Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model

Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 34; no. 38; pp. 10109 - 10119
Main Authors Shao, Wei, Paul, Arghya, Zhao, Bin, Lee, Crystal, Rodes, Laetitia, Prakash, Satya
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.12.2013
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2013.09.007

Cover

Abstract Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid ‘tail’ in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.
AbstractList Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid ‘tail’ in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.
Abstract Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid ‘tail’ in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs . 31.6% and 59.1% in cytotoxicity respectively, p  < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.
Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid 'tail' in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid 'tail' in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.
Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid 'tail' in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.
Author Shao, Wei
Paul, Arghya
Rodes, Laetitia
Zhao, Bin
Lee, Crystal
Prakash, Satya
Author_xml – sequence: 1
  givenname: Wei
  surname: Shao
  fullname: Shao, Wei
  organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
– sequence: 2
  givenname: Arghya
  surname: Paul
  fullname: Paul, Arghya
  organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
– sequence: 3
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
– sequence: 4
  givenname: Crystal
  surname: Lee
  fullname: Lee, Crystal
  organization: Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
– sequence: 5
  givenname: Laetitia
  surname: Rodes
  fullname: Rodes, Laetitia
  organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
– sequence: 6
  givenname: Satya
  surname: Prakash
  fullname: Prakash, Satya
  email: satya.prakash@mcgill.ca
  organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24060420$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2P0zAQhi20iO0u_AVkceLSMnacpOGAgPIprcQBOFsTZ9K6JHaxnRW98dNx1AWhlRB78tc7j2fmnQt25rwjxp4IWAkQ1bP9qrV-xETB4hBXEkSxgmYFUN9jC7Gu18uygfKMLUAouWwqIc_ZRYx7yGdQ8gE7lwqqvIMF-7nB0HrHHTqfppb4YA-2412YthwPh-DR7HjvA08YtpQoP9Fgrykcue85crOj0acdBTwcT1HW5evdNKLjbSCMiRt0hgL_Qc5vA_aJo7MjDnz0mfWQ3e9zFfToZr1kX9-9_bL5sLz69P7j5tXV0pRNkZZd0QpBZVtQWyjZGFV2UqJRa6hV02FVIshGmLZu1lDKWvVFq_qyQmOKvq7qurhkT0_cXNP3iWLSo42GhgEd-SlqUQuQolT5t_9KlZpzkHKmPr6RTu1InT6EXFk46t8NzoLnJ4EJPsZA_R-JAD27qff6bzf17KaGRmc3c_DLW8HGJkzWuxTQDndDvDkhKPf22lLQ0VjKfnQ2kEm68_ZumBe3MGawzhocvtGR4t5Pwc0xQkepQX-eJ28ePFGAgAbmnr7-N-CuWfwCXP3xTw
CitedBy_id crossref_primary_10_1021_acs_jpcb_5b12648
crossref_primary_10_3390_pharmaceutics15051545
crossref_primary_10_1016_j_jcis_2024_03_039
crossref_primary_10_3389_fphar_2017_00001
crossref_primary_10_1039_C7BM00008A
crossref_primary_10_1155_2014_917024
crossref_primary_10_1186_s12951_020_00742_y
crossref_primary_10_4155_tde_2023_0020
crossref_primary_10_1016_j_ijbiomac_2022_01_104
crossref_primary_10_1021_acs_bioconjchem_7b00563
crossref_primary_10_1021_acs_langmuir_9b01326
crossref_primary_10_3892_etm_2019_7510
crossref_primary_10_1016_j_jddst_2022_103586
crossref_primary_10_1007_s11095_015_1625_2
crossref_primary_10_1007_s10555_023_10119_w
crossref_primary_10_1021_acs_molpharmaceut_6b01027
crossref_primary_10_1021_acs_molpharmaceut_7b00325
crossref_primary_10_1016_j_msec_2021_112441
crossref_primary_10_2174_1573413716666200319130830
crossref_primary_10_1016_j_ejphar_2020_172937
crossref_primary_10_1039_D2RA06631A
crossref_primary_10_1016_j_msec_2017_02_132
crossref_primary_10_1016_j_msec_2019_110001
crossref_primary_10_1002_chem_201501993
crossref_primary_10_1007_s10853_018_2775_5
crossref_primary_10_1016_j_addr_2021_114034
crossref_primary_10_1002_macp_201500464
crossref_primary_10_1007_s13346_023_01299_7
crossref_primary_10_1039_C4NJ01916D
crossref_primary_10_1088_1742_6596_1853_1_012061
crossref_primary_10_3390_jnt5040015
crossref_primary_10_1016_j_ijbiomac_2019_09_059
crossref_primary_10_2174_1389450123666221011100235
crossref_primary_10_1016_j_etap_2016_09_015
crossref_primary_10_1007_s10544_017_0184_1
crossref_primary_10_52679_978_81_952885_6_4_7
crossref_primary_10_1158_1940_6207_CAPR_14_0079
crossref_primary_10_1186_s12951_022_01342_8
crossref_primary_10_3390_jcs6120379
crossref_primary_10_1002_ddr_21620
crossref_primary_10_1002_app_46249
crossref_primary_10_1016_j_jconrel_2017_02_023
crossref_primary_10_1126_sciadv_ade5321
crossref_primary_10_1016_j_ijbiomac_2025_140802
crossref_primary_10_1016_j_apmt_2018_06_008
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_v41_i1_20
crossref_primary_10_1016_j_biomaterials_2016_06_058
crossref_primary_10_2174_0115734137271865231105070727
crossref_primary_10_1039_C5NR03752B
crossref_primary_10_3390_bios7010009
crossref_primary_10_1080_10837450_2019_1694037
crossref_primary_10_1016_j_bbcan_2019_04_006
crossref_primary_10_1021_acs_bioconjchem_5b00551
crossref_primary_10_1080_1061186X_2019_1591422
crossref_primary_10_1177_0885328215578111
crossref_primary_10_32571_ijct_1139627
crossref_primary_10_1021_acsami_7b04971
crossref_primary_10_1039_C5NR04867B
crossref_primary_10_3390_ddc3040046
crossref_primary_10_1016_j_ijpharm_2018_07_027
crossref_primary_10_4028_www_scientific_net_JNanoR_53_22
crossref_primary_10_3390_nano9101501
crossref_primary_10_1016_j_jinorgbio_2016_07_016
crossref_primary_10_1155_2018_2058613
crossref_primary_10_1155_2020_1852946
crossref_primary_10_1371_journal_pone_0104209
crossref_primary_10_1016_j_xphs_2016_10_025
crossref_primary_10_1002_smtd_202100539
crossref_primary_10_2174_1871530323666230315145332
crossref_primary_10_1007_s11095_016_1916_2
crossref_primary_10_1038_srep15527
crossref_primary_10_1016_j_biomaterials_2020_120557
crossref_primary_10_1038_s41598_017_06028_y
Cites_doi 10.1021/nn901573w
10.1016/S0022-3697(99)00376-5
10.1002/anie.200500042
10.1126/science.289.5483.1324
10.1021/ar700093f
10.1021/ja042924i
10.1002/smll.200500393
10.1073/pnas.0707654105
10.2217/17435889.3.2.175
10.1158/0008-5472.CAN-08-1468
10.1038/nnano.2007.187
10.1021/nl034524j
10.1038/nnano.2008.68
10.1126/science.1138690
10.1103/PhysRevB.55.13980
10.1088/0957-4484/20/2/025612
10.1103/PhysRevB.53.11186
10.1080/01926230701320337
10.1016/j.biomaterials.2012.06.096
10.1038/nprot.2009.146
10.1007/s12274-009-9009-8
10.1016/j.tox.2008.09.004
10.1088/0957-4484/21/17/175101
10.1021/nn700040t
10.1073/pnas.0502680102
10.1039/c0nr01014f
10.1021/ja906267g
10.1021/jm800002y
10.1126/science.1072631
10.1038/nmat2766
10.1016/S0169-409X(02)00042-X
10.1016/j.toxlet.2006.02.001
10.1038/nrc1566
10.1021/ja010172b
10.1038/nnano.2006.209
10.1016/j.carbon.2011.08.011
10.1038/nnano.2006.170
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Elsevier Ltd
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2013.09.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 10119
ExternalDocumentID 24060420
10_1016_j_biomaterials_2013_09_007
S0142961213010909
1_s2_0_S0142961213010909
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c593t-d3b11e5b3eb3429c45d22ac480749da65a0291cb79805274f3b4f56acc3f76773
IEDL.DBID AIKHN
ISSN 0142-9612
1878-5905
IngestDate Fri Sep 05 14:39:14 EDT 2025
Fri Sep 05 13:27:51 EDT 2025
Thu Apr 03 06:50:25 EDT 2025
Tue Jul 01 03:47:41 EDT 2025
Thu Apr 24 22:53:48 EDT 2025
Fri Feb 23 02:23:07 EST 2024
Sun Feb 23 10:18:57 EST 2025
Tue Aug 26 17:20:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Targeted drug delivery
Breast cancer
Single-walled carbon nanotubes
Nanomedicine
Paclitaxel
Language English
License Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-d3b11e5b3eb3429c45d22ac480749da65a0291cb79805274f3b4f56acc3f76773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24060420
PQID 1443429227
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1710215459
proquest_miscellaneous_1443429227
pubmed_primary_24060420
crossref_primary_10_1016_j_biomaterials_2013_09_007
crossref_citationtrail_10_1016_j_biomaterials_2013_09_007
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2013_09_007
elsevier_clinicalkeyesjournals_1_s2_0_S0142961213010909
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2013_09_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moore, Strano, Haroz, Hauge, Smalley (bib31) 2003; 3
Kulamarva, Raja, Bhathena, Chen, Talapatra, Ajayan (bib15) 2009; 20
Paul, Shao, Shum-Tim, Prakash (bib16) 2012; 33
Meyer, Sloan, Dunin-Borkowski, Kirkland, Novotny, Bailey (bib21) 2000; 289
Kolosnjaj-Tabi, Hartman, Boudjemaa, Ananta, Morgant, Szwarc (bib34) 2010; 4
Liu, Wu, Zhang, Jiang, He, Chung (bib5) 2005; 44
Ojima (bib1) 2008; 41
Chen, Zhang, Wang, Dai (bib4) 2001; 123
Horwitz (bib38) 1994; 5
Ostling, Tomanek, Rosen (bib7) 1997; 55
Lu, Low (bib32) 2002; 54
Liu, Cai, He, Nakayama, Chen, Sun (bib14) 2007; 2
Nanowerk. Ensysce receives funding for carbon nanotube therapeutics for siRNA delivery. Available from
Elgrabli, Abella-Gallart, Robidel, Rogerieux, Boczkowski, Lacroix (bib36) 2008; 253
Zhao, Hu, Yu, Perea, Haddon (bib27) 2005; 127
Kagan, Tyurina, Tyurin, Konduru, Potapovich, Osipov (bib35) 2006; 165
Kam, O'Connell, Wisdom, Dai (bib17) 2005; 102
Chen, Zhang, Yang, Zhu, Chen, Tan (bib6) 2011; 3
Liu, Tabakman, Chen, Dai (bib9) 2009; 4
Koshino, Tanaka, Solin, Suenaga, Isobe, Nakamura (bib20) 2007; 316
Liu, Tabakman, Welsher, Dai (bib12) 2009; 2
Hong, Tobias, Al-Jamal, Ballesteros, Ali-Boucetta, Lozano-Perez (bib22) 2010; 9
Liu, Chen, Davis, Sherlock, Cao, Chen (bib25) 2008; 68
Lin, Chuu, Shung (bib8) 1996; 53
Liu, Davis, Cai, He, Chen, Dai (bib13) 2008; 105
Tagmatarchis, Maigne, Yudasaka, Iijima (bib28) 2006; 2
Ferrari (bib2) 2005; 5
Hampel, Kunze, Haase, Kramer, Rauschenbach, Ritschel (bib23) 2008; 3
.
Kostarelos, Lacerda, Pastorin, Wu, Wieckowski, Luangsivilay (bib10) 2007; 2
Schipper, Nakayama-Ratchford, Davis, Kam, Chu, Liu (bib11) 2008; 3
Liu, Yanagi, Suenaga, Kataura, Iijima (bib19) 2007; 2
Zhang, Deng, Ji, Shen, Dong, Wu (bib37) 2010; 21
Kim, Kim, Kim, Choi, Lim, Yang (bib29) 2012; 50
Worsley, Kalinina, Bekyarova, Haddon (bib26) 2009; 131
Elmore (bib39) 2007; 35
Ansell, Johnstone, Tardi, Lo, Xie, Shu (bib33) 2008; 51
Xie, Li, Pan, Chang, Sun (bib3) 2000; 61
O'Connell, Bachilo, Huffman, Moore, Strano, Haroz (bib30) 2002; 297
Liu, Sun, Nakayama-Ratchford, Dai (bib24) 2007; 1
Kostarelos (10.1016/j.biomaterials.2013.09.007_bib10) 2007; 2
Lin (10.1016/j.biomaterials.2013.09.007_bib8) 1996; 53
Liu (10.1016/j.biomaterials.2013.09.007_bib14) 2007; 2
Liu (10.1016/j.biomaterials.2013.09.007_bib25) 2008; 68
Ansell (10.1016/j.biomaterials.2013.09.007_bib33) 2008; 51
Kulamarva (10.1016/j.biomaterials.2013.09.007_bib15) 2009; 20
Meyer (10.1016/j.biomaterials.2013.09.007_bib21) 2000; 289
Ostling (10.1016/j.biomaterials.2013.09.007_bib7) 1997; 55
O'Connell (10.1016/j.biomaterials.2013.09.007_bib30) 2002; 297
Chen (10.1016/j.biomaterials.2013.09.007_bib4) 2001; 123
Zhao (10.1016/j.biomaterials.2013.09.007_bib27) 2005; 127
Tagmatarchis (10.1016/j.biomaterials.2013.09.007_bib28) 2006; 2
Zhang (10.1016/j.biomaterials.2013.09.007_bib37) 2010; 21
Elmore (10.1016/j.biomaterials.2013.09.007_bib39) 2007; 35
10.1016/j.biomaterials.2013.09.007_bib18
Lu (10.1016/j.biomaterials.2013.09.007_bib32) 2002; 54
Ojima (10.1016/j.biomaterials.2013.09.007_bib1) 2008; 41
Ferrari (10.1016/j.biomaterials.2013.09.007_bib2) 2005; 5
Liu (10.1016/j.biomaterials.2013.09.007_bib12) 2009; 2
Hong (10.1016/j.biomaterials.2013.09.007_bib22) 2010; 9
Kagan (10.1016/j.biomaterials.2013.09.007_bib35) 2006; 165
Kolosnjaj-Tabi (10.1016/j.biomaterials.2013.09.007_bib34) 2010; 4
Schipper (10.1016/j.biomaterials.2013.09.007_bib11) 2008; 3
Elgrabli (10.1016/j.biomaterials.2013.09.007_bib36) 2008; 253
Kam (10.1016/j.biomaterials.2013.09.007_bib17) 2005; 102
Liu (10.1016/j.biomaterials.2013.09.007_bib24) 2007; 1
Chen (10.1016/j.biomaterials.2013.09.007_bib6) 2011; 3
Xie (10.1016/j.biomaterials.2013.09.007_bib3) 2000; 61
Worsley (10.1016/j.biomaterials.2013.09.007_bib26) 2009; 131
Horwitz (10.1016/j.biomaterials.2013.09.007_bib38) 1994; 5
Liu (10.1016/j.biomaterials.2013.09.007_bib13) 2008; 105
Moore (10.1016/j.biomaterials.2013.09.007_bib31) 2003; 3
Koshino (10.1016/j.biomaterials.2013.09.007_bib20) 2007; 316
Kim (10.1016/j.biomaterials.2013.09.007_bib29) 2012; 50
Liu (10.1016/j.biomaterials.2013.09.007_bib5) 2005; 44
Paul (10.1016/j.biomaterials.2013.09.007_bib16) 2012; 33
Liu (10.1016/j.biomaterials.2013.09.007_bib9) 2009; 4
Hampel (10.1016/j.biomaterials.2013.09.007_bib23) 2008; 3
Liu (10.1016/j.biomaterials.2013.09.007_bib19) 2007; 2
References_xml – volume: 3
  year: 2003
  ident: bib31
  article-title: Individually suspended single-walled carbon nanotubes in various surfactants
  publication-title: Nano Lett
– reference: Nanowerk. Ensysce receives funding for carbon nanotube therapeutics for siRNA delivery. Available from::
– volume: 4
  start-page: 1372
  year: 2009
  end-page: 1382
  ident: bib9
  article-title: Preparation of carbon nanotube bioconjugates for biomedical applications
  publication-title: Nat Protoc
– volume: 61
  start-page: 1153
  year: 2000
  end-page: 1158
  ident: bib3
  article-title: Mechanical and physical properties on carbon nanotube
  publication-title: J Phys Chem Solids
– volume: 33
  start-page: 7655
  year: 2012
  end-page: 7664
  ident: bib16
  article-title: The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles
  publication-title: Biomaterials
– volume: 2
  start-page: 85
  year: 2009
  end-page: 120
  ident: bib12
  article-title: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery
  publication-title: Nano Res
– volume: 1
  start-page: 50
  year: 2007
  end-page: 56
  ident: bib24
  article-title: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery
  publication-title: ACS Nano
– volume: 51
  start-page: 3288
  year: 2008
  end-page: 3296
  ident: bib33
  article-title: Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates
  publication-title: J Med Chem
– volume: 4
  start-page: 1481
  year: 2010
  end-page: 1492
  ident: bib34
  article-title: In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice
  publication-title: ACS Nano
– volume: 2
  start-page: 47
  year: 2007
  end-page: 52
  ident: bib14
  article-title: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice
  publication-title: Nat Nanotechnol
– volume: 127
  start-page: 8197
  year: 2005
  end-page: 8203
  ident: bib27
  article-title: Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers
  publication-title: J Am Chem Soc
– volume: 41
  start-page: 108
  year: 2008
  end-page: 119
  ident: bib1
  article-title: Guided molecular missiles for tumor-targeting chemotherapy–case studies using the second-generation taxoids as warheads
  publication-title: Acc Chem Res
– volume: 35
  start-page: 495
  year: 2007
  end-page: 516
  ident: bib39
  article-title: Apoptosis: a review of programmed cell death
  publication-title: Toxicol Pathol
– volume: 316
  start-page: 853
  year: 2007
  ident: bib20
  article-title: Imaging of single organic molecules in motion
  publication-title: Science
– volume: 50
  start-page: 30
  year: 2012
  ident: bib29
  article-title: Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers
  publication-title: Carbon
– volume: 105
  start-page: 1410
  year: 2008
  end-page: 1415
  ident: bib13
  article-title: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 108
  year: 2007
  end-page: 113
  ident: bib10
  article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type
  publication-title: Nat Nanotechnol
– volume: 5
  start-page: 161
  year: 2005
  end-page: 171
  ident: bib2
  article-title: Cancer nanotechnology: opportunities and challenges
  publication-title: Nat Rev Cancer
– volume: 20
  start-page: 025612
  year: 2009
  ident: bib15
  article-title: Microcapsule carbon nanotube devices for therapeutic applications
  publication-title: Nanotechnology
– volume: 54
  start-page: 675
  year: 2002
  end-page: 693
  ident: bib32
  article-title: Folate-mediated delivery of macromolecular anticancer therapeutic agents
  publication-title: Adv Drug Deliv Rev
– volume: 55
  start-page: 13980
  year: 1997
  end-page: 13988
  ident: bib7
  article-title: Electronic structure of single-wall, multiwall, and filled carbon nanotubes
  publication-title: Phys Rev B
– volume: 102
  start-page: 11600
  year: 2005
  end-page: 11605
  ident: bib17
  article-title: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction
  publication-title: Proc Natl Acad Sci U S A
– volume: 53
  start-page: 11186
  year: 1996
  end-page: 11192
  ident: bib8
  article-title: Thermal conductance and the Peltier coefficient of carbon nanotubes
  publication-title: Phys Rev B
– volume: 2
  start-page: 490
  year: 2006
  end-page: 494
  ident: bib28
  article-title: Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes
  publication-title: Small
– volume: 2
  start-page: 422
  year: 2007
  end-page: 425
  ident: bib19
  article-title: Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes
  publication-title: Nat Nanotechnol
– volume: 131
  start-page: 18153
  year: 2009
  end-page: 18158
  ident: bib26
  article-title: Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes
  publication-title: J Am Chem Soc
– volume: 165
  start-page: 88
  year: 2006
  end-page: 100
  ident: bib35
  article-title: Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron
  publication-title: Toxicol Lett
– volume: 253
  start-page: 131
  year: 2008
  end-page: 136
  ident: bib36
  article-title: Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes
  publication-title: Toxicology
– volume: 289
  start-page: 1324
  year: 2000
  end-page: 1327
  ident: bib21
  article-title: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes
  publication-title: Science
– reference: .
– volume: 3
  start-page: 175
  year: 2008
  end-page: 182
  ident: bib23
  article-title: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth
  publication-title: Nanomedicine (Lond)
– volume: 44
  start-page: 4782
  year: 2005
  end-page: 4785
  ident: bib5
  article-title: Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA
  publication-title: Angew Chem Int Ed Engl
– volume: 5
  start-page: S3
  year: 1994
  end-page: S6
  ident: bib38
  article-title: Taxol (paclitaxel): mechanisms of action
  publication-title: Ann Oncol Off J Eur Soc Med Oncol/ESMO
– volume: 68
  start-page: 6652
  year: 2008
  end-page: 6660
  ident: bib25
  article-title: Drug delivery with carbon nanotubes for in vivo cancer treatment
  publication-title: Cancer Res
– volume: 3
  start-page: 1949
  year: 2011
  end-page: 1956
  ident: bib6
  article-title: Single-walled carbon nanotubes as optical materials for biosensing
  publication-title: Nanoscale
– volume: 3
  start-page: 216
  year: 2008
  end-page: 221
  ident: bib11
  article-title: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice
  publication-title: Nat Nanotechnol
– volume: 123
  start-page: 3838
  year: 2001
  end-page: 3839
  ident: bib4
  article-title: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
  publication-title: J Am Chem Soc
– volume: 9
  start-page: 485
  year: 2010
  end-page: 490
  ident: bib22
  article-title: Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging
  publication-title: Nat Mater
– volume: 21
  start-page: 175101
  year: 2010
  ident: bib37
  article-title: Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice
  publication-title: Nanotechnology
– volume: 297
  start-page: 593
  year: 2002
  end-page: 596
  ident: bib30
  article-title: Band gap fluorescence from individual single-walled carbon nanotubes
  publication-title: Science
– volume: 4
  start-page: 1481
  year: 2010
  ident: 10.1016/j.biomaterials.2013.09.007_bib34
  article-title: In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice
  publication-title: ACS Nano
  doi: 10.1021/nn901573w
– volume: 61
  start-page: 1153
  year: 2000
  ident: 10.1016/j.biomaterials.2013.09.007_bib3
  article-title: Mechanical and physical properties on carbon nanotube
  publication-title: J Phys Chem Solids
  doi: 10.1016/S0022-3697(99)00376-5
– volume: 44
  start-page: 4782
  year: 2005
  ident: 10.1016/j.biomaterials.2013.09.007_bib5
  article-title: Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.200500042
– volume: 289
  start-page: 1324
  year: 2000
  ident: 10.1016/j.biomaterials.2013.09.007_bib21
  article-title: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes
  publication-title: Science
  doi: 10.1126/science.289.5483.1324
– volume: 41
  start-page: 108
  year: 2008
  ident: 10.1016/j.biomaterials.2013.09.007_bib1
  article-title: Guided molecular missiles for tumor-targeting chemotherapy–case studies using the second-generation taxoids as warheads
  publication-title: Acc Chem Res
  doi: 10.1021/ar700093f
– volume: 127
  start-page: 8197
  year: 2005
  ident: 10.1016/j.biomaterials.2013.09.007_bib27
  article-title: Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers
  publication-title: J Am Chem Soc
  doi: 10.1021/ja042924i
– volume: 2
  start-page: 490
  year: 2006
  ident: 10.1016/j.biomaterials.2013.09.007_bib28
  article-title: Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes
  publication-title: Small
  doi: 10.1002/smll.200500393
– volume: 105
  start-page: 1410
  year: 2008
  ident: 10.1016/j.biomaterials.2013.09.007_bib13
  article-title: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0707654105
– volume: 3
  start-page: 175
  year: 2008
  ident: 10.1016/j.biomaterials.2013.09.007_bib23
  article-title: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/17435889.3.2.175
– volume: 68
  start-page: 6652
  year: 2008
  ident: 10.1016/j.biomaterials.2013.09.007_bib25
  article-title: Drug delivery with carbon nanotubes for in vivo cancer treatment
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-1468
– volume: 2
  start-page: 422
  year: 2007
  ident: 10.1016/j.biomaterials.2013.09.007_bib19
  article-title: Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2007.187
– volume: 3
  year: 2003
  ident: 10.1016/j.biomaterials.2013.09.007_bib31
  article-title: Individually suspended single-walled carbon nanotubes in various surfactants
  publication-title: Nano Lett
  doi: 10.1021/nl034524j
– volume: 3
  start-page: 216
  year: 2008
  ident: 10.1016/j.biomaterials.2013.09.007_bib11
  article-title: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2008.68
– volume: 316
  start-page: 853
  year: 2007
  ident: 10.1016/j.biomaterials.2013.09.007_bib20
  article-title: Imaging of single organic molecules in motion
  publication-title: Science
  doi: 10.1126/science.1138690
– volume: 55
  start-page: 13980
  year: 1997
  ident: 10.1016/j.biomaterials.2013.09.007_bib7
  article-title: Electronic structure of single-wall, multiwall, and filled carbon nanotubes
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.55.13980
– volume: 20
  start-page: 025612
  year: 2009
  ident: 10.1016/j.biomaterials.2013.09.007_bib15
  article-title: Microcapsule carbon nanotube devices for therapeutic applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/2/025612
– volume: 53
  start-page: 11186
  year: 1996
  ident: 10.1016/j.biomaterials.2013.09.007_bib8
  article-title: Thermal conductance and the Peltier coefficient of carbon nanotubes
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.53.11186
– volume: 35
  start-page: 495
  year: 2007
  ident: 10.1016/j.biomaterials.2013.09.007_bib39
  article-title: Apoptosis: a review of programmed cell death
  publication-title: Toxicol Pathol
  doi: 10.1080/01926230701320337
– volume: 33
  start-page: 7655
  year: 2012
  ident: 10.1016/j.biomaterials.2013.09.007_bib16
  article-title: The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.096
– volume: 4
  start-page: 1372
  year: 2009
  ident: 10.1016/j.biomaterials.2013.09.007_bib9
  article-title: Preparation of carbon nanotube bioconjugates for biomedical applications
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.146
– volume: 2
  start-page: 85
  year: 2009
  ident: 10.1016/j.biomaterials.2013.09.007_bib12
  article-title: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery
  publication-title: Nano Res
  doi: 10.1007/s12274-009-9009-8
– volume: 253
  start-page: 131
  year: 2008
  ident: 10.1016/j.biomaterials.2013.09.007_bib36
  article-title: Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes
  publication-title: Toxicology
  doi: 10.1016/j.tox.2008.09.004
– volume: 21
  start-page: 175101
  year: 2010
  ident: 10.1016/j.biomaterials.2013.09.007_bib37
  article-title: Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/17/175101
– volume: 5
  start-page: S3
  issue: Suppl. 6
  year: 1994
  ident: 10.1016/j.biomaterials.2013.09.007_bib38
  article-title: Taxol (paclitaxel): mechanisms of action
  publication-title: Ann Oncol Off J Eur Soc Med Oncol/ESMO
– volume: 1
  start-page: 50
  year: 2007
  ident: 10.1016/j.biomaterials.2013.09.007_bib24
  article-title: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery
  publication-title: ACS Nano
  doi: 10.1021/nn700040t
– ident: 10.1016/j.biomaterials.2013.09.007_bib18
– volume: 102
  start-page: 11600
  year: 2005
  ident: 10.1016/j.biomaterials.2013.09.007_bib17
  article-title: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0502680102
– volume: 3
  start-page: 1949
  year: 2011
  ident: 10.1016/j.biomaterials.2013.09.007_bib6
  article-title: Single-walled carbon nanotubes as optical materials for biosensing
  publication-title: Nanoscale
  doi: 10.1039/c0nr01014f
– volume: 131
  start-page: 18153
  year: 2009
  ident: 10.1016/j.biomaterials.2013.09.007_bib26
  article-title: Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes
  publication-title: J Am Chem Soc
  doi: 10.1021/ja906267g
– volume: 51
  start-page: 3288
  year: 2008
  ident: 10.1016/j.biomaterials.2013.09.007_bib33
  article-title: Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates
  publication-title: J Med Chem
  doi: 10.1021/jm800002y
– volume: 297
  start-page: 593
  year: 2002
  ident: 10.1016/j.biomaterials.2013.09.007_bib30
  article-title: Band gap fluorescence from individual single-walled carbon nanotubes
  publication-title: Science
  doi: 10.1126/science.1072631
– volume: 9
  start-page: 485
  year: 2010
  ident: 10.1016/j.biomaterials.2013.09.007_bib22
  article-title: Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging
  publication-title: Nat Mater
  doi: 10.1038/nmat2766
– volume: 54
  start-page: 675
  year: 2002
  ident: 10.1016/j.biomaterials.2013.09.007_bib32
  article-title: Folate-mediated delivery of macromolecular anticancer therapeutic agents
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(02)00042-X
– volume: 165
  start-page: 88
  year: 2006
  ident: 10.1016/j.biomaterials.2013.09.007_bib35
  article-title: Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2006.02.001
– volume: 5
  start-page: 161
  year: 2005
  ident: 10.1016/j.biomaterials.2013.09.007_bib2
  article-title: Cancer nanotechnology: opportunities and challenges
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1566
– volume: 123
  start-page: 3838
  year: 2001
  ident: 10.1016/j.biomaterials.2013.09.007_bib4
  article-title: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
  publication-title: J Am Chem Soc
  doi: 10.1021/ja010172b
– volume: 2
  start-page: 108
  year: 2007
  ident: 10.1016/j.biomaterials.2013.09.007_bib10
  article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2006.209
– volume: 50
  start-page: 30
  year: 2012
  ident: 10.1016/j.biomaterials.2013.09.007_bib29
  article-title: Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.08.011
– volume: 2
  start-page: 47
  year: 2007
  ident: 10.1016/j.biomaterials.2013.09.007_bib14
  article-title: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2006.170
SSID ssj0014042
Score 2.4352932
Snippet Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a...
Abstract Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10109
SubjectTerms Advanced Basic Science
animal models
Animals
Antineoplastic Agents, Phytogenic
blood
Breast cancer
breast neoplasms
Breast Neoplasms - drug therapy
carbon nanotubes
Cell Cycle - drug effects
Cell Line, Tumor
cytotoxicity
Dentistry
drug carriers
Drug Delivery Systems - methods
drug therapy
drugs
Fatty Alcohols - administration & dosage
Fatty Alcohols - therapeutic use
Female
folic acid
Humans
hydrophobic bonding
Mice
Mice, Inbred BALB C
Mice, Nude
Nanomedicine
Nanomedicine - methods
Nanotubes, Carbon - chemistry
Paclitaxel
Paclitaxel - administration & dosage
Paclitaxel - therapeutic use
Single-walled carbon nanotubes
Targeted drug delivery
Xenograft Model Antitumor Assays
Title Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961213010909
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213010909
https://dx.doi.org/10.1016/j.biomaterials.2013.09.007
https://www.ncbi.nlm.nih.gov/pubmed/24060420
https://www.proquest.com/docview/1443429227
https://www.proquest.com/docview/1710215459
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdtCmN7GFv3lX0UDfbqxZZkO2LsoYSVbKN9WqFvQl8eHqkcEgfal7I_fXe2HDrWjcAeLevs4-50OqHf3RHyjsEpmWmfJU5algg4fCXSpdPESFHlWAc173JhTs-K-bn4cpFf7JHZkAuDsMro-3uf3nnrODKJ0pws63qCsCQmsQAW79CFcp8cMNjtpyNycPz56_xse5kg0q6HDs5PkGCoPdrBvDDLXbe9thHpxbuyp9hd9u596m9xaLcfnTwiD2MgSY97Xh-TPR8OyYNb5QUPyb3TeHH-hPyc6ZVpAg06NO3GeLqol7WjbrX5Toey4hTiV9ojwz288guEbFzTpqKagmovY67WdU9VBxjuOvxRg8D2llo0oBW98gEhX1VLdagvgcWu2c5Tcn7y6dtsnsTmC4nNJW8Tx02W-dxwOG2DnK3IHWPaYga6kE4XuU6ZzKwpJTZFKEXFDWi30NbyqizKkj8jo9AE_4LQSmdT76R3zjpReTEtLIZBGr4ijTPZmMhB1MrGyuTYIGOhBgjaD3VbTQrVpFKpQE1jwre0y74-x05UHwaNqiEDFXymgm1kJ-ryLmq_jst_rTK1ZipVf5jomHzcUv5m5Tv_-e1gfgrcAN7t6OCbDfxRCFQTY_-ag9EkhszAx_Pedrcyw8AOlkn68j85fEXu41MP-HlNRu1q499A2NaaI7L__iY7iovzFwR9RNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FPbxMLbuo9mnBns1sWXZjhh7KGElXZs8tdA3oS8Xj1QOiQPt2_706Ww5dKwbgb1KPuu4O51O6Hd3AJ-pvyVTaZPIcE0j5i9fETfxOFKclRnWQc3aXJjZPJ9esO-X2eUeTPpcGIRVBt_f-fTWW4eRUZDmaFlVI4QlUY4FsNIWXcgfwD7DptYD2D86OZ3Ot48JLG576OD3ERL0tUdbmBdmucum0zYivdK27Cl2l73_nPpbHNqeR8fP4GkIJMlRx-tz2LPuAJ7cKS94AA9n4eH8BfycyJWqHXHS1c1GWbKolpUhZrW5In1ZceLjV9Ihw62fsguEbNySuiSSeNVeh1yt246qcn647fBHFALbG6LRgFbkxjqEfJUNka669iy2zXZewsXxt_PJNArNFyKd8bSJTKqSxGYq9bdtL2fNMkOp1JiBzriReSZjyhOtCo5NEQpWpsprN5dap2WRF0X6CgaudvYQSCmTsTXcGqMNKy0b5xrDIOn_wpVRyRB4L2qhQ2VybJCxED0E7Ye4qyaBahIxF15NQ0i3tMuuPsdOVF96jYo-A9X7TOGPkZ2oi_uo7Tps_7VIxJqKWPxhokP4uqX8zcp3XvlTb37CuwF825HO1hu_ImOoJkr_9Q1Gkxgyez5ed7a7lRkGdn6bxG_-k8OP8Gh6PjsTZyfz07fwGGc68M87GDSrjX3vQ7hGfQhb9Bekgka2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+nanotube+lipid+drug+approach+for+targeted+delivery+of+a+chemotherapy+drug+in+a+human+breast+cancer+xenograft+animal+model&rft.jtitle=Biomaterials&rft.au=Shao%2C+Wei&rft.au=Paul%2C+Arghya&rft.au=Zhao%2C+Bin&rft.au=Lee%2C+Crystal&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=34&rft.issue=38&rft.spage=10109&rft.epage=10119&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.09.007&rft.externalDocID=S0142961213010909
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961213X00316%2Fcov150h.gif