbW89XFvOVze7HjezB6-27S9nS2-6rW0b388Nvmy-z9eXs9mL33fts6X6-9SjfWM2e3ctfrOZv1raf3vm69WT75mK-_Cn_8Pgom2iEE7Vxo3zaxIhdJQxHpTLxPNNTSZJ4rkistlR-4rVUy2q1VRuSaE-kcSp8N4n9NIU1WpKmjnKkCeuLduwcY4OdmU77OBuF9Yhjm3HkmzIRcdRqQQ4vo9gDRN-WUTTMRvpmaV4pKtg0PR9WDQoWT8NstDRUs_xfu9bc4dgTf0YZYfsQLnYmT7LBudn59inI1eei0-XX8B13ZbZQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E8%B4%A8%E5%90%AB%E9%87%8F%E5%8F%AF%E8%A7%81-%E8%BF%91%E7%BA%A2%E5%A4%96%E5%85%89%E8%B0%B1%E5%8F%8D%E6%BC%94%E6%A8%A1%E5%9E%8B%E6%A0%A1%E6%AD%A3%E9%9B%86%E4%BC%98%E9%80%89%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%88%E5%A5%95%E4%BA%91&rft.au=%E9%BD%90%E5%A4%A9%E8%B5%90&rft.au=%E9%BB%84%E9%A2%96%E8%8F%81&rft.au=%E4%B8%87%E8%BF%9C&rft.date=2017&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%AD%A6%E6%B1%89+430079&rft.issn=1002-6819&rft.volume=33&rft.issue=6&rft.spage=107&rft.epage=114&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.06.014&rft.externalDocID=nygcxb201706014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg