Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model
Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid...
Saved in:
Published in | Biomaterials Vol. 34; no. 38; pp. 10109 - 10119 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 1878-5905 |
DOI | 10.1016/j.biomaterials.2013.09.007 |
Cover
Abstract | Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid ‘tail’ in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs. |
---|---|
AbstractList | Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid ‘tail’ in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs. Abstract Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid ‘tail’ in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs . 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs. Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid 'tail' in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid 'tail' in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs. Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid 'tail' in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs. |
Author | Shao, Wei Paul, Arghya Rodes, Laetitia Zhao, Bin Lee, Crystal Prakash, Satya |
Author_xml | – sequence: 1 givenname: Wei surname: Shao fullname: Shao, Wei organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada – sequence: 2 givenname: Arghya surname: Paul fullname: Paul, Arghya organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada – sequence: 3 givenname: Bin surname: Zhao fullname: Zhao, Bin organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada – sequence: 4 givenname: Crystal surname: Lee fullname: Lee, Crystal organization: Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada – sequence: 5 givenname: Laetitia surname: Rodes fullname: Rodes, Laetitia organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada – sequence: 6 givenname: Satya surname: Prakash fullname: Prakash, Satya email: satya.prakash@mcgill.ca organization: Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24060420$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2P0zAQhi20iO0u_AVkceLSMnacpOGAgPIprcQBOFsTZ9K6JHaxnRW98dNx1AWhlRB78tc7j2fmnQt25rwjxp4IWAkQ1bP9qrV-xETB4hBXEkSxgmYFUN9jC7Gu18uygfKMLUAouWwqIc_ZRYx7yGdQ8gE7lwqqvIMF-7nB0HrHHTqfppb4YA-2412YthwPh-DR7HjvA08YtpQoP9Fgrykcue85crOj0acdBTwcT1HW5evdNKLjbSCMiRt0hgL_Qc5vA_aJo7MjDnz0mfWQ3e9zFfToZr1kX9-9_bL5sLz69P7j5tXV0pRNkZZd0QpBZVtQWyjZGFV2UqJRa6hV02FVIshGmLZu1lDKWvVFq_qyQmOKvq7qurhkT0_cXNP3iWLSo42GhgEd-SlqUQuQolT5t_9KlZpzkHKmPr6RTu1InT6EXFk46t8NzoLnJ4EJPsZA_R-JAD27qff6bzf17KaGRmc3c_DLW8HGJkzWuxTQDndDvDkhKPf22lLQ0VjKfnQ2kEm68_ZumBe3MGawzhocvtGR4t5Pwc0xQkepQX-eJ28ePFGAgAbmnr7-N-CuWfwCXP3xTw |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_5b12648 crossref_primary_10_3390_pharmaceutics15051545 crossref_primary_10_1016_j_jcis_2024_03_039 crossref_primary_10_3389_fphar_2017_00001 crossref_primary_10_1039_C7BM00008A crossref_primary_10_1155_2014_917024 crossref_primary_10_1186_s12951_020_00742_y crossref_primary_10_4155_tde_2023_0020 crossref_primary_10_1016_j_ijbiomac_2022_01_104 crossref_primary_10_1021_acs_bioconjchem_7b00563 crossref_primary_10_1021_acs_langmuir_9b01326 crossref_primary_10_3892_etm_2019_7510 crossref_primary_10_1016_j_jddst_2022_103586 crossref_primary_10_1007_s11095_015_1625_2 crossref_primary_10_1007_s10555_023_10119_w crossref_primary_10_1021_acs_molpharmaceut_6b01027 crossref_primary_10_1021_acs_molpharmaceut_7b00325 crossref_primary_10_1016_j_msec_2021_112441 crossref_primary_10_2174_1573413716666200319130830 crossref_primary_10_1016_j_ejphar_2020_172937 crossref_primary_10_1039_D2RA06631A crossref_primary_10_1016_j_msec_2017_02_132 crossref_primary_10_1016_j_msec_2019_110001 crossref_primary_10_1002_chem_201501993 crossref_primary_10_1007_s10853_018_2775_5 crossref_primary_10_1016_j_addr_2021_114034 crossref_primary_10_1002_macp_201500464 crossref_primary_10_1007_s13346_023_01299_7 crossref_primary_10_1039_C4NJ01916D crossref_primary_10_1088_1742_6596_1853_1_012061 crossref_primary_10_3390_jnt5040015 crossref_primary_10_1016_j_ijbiomac_2019_09_059 crossref_primary_10_2174_1389450123666221011100235 crossref_primary_10_1016_j_etap_2016_09_015 crossref_primary_10_1007_s10544_017_0184_1 crossref_primary_10_52679_978_81_952885_6_4_7 crossref_primary_10_1158_1940_6207_CAPR_14_0079 crossref_primary_10_1186_s12951_022_01342_8 crossref_primary_10_3390_jcs6120379 crossref_primary_10_1002_ddr_21620 crossref_primary_10_1002_app_46249 crossref_primary_10_1016_j_jconrel_2017_02_023 crossref_primary_10_1126_sciadv_ade5321 crossref_primary_10_1016_j_ijbiomac_2025_140802 crossref_primary_10_1016_j_apmt_2018_06_008 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_v41_i1_20 crossref_primary_10_1016_j_biomaterials_2016_06_058 crossref_primary_10_2174_0115734137271865231105070727 crossref_primary_10_1039_C5NR03752B crossref_primary_10_3390_bios7010009 crossref_primary_10_1080_10837450_2019_1694037 crossref_primary_10_1016_j_bbcan_2019_04_006 crossref_primary_10_1021_acs_bioconjchem_5b00551 crossref_primary_10_1080_1061186X_2019_1591422 crossref_primary_10_1177_0885328215578111 crossref_primary_10_32571_ijct_1139627 crossref_primary_10_1021_acsami_7b04971 crossref_primary_10_1039_C5NR04867B crossref_primary_10_3390_ddc3040046 crossref_primary_10_1016_j_ijpharm_2018_07_027 crossref_primary_10_4028_www_scientific_net_JNanoR_53_22 crossref_primary_10_3390_nano9101501 crossref_primary_10_1016_j_jinorgbio_2016_07_016 crossref_primary_10_1155_2018_2058613 crossref_primary_10_1155_2020_1852946 crossref_primary_10_1371_journal_pone_0104209 crossref_primary_10_1016_j_xphs_2016_10_025 crossref_primary_10_1002_smtd_202100539 crossref_primary_10_2174_1871530323666230315145332 crossref_primary_10_1007_s11095_016_1916_2 crossref_primary_10_1038_srep15527 crossref_primary_10_1016_j_biomaterials_2020_120557 crossref_primary_10_1038_s41598_017_06028_y |
Cites_doi | 10.1021/nn901573w 10.1016/S0022-3697(99)00376-5 10.1002/anie.200500042 10.1126/science.289.5483.1324 10.1021/ar700093f 10.1021/ja042924i 10.1002/smll.200500393 10.1073/pnas.0707654105 10.2217/17435889.3.2.175 10.1158/0008-5472.CAN-08-1468 10.1038/nnano.2007.187 10.1021/nl034524j 10.1038/nnano.2008.68 10.1126/science.1138690 10.1103/PhysRevB.55.13980 10.1088/0957-4484/20/2/025612 10.1103/PhysRevB.53.11186 10.1080/01926230701320337 10.1016/j.biomaterials.2012.06.096 10.1038/nprot.2009.146 10.1007/s12274-009-9009-8 10.1016/j.tox.2008.09.004 10.1088/0957-4484/21/17/175101 10.1021/nn700040t 10.1073/pnas.0502680102 10.1039/c0nr01014f 10.1021/ja906267g 10.1021/jm800002y 10.1126/science.1072631 10.1038/nmat2766 10.1016/S0169-409X(02)00042-X 10.1016/j.toxlet.2006.02.001 10.1038/nrc1566 10.1021/ja010172b 10.1038/nnano.2006.209 10.1016/j.carbon.2011.08.011 10.1038/nnano.2006.170 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2013.09.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 10119 |
ExternalDocumentID | 24060420 10_1016_j_biomaterials_2013_09_007 S0142961213010909 1_s2_0_S0142961213010909 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c593t-d3b11e5b3eb3429c45d22ac480749da65a0291cb79805274f3b4f56acc3f76773 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 1878-5905 |
IngestDate | Fri Sep 05 14:39:14 EDT 2025 Fri Sep 05 13:27:51 EDT 2025 Thu Apr 03 06:50:25 EDT 2025 Tue Jul 01 03:47:41 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Fri Feb 23 02:23:07 EST 2024 Sun Feb 23 10:18:57 EST 2025 Tue Aug 26 17:20:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | Targeted drug delivery Breast cancer Single-walled carbon nanotubes Nanomedicine Paclitaxel |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-d3b11e5b3eb3429c45d22ac480749da65a0291cb79805274f3b4f56acc3f76773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24060420 |
PQID | 1443429227 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1710215459 proquest_miscellaneous_1443429227 pubmed_primary_24060420 crossref_primary_10_1016_j_biomaterials_2013_09_007 crossref_citationtrail_10_1016_j_biomaterials_2013_09_007 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2013_09_007 elsevier_clinicalkeyesjournals_1_s2_0_S0142961213010909 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2013_09_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moore, Strano, Haroz, Hauge, Smalley (bib31) 2003; 3 Kulamarva, Raja, Bhathena, Chen, Talapatra, Ajayan (bib15) 2009; 20 Paul, Shao, Shum-Tim, Prakash (bib16) 2012; 33 Meyer, Sloan, Dunin-Borkowski, Kirkland, Novotny, Bailey (bib21) 2000; 289 Kolosnjaj-Tabi, Hartman, Boudjemaa, Ananta, Morgant, Szwarc (bib34) 2010; 4 Liu, Wu, Zhang, Jiang, He, Chung (bib5) 2005; 44 Ojima (bib1) 2008; 41 Chen, Zhang, Wang, Dai (bib4) 2001; 123 Horwitz (bib38) 1994; 5 Ostling, Tomanek, Rosen (bib7) 1997; 55 Lu, Low (bib32) 2002; 54 Liu, Cai, He, Nakayama, Chen, Sun (bib14) 2007; 2 Nanowerk. Ensysce receives funding for carbon nanotube therapeutics for siRNA delivery. Available from Elgrabli, Abella-Gallart, Robidel, Rogerieux, Boczkowski, Lacroix (bib36) 2008; 253 Zhao, Hu, Yu, Perea, Haddon (bib27) 2005; 127 Kagan, Tyurina, Tyurin, Konduru, Potapovich, Osipov (bib35) 2006; 165 Kam, O'Connell, Wisdom, Dai (bib17) 2005; 102 Chen, Zhang, Yang, Zhu, Chen, Tan (bib6) 2011; 3 Liu, Tabakman, Chen, Dai (bib9) 2009; 4 Koshino, Tanaka, Solin, Suenaga, Isobe, Nakamura (bib20) 2007; 316 Liu, Tabakman, Welsher, Dai (bib12) 2009; 2 Hong, Tobias, Al-Jamal, Ballesteros, Ali-Boucetta, Lozano-Perez (bib22) 2010; 9 Liu, Chen, Davis, Sherlock, Cao, Chen (bib25) 2008; 68 Lin, Chuu, Shung (bib8) 1996; 53 Liu, Davis, Cai, He, Chen, Dai (bib13) 2008; 105 Tagmatarchis, Maigne, Yudasaka, Iijima (bib28) 2006; 2 Ferrari (bib2) 2005; 5 Hampel, Kunze, Haase, Kramer, Rauschenbach, Ritschel (bib23) 2008; 3 . Kostarelos, Lacerda, Pastorin, Wu, Wieckowski, Luangsivilay (bib10) 2007; 2 Schipper, Nakayama-Ratchford, Davis, Kam, Chu, Liu (bib11) 2008; 3 Liu, Yanagi, Suenaga, Kataura, Iijima (bib19) 2007; 2 Zhang, Deng, Ji, Shen, Dong, Wu (bib37) 2010; 21 Kim, Kim, Kim, Choi, Lim, Yang (bib29) 2012; 50 Worsley, Kalinina, Bekyarova, Haddon (bib26) 2009; 131 Elmore (bib39) 2007; 35 Ansell, Johnstone, Tardi, Lo, Xie, Shu (bib33) 2008; 51 Xie, Li, Pan, Chang, Sun (bib3) 2000; 61 O'Connell, Bachilo, Huffman, Moore, Strano, Haroz (bib30) 2002; 297 Liu, Sun, Nakayama-Ratchford, Dai (bib24) 2007; 1 Kostarelos (10.1016/j.biomaterials.2013.09.007_bib10) 2007; 2 Lin (10.1016/j.biomaterials.2013.09.007_bib8) 1996; 53 Liu (10.1016/j.biomaterials.2013.09.007_bib14) 2007; 2 Liu (10.1016/j.biomaterials.2013.09.007_bib25) 2008; 68 Ansell (10.1016/j.biomaterials.2013.09.007_bib33) 2008; 51 Kulamarva (10.1016/j.biomaterials.2013.09.007_bib15) 2009; 20 Meyer (10.1016/j.biomaterials.2013.09.007_bib21) 2000; 289 Ostling (10.1016/j.biomaterials.2013.09.007_bib7) 1997; 55 O'Connell (10.1016/j.biomaterials.2013.09.007_bib30) 2002; 297 Chen (10.1016/j.biomaterials.2013.09.007_bib4) 2001; 123 Zhao (10.1016/j.biomaterials.2013.09.007_bib27) 2005; 127 Tagmatarchis (10.1016/j.biomaterials.2013.09.007_bib28) 2006; 2 Zhang (10.1016/j.biomaterials.2013.09.007_bib37) 2010; 21 Elmore (10.1016/j.biomaterials.2013.09.007_bib39) 2007; 35 10.1016/j.biomaterials.2013.09.007_bib18 Lu (10.1016/j.biomaterials.2013.09.007_bib32) 2002; 54 Ojima (10.1016/j.biomaterials.2013.09.007_bib1) 2008; 41 Ferrari (10.1016/j.biomaterials.2013.09.007_bib2) 2005; 5 Liu (10.1016/j.biomaterials.2013.09.007_bib12) 2009; 2 Hong (10.1016/j.biomaterials.2013.09.007_bib22) 2010; 9 Kagan (10.1016/j.biomaterials.2013.09.007_bib35) 2006; 165 Kolosnjaj-Tabi (10.1016/j.biomaterials.2013.09.007_bib34) 2010; 4 Schipper (10.1016/j.biomaterials.2013.09.007_bib11) 2008; 3 Elgrabli (10.1016/j.biomaterials.2013.09.007_bib36) 2008; 253 Kam (10.1016/j.biomaterials.2013.09.007_bib17) 2005; 102 Liu (10.1016/j.biomaterials.2013.09.007_bib24) 2007; 1 Chen (10.1016/j.biomaterials.2013.09.007_bib6) 2011; 3 Xie (10.1016/j.biomaterials.2013.09.007_bib3) 2000; 61 Worsley (10.1016/j.biomaterials.2013.09.007_bib26) 2009; 131 Horwitz (10.1016/j.biomaterials.2013.09.007_bib38) 1994; 5 Liu (10.1016/j.biomaterials.2013.09.007_bib13) 2008; 105 Moore (10.1016/j.biomaterials.2013.09.007_bib31) 2003; 3 Koshino (10.1016/j.biomaterials.2013.09.007_bib20) 2007; 316 Kim (10.1016/j.biomaterials.2013.09.007_bib29) 2012; 50 Liu (10.1016/j.biomaterials.2013.09.007_bib5) 2005; 44 Paul (10.1016/j.biomaterials.2013.09.007_bib16) 2012; 33 Liu (10.1016/j.biomaterials.2013.09.007_bib9) 2009; 4 Hampel (10.1016/j.biomaterials.2013.09.007_bib23) 2008; 3 Liu (10.1016/j.biomaterials.2013.09.007_bib19) 2007; 2 |
References_xml | – volume: 3 year: 2003 ident: bib31 article-title: Individually suspended single-walled carbon nanotubes in various surfactants publication-title: Nano Lett – reference: Nanowerk. Ensysce receives funding for carbon nanotube therapeutics for siRNA delivery. Available from:: – volume: 4 start-page: 1372 year: 2009 end-page: 1382 ident: bib9 article-title: Preparation of carbon nanotube bioconjugates for biomedical applications publication-title: Nat Protoc – volume: 61 start-page: 1153 year: 2000 end-page: 1158 ident: bib3 article-title: Mechanical and physical properties on carbon nanotube publication-title: J Phys Chem Solids – volume: 33 start-page: 7655 year: 2012 end-page: 7664 ident: bib16 article-title: The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles publication-title: Biomaterials – volume: 2 start-page: 85 year: 2009 end-page: 120 ident: bib12 article-title: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery publication-title: Nano Res – volume: 1 start-page: 50 year: 2007 end-page: 56 ident: bib24 article-title: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery publication-title: ACS Nano – volume: 51 start-page: 3288 year: 2008 end-page: 3296 ident: bib33 article-title: Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates publication-title: J Med Chem – volume: 4 start-page: 1481 year: 2010 end-page: 1492 ident: bib34 article-title: In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice publication-title: ACS Nano – volume: 2 start-page: 47 year: 2007 end-page: 52 ident: bib14 article-title: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice publication-title: Nat Nanotechnol – volume: 127 start-page: 8197 year: 2005 end-page: 8203 ident: bib27 article-title: Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers publication-title: J Am Chem Soc – volume: 41 start-page: 108 year: 2008 end-page: 119 ident: bib1 article-title: Guided molecular missiles for tumor-targeting chemotherapy–case studies using the second-generation taxoids as warheads publication-title: Acc Chem Res – volume: 35 start-page: 495 year: 2007 end-page: 516 ident: bib39 article-title: Apoptosis: a review of programmed cell death publication-title: Toxicol Pathol – volume: 316 start-page: 853 year: 2007 ident: bib20 article-title: Imaging of single organic molecules in motion publication-title: Science – volume: 50 start-page: 30 year: 2012 ident: bib29 article-title: Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers publication-title: Carbon – volume: 105 start-page: 1410 year: 2008 end-page: 1415 ident: bib13 article-title: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 108 year: 2007 end-page: 113 ident: bib10 article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type publication-title: Nat Nanotechnol – volume: 5 start-page: 161 year: 2005 end-page: 171 ident: bib2 article-title: Cancer nanotechnology: opportunities and challenges publication-title: Nat Rev Cancer – volume: 20 start-page: 025612 year: 2009 ident: bib15 article-title: Microcapsule carbon nanotube devices for therapeutic applications publication-title: Nanotechnology – volume: 54 start-page: 675 year: 2002 end-page: 693 ident: bib32 article-title: Folate-mediated delivery of macromolecular anticancer therapeutic agents publication-title: Adv Drug Deliv Rev – volume: 55 start-page: 13980 year: 1997 end-page: 13988 ident: bib7 article-title: Electronic structure of single-wall, multiwall, and filled carbon nanotubes publication-title: Phys Rev B – volume: 102 start-page: 11600 year: 2005 end-page: 11605 ident: bib17 article-title: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction publication-title: Proc Natl Acad Sci U S A – volume: 53 start-page: 11186 year: 1996 end-page: 11192 ident: bib8 article-title: Thermal conductance and the Peltier coefficient of carbon nanotubes publication-title: Phys Rev B – volume: 2 start-page: 490 year: 2006 end-page: 494 ident: bib28 article-title: Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes publication-title: Small – volume: 2 start-page: 422 year: 2007 end-page: 425 ident: bib19 article-title: Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes publication-title: Nat Nanotechnol – volume: 131 start-page: 18153 year: 2009 end-page: 18158 ident: bib26 article-title: Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes publication-title: J Am Chem Soc – volume: 165 start-page: 88 year: 2006 end-page: 100 ident: bib35 article-title: Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron publication-title: Toxicol Lett – volume: 253 start-page: 131 year: 2008 end-page: 136 ident: bib36 article-title: Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes publication-title: Toxicology – volume: 289 start-page: 1324 year: 2000 end-page: 1327 ident: bib21 article-title: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes publication-title: Science – reference: . – volume: 3 start-page: 175 year: 2008 end-page: 182 ident: bib23 article-title: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth publication-title: Nanomedicine (Lond) – volume: 44 start-page: 4782 year: 2005 end-page: 4785 ident: bib5 article-title: Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA publication-title: Angew Chem Int Ed Engl – volume: 5 start-page: S3 year: 1994 end-page: S6 ident: bib38 article-title: Taxol (paclitaxel): mechanisms of action publication-title: Ann Oncol Off J Eur Soc Med Oncol/ESMO – volume: 68 start-page: 6652 year: 2008 end-page: 6660 ident: bib25 article-title: Drug delivery with carbon nanotubes for in vivo cancer treatment publication-title: Cancer Res – volume: 3 start-page: 1949 year: 2011 end-page: 1956 ident: bib6 article-title: Single-walled carbon nanotubes as optical materials for biosensing publication-title: Nanoscale – volume: 3 start-page: 216 year: 2008 end-page: 221 ident: bib11 article-title: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice publication-title: Nat Nanotechnol – volume: 123 start-page: 3838 year: 2001 end-page: 3839 ident: bib4 article-title: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization publication-title: J Am Chem Soc – volume: 9 start-page: 485 year: 2010 end-page: 490 ident: bib22 article-title: Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging publication-title: Nat Mater – volume: 21 start-page: 175101 year: 2010 ident: bib37 article-title: Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice publication-title: Nanotechnology – volume: 297 start-page: 593 year: 2002 end-page: 596 ident: bib30 article-title: Band gap fluorescence from individual single-walled carbon nanotubes publication-title: Science – volume: 4 start-page: 1481 year: 2010 ident: 10.1016/j.biomaterials.2013.09.007_bib34 article-title: In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice publication-title: ACS Nano doi: 10.1021/nn901573w – volume: 61 start-page: 1153 year: 2000 ident: 10.1016/j.biomaterials.2013.09.007_bib3 article-title: Mechanical and physical properties on carbon nanotube publication-title: J Phys Chem Solids doi: 10.1016/S0022-3697(99)00376-5 – volume: 44 start-page: 4782 year: 2005 ident: 10.1016/j.biomaterials.2013.09.007_bib5 article-title: Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.200500042 – volume: 289 start-page: 1324 year: 2000 ident: 10.1016/j.biomaterials.2013.09.007_bib21 article-title: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes publication-title: Science doi: 10.1126/science.289.5483.1324 – volume: 41 start-page: 108 year: 2008 ident: 10.1016/j.biomaterials.2013.09.007_bib1 article-title: Guided molecular missiles for tumor-targeting chemotherapy–case studies using the second-generation taxoids as warheads publication-title: Acc Chem Res doi: 10.1021/ar700093f – volume: 127 start-page: 8197 year: 2005 ident: 10.1016/j.biomaterials.2013.09.007_bib27 article-title: Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers publication-title: J Am Chem Soc doi: 10.1021/ja042924i – volume: 2 start-page: 490 year: 2006 ident: 10.1016/j.biomaterials.2013.09.007_bib28 article-title: Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes publication-title: Small doi: 10.1002/smll.200500393 – volume: 105 start-page: 1410 year: 2008 ident: 10.1016/j.biomaterials.2013.09.007_bib13 article-title: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0707654105 – volume: 3 start-page: 175 year: 2008 ident: 10.1016/j.biomaterials.2013.09.007_bib23 article-title: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth publication-title: Nanomedicine (Lond) doi: 10.2217/17435889.3.2.175 – volume: 68 start-page: 6652 year: 2008 ident: 10.1016/j.biomaterials.2013.09.007_bib25 article-title: Drug delivery with carbon nanotubes for in vivo cancer treatment publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-1468 – volume: 2 start-page: 422 year: 2007 ident: 10.1016/j.biomaterials.2013.09.007_bib19 article-title: Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes publication-title: Nat Nanotechnol doi: 10.1038/nnano.2007.187 – volume: 3 year: 2003 ident: 10.1016/j.biomaterials.2013.09.007_bib31 article-title: Individually suspended single-walled carbon nanotubes in various surfactants publication-title: Nano Lett doi: 10.1021/nl034524j – volume: 3 start-page: 216 year: 2008 ident: 10.1016/j.biomaterials.2013.09.007_bib11 article-title: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice publication-title: Nat Nanotechnol doi: 10.1038/nnano.2008.68 – volume: 316 start-page: 853 year: 2007 ident: 10.1016/j.biomaterials.2013.09.007_bib20 article-title: Imaging of single organic molecules in motion publication-title: Science doi: 10.1126/science.1138690 – volume: 55 start-page: 13980 year: 1997 ident: 10.1016/j.biomaterials.2013.09.007_bib7 article-title: Electronic structure of single-wall, multiwall, and filled carbon nanotubes publication-title: Phys Rev B doi: 10.1103/PhysRevB.55.13980 – volume: 20 start-page: 025612 year: 2009 ident: 10.1016/j.biomaterials.2013.09.007_bib15 article-title: Microcapsule carbon nanotube devices for therapeutic applications publication-title: Nanotechnology doi: 10.1088/0957-4484/20/2/025612 – volume: 53 start-page: 11186 year: 1996 ident: 10.1016/j.biomaterials.2013.09.007_bib8 article-title: Thermal conductance and the Peltier coefficient of carbon nanotubes publication-title: Phys Rev B doi: 10.1103/PhysRevB.53.11186 – volume: 35 start-page: 495 year: 2007 ident: 10.1016/j.biomaterials.2013.09.007_bib39 article-title: Apoptosis: a review of programmed cell death publication-title: Toxicol Pathol doi: 10.1080/01926230701320337 – volume: 33 start-page: 7655 year: 2012 ident: 10.1016/j.biomaterials.2013.09.007_bib16 article-title: The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.096 – volume: 4 start-page: 1372 year: 2009 ident: 10.1016/j.biomaterials.2013.09.007_bib9 article-title: Preparation of carbon nanotube bioconjugates for biomedical applications publication-title: Nat Protoc doi: 10.1038/nprot.2009.146 – volume: 2 start-page: 85 year: 2009 ident: 10.1016/j.biomaterials.2013.09.007_bib12 article-title: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery publication-title: Nano Res doi: 10.1007/s12274-009-9009-8 – volume: 253 start-page: 131 year: 2008 ident: 10.1016/j.biomaterials.2013.09.007_bib36 article-title: Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes publication-title: Toxicology doi: 10.1016/j.tox.2008.09.004 – volume: 21 start-page: 175101 year: 2010 ident: 10.1016/j.biomaterials.2013.09.007_bib37 article-title: Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice publication-title: Nanotechnology doi: 10.1088/0957-4484/21/17/175101 – volume: 5 start-page: S3 issue: Suppl. 6 year: 1994 ident: 10.1016/j.biomaterials.2013.09.007_bib38 article-title: Taxol (paclitaxel): mechanisms of action publication-title: Ann Oncol Off J Eur Soc Med Oncol/ESMO – volume: 1 start-page: 50 year: 2007 ident: 10.1016/j.biomaterials.2013.09.007_bib24 article-title: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery publication-title: ACS Nano doi: 10.1021/nn700040t – ident: 10.1016/j.biomaterials.2013.09.007_bib18 – volume: 102 start-page: 11600 year: 2005 ident: 10.1016/j.biomaterials.2013.09.007_bib17 article-title: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0502680102 – volume: 3 start-page: 1949 year: 2011 ident: 10.1016/j.biomaterials.2013.09.007_bib6 article-title: Single-walled carbon nanotubes as optical materials for biosensing publication-title: Nanoscale doi: 10.1039/c0nr01014f – volume: 131 start-page: 18153 year: 2009 ident: 10.1016/j.biomaterials.2013.09.007_bib26 article-title: Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes publication-title: J Am Chem Soc doi: 10.1021/ja906267g – volume: 51 start-page: 3288 year: 2008 ident: 10.1016/j.biomaterials.2013.09.007_bib33 article-title: Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates publication-title: J Med Chem doi: 10.1021/jm800002y – volume: 297 start-page: 593 year: 2002 ident: 10.1016/j.biomaterials.2013.09.007_bib30 article-title: Band gap fluorescence from individual single-walled carbon nanotubes publication-title: Science doi: 10.1126/science.1072631 – volume: 9 start-page: 485 year: 2010 ident: 10.1016/j.biomaterials.2013.09.007_bib22 article-title: Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging publication-title: Nat Mater doi: 10.1038/nmat2766 – volume: 54 start-page: 675 year: 2002 ident: 10.1016/j.biomaterials.2013.09.007_bib32 article-title: Folate-mediated delivery of macromolecular anticancer therapeutic agents publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(02)00042-X – volume: 165 start-page: 88 year: 2006 ident: 10.1016/j.biomaterials.2013.09.007_bib35 article-title: Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2006.02.001 – volume: 5 start-page: 161 year: 2005 ident: 10.1016/j.biomaterials.2013.09.007_bib2 article-title: Cancer nanotechnology: opportunities and challenges publication-title: Nat Rev Cancer doi: 10.1038/nrc1566 – volume: 123 start-page: 3838 year: 2001 ident: 10.1016/j.biomaterials.2013.09.007_bib4 article-title: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization publication-title: J Am Chem Soc doi: 10.1021/ja010172b – volume: 2 start-page: 108 year: 2007 ident: 10.1016/j.biomaterials.2013.09.007_bib10 article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type publication-title: Nat Nanotechnol doi: 10.1038/nnano.2006.209 – volume: 50 start-page: 30 year: 2012 ident: 10.1016/j.biomaterials.2013.09.007_bib29 article-title: Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers publication-title: Carbon doi: 10.1016/j.carbon.2011.08.011 – volume: 2 start-page: 47 year: 2007 ident: 10.1016/j.biomaterials.2013.09.007_bib14 article-title: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice publication-title: Nat Nanotechnol doi: 10.1038/nnano.2006.170 |
SSID | ssj0014042 |
Score | 2.4352932 |
Snippet | Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a... Abstract Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10109 |
SubjectTerms | Advanced Basic Science animal models Animals Antineoplastic Agents, Phytogenic blood Breast cancer breast neoplasms Breast Neoplasms - drug therapy carbon nanotubes Cell Cycle - drug effects Cell Line, Tumor cytotoxicity Dentistry drug carriers Drug Delivery Systems - methods drug therapy drugs Fatty Alcohols - administration & dosage Fatty Alcohols - therapeutic use Female folic acid Humans hydrophobic bonding Mice Mice, Inbred BALB C Mice, Nude Nanomedicine Nanomedicine - methods Nanotubes, Carbon - chemistry Paclitaxel Paclitaxel - administration & dosage Paclitaxel - therapeutic use Single-walled carbon nanotubes Targeted drug delivery Xenograft Model Antitumor Assays |
Title | Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961213010909 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213010909 https://dx.doi.org/10.1016/j.biomaterials.2013.09.007 https://www.ncbi.nlm.nih.gov/pubmed/24060420 https://www.proquest.com/docview/1443429227 https://www.proquest.com/docview/1710215459 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdtCmN7GFv3lX0UDfbqxZZkO2LsoYSVbKN9WqFvQl8eHqkcEgfal7I_fXe2HDrWjcAeLevs4-50OqHf3RHyjsEpmWmfJU5algg4fCXSpdPESFHlWAc173JhTs-K-bn4cpFf7JHZkAuDsMro-3uf3nnrODKJ0pws63qCsCQmsQAW79CFcp8cMNjtpyNycPz56_xse5kg0q6HDs5PkGCoPdrBvDDLXbe9thHpxbuyp9hd9u596m9xaLcfnTwiD2MgSY97Xh-TPR8OyYNb5QUPyb3TeHH-hPyc6ZVpAg06NO3GeLqol7WjbrX5Toey4hTiV9ojwz288guEbFzTpqKagmovY67WdU9VBxjuOvxRg8D2llo0oBW98gEhX1VLdagvgcWu2c5Tcn7y6dtsnsTmC4nNJW8Tx02W-dxwOG2DnK3IHWPaYga6kE4XuU6ZzKwpJTZFKEXFDWi30NbyqizKkj8jo9AE_4LQSmdT76R3zjpReTEtLIZBGr4ijTPZmMhB1MrGyuTYIGOhBgjaD3VbTQrVpFKpQE1jwre0y74-x05UHwaNqiEDFXymgm1kJ-ryLmq_jst_rTK1ZipVf5jomHzcUv5m5Tv_-e1gfgrcAN7t6OCbDfxRCFQTY_-ag9EkhszAx_Pedrcyw8AOlkn68j85fEXu41MP-HlNRu1q499A2NaaI7L__iY7iovzFwR9RNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FPbxMLbuo9mnBns1sWXZjhh7KGElXZs8tdA3oS8Xj1QOiQPt2_706Ww5dKwbgb1KPuu4O51O6Hd3AJ-pvyVTaZPIcE0j5i9fETfxOFKclRnWQc3aXJjZPJ9esO-X2eUeTPpcGIRVBt_f-fTWW4eRUZDmaFlVI4QlUY4FsNIWXcgfwD7DptYD2D86OZ3Ot48JLG576OD3ERL0tUdbmBdmucum0zYivdK27Cl2l73_nPpbHNqeR8fP4GkIJMlRx-tz2LPuAJ7cKS94AA9n4eH8BfycyJWqHXHS1c1GWbKolpUhZrW5In1ZceLjV9Ihw62fsguEbNySuiSSeNVeh1yt246qcn647fBHFALbG6LRgFbkxjqEfJUNka669iy2zXZewsXxt_PJNArNFyKd8bSJTKqSxGYq9bdtL2fNMkOp1JiBzriReSZjyhOtCo5NEQpWpsprN5dap2WRF0X6CgaudvYQSCmTsTXcGqMNKy0b5xrDIOn_wpVRyRB4L2qhQ2VybJCxED0E7Ye4qyaBahIxF15NQ0i3tMuuPsdOVF96jYo-A9X7TOGPkZ2oi_uo7Tps_7VIxJqKWPxhokP4uqX8zcp3XvlTb37CuwF825HO1hu_ImOoJkr_9Q1Gkxgyez5ed7a7lRkGdn6bxG_-k8OP8Gh6PjsTZyfz07fwGGc68M87GDSrjX3vQ7hGfQhb9Bekgka2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+nanotube+lipid+drug+approach+for+targeted+delivery+of+a+chemotherapy+drug+in+a+human+breast+cancer+xenograft+animal+model&rft.jtitle=Biomaterials&rft.au=Shao%2C+Wei&rft.au=Paul%2C+Arghya&rft.au=Zhao%2C+Bin&rft.au=Lee%2C+Crystal&rft.date=2013-12-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=34&rft.issue=38&rft.spage=10109&rft.epage=10119&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.09.007&rft.externalDocID=S0142961213010909 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961213X00316%2Fcov150h.gif |