A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasti...
Saved in:
| Published in | PloS one Vol. 16; no. 11; p. e0259724 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
09.11.2021
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0259724 |
Cover
| Abstract | Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.
Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.
This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.
The study was registered at ClinicalTrials.gov with the identifier NCT04609163. |
|---|---|
| AbstractList | Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.
Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.
This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.
The study was registered at ClinicalTrials.gov with the identifier NCT04609163. Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Ethics and dissemination Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Methods and analytics Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. Ethics and dissemination This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. Registration The study was registered at ClinicalTrials.gov with the identifier NCT04609163. Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Methods and analytics Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30.sup.th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. Ethics and dissemination This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. Registration The study was registered at ClinicalTrials.gov with the identifier NCT04609163. Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.INTRODUCTIONOutcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.METHODS AND ANALYTICSPatients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.ETHICS AND DISSEMINATIONThis retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.The study was registered at ClinicalTrials.gov with the identifier NCT04609163.REGISTRATIONThe study was registered at ClinicalTrials.gov with the identifier NCT04609163. Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Methods and analytics Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. Ethics and dissemination This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. Registration The study was registered at ClinicalTrials.gov with the identifier NCT04609163. |
| Audience | Academic |
| Author | Como, Giuseppe Amodeo, Ilaria Conte, Luana De Nunzio, Giorgio Condò, Valentina Borzani, Irene Persico, Nicola Fabietti, Isabella Pierro, Maria Tafuri, Benedetta Cascio, Donato Macchini, Francesco Colnaghi, Mariarosa Cavallaro, Giacomo Griggio, Alice Raffaeli, Genny Ghirardello, Stefano Mosca, Fabio |
| AuthorAffiliation | 5 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy 3 Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Università del Salento, Lecce, Italy 1 NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy 2 Department of Mathematics and Physics “E. De Giorgi”, Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy 4 Azienda Sanitaria Locale (ASL), Lecce, Italy 8 Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy 11 Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy 6 Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy 10 NICU, Bufalini Hospital, Azienda Unità Sanitaria Locale della Romagna, Cesena, Italy 7 Monza and Brianza Mother and Child Foundation, San Gerardo Hospital, Università degli Studi di Mi |
| AuthorAffiliation_xml | – name: 3 Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Università del Salento, Lecce, Italy – name: 11 Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy – name: 2 Department of Mathematics and Physics “E. De Giorgi”, Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy – name: 6 Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy – name: 7 Monza and Brianza Mother and Child Foundation, San Gerardo Hospital, Università degli Studi di Milano-Bicocca, Monza, Italy – name: 1 NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy – name: Medicina Fetal Mexico, MEXICO – name: 9 Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy – name: 10 NICU, Bufalini Hospital, Azienda Unità Sanitaria Locale della Romagna, Cesena, Italy – name: 4 Azienda Sanitaria Locale (ASL), Lecce, Italy – name: 5 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy – name: 8 Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy |
| Author_xml | – sequence: 1 givenname: Ilaria surname: Amodeo fullname: Amodeo, Ilaria – sequence: 2 givenname: Giorgio surname: De Nunzio fullname: De Nunzio, Giorgio – sequence: 3 givenname: Genny surname: Raffaeli fullname: Raffaeli, Genny – sequence: 4 givenname: Irene surname: Borzani fullname: Borzani, Irene – sequence: 5 givenname: Alice surname: Griggio fullname: Griggio, Alice – sequence: 6 givenname: Luana surname: Conte fullname: Conte, Luana – sequence: 7 givenname: Francesco surname: Macchini fullname: Macchini, Francesco – sequence: 8 givenname: Valentina surname: Condò fullname: Condò, Valentina – sequence: 9 givenname: Nicola surname: Persico fullname: Persico, Nicola – sequence: 10 givenname: Isabella surname: Fabietti fullname: Fabietti, Isabella – sequence: 11 givenname: Stefano surname: Ghirardello fullname: Ghirardello, Stefano – sequence: 12 givenname: Maria surname: Pierro fullname: Pierro, Maria – sequence: 13 givenname: Benedetta surname: Tafuri fullname: Tafuri, Benedetta – sequence: 14 givenname: Giuseppe surname: Como fullname: Como, Giuseppe – sequence: 15 givenname: Donato surname: Cascio fullname: Cascio, Donato – sequence: 16 givenname: Mariarosa surname: Colnaghi fullname: Colnaghi, Mariarosa – sequence: 17 givenname: Fabio surname: Mosca fullname: Mosca, Fabio – sequence: 18 givenname: Giacomo orcidid: 0000-0002-4921-1437 surname: Cavallaro fullname: Cavallaro, Giacomo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34752491$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUttuEzEQXaEieoE_QGCJl_KQsDevd_uAFEVAIkUBqfBszdqziSuvvXi9jfJDfCdOk1ZNVSHkB1vjM2fmnJnz6MRYg1H0NonHScaSTzd2cAb0uAvhcZzSiqX5i-gsqbJ0VKRxdvLofRqd9_1NHNOsLIpX0WmWM5rmVXIW_ZmQFqZrZZCAkUQidmSB4IwyKzLpOmdBrIm3pHMolfCkG3Rrl-C2ZL3t0Hlc9nNriDLE4Ka2zlyTjfJrIqxZoVEeNJEKurWDVQteCTLDQA7kcrqYLJfz69nHK_LDWW-F1aSxjgBx6J3tOxRe3SLp_SC3r6OXDege3xzui-jX1y8_p7PR4vu3-XSyGAlaZX5Ux02RFohZTlMZI6UZQoUZFCXkSSpTmSWS1dCwqowThiLGMpe1yBnQirK8zi6i93veTtueHyzueXCX0pSlFQ2I-R4hLdzwzqk2eMEtKH4XsG7FwQWdGnkhRJVUdVk2MskbyMoGYmBQJHnKGDS7anTPNZgOthvQ-oEwifluyvct8N2U-WHKIe_zocuhblEKNN6BPmrm-MeoNV_ZW15SxlheBILLA4GzvwfsPW9VL1BrMGiHO71FMKgqdno_PIE-78oBtYIgXJnGhrpiR8onRZkwRoPhATV-BhWOxFaFhcFGhfhRwrvHQh8U3u9vAOR7gAgb0zts_tfAqydpImyqV3Znl9L_Tv4LXzgc_w |
| CitedBy_id | crossref_primary_10_3390_app132011313 crossref_primary_10_3390_app132413256 crossref_primary_10_1007_s00431_022_04540_6 crossref_primary_10_1093_radadv_umae034 crossref_primary_10_1259_bjr_20211205 crossref_primary_10_1016_j_humgen_2022_201140 crossref_primary_10_3389_fped_2021_796670 crossref_primary_10_1007_s00431_024_05476_9 crossref_primary_10_1016_j_ajogmf_2022_100693 crossref_primary_10_3389_fmicb_2024_1341152 crossref_primary_10_3390_diagnostics14111103 crossref_primary_10_1007_s00431_025_06073_0 crossref_primary_10_3389_fmicb_2024_1348974 |
| Cites_doi | 10.1097/PCC.0b013e3181b806fc 10.1002/pd.3890 10.1002/uog.14759 10.1016/j.siny.2008.08.010 10.1016/j.bpobgyn.2018.12.010 10.1016/j.athoracsur.2020.03.128 10.1016/j.yexmp.2012.09.010 10.1242/dmm.028365 10.3390/app10196940 10.1186/s10397-018-1041-9 10.1007/s00383-017-4184-2 10.1016/S0022-3476(09)90013-0 10.1016/j.jpeds.2013.04.010 10.1016/j.ajog.2006.02.009 10.1002/pd.5401 10.1016/j.jpeds.2014.09.010 10.1159/000444210 10.1053/j.semperi.2019.07.002 10.1046/j.1469-0705.1996.08020087.x 10.3389/fped.2021.692210 10.1016/j.siny.2017.11.002 10.1016/j.earlhumdev.2011.08.001 10.1002/bdra.23093 10.1007/s10916-020-01691-7 10.1186/s40168-018-0493-5 10.1152/ajplung.1999.277.2.L423 10.1053/j.semperi.2005.02.007 10.1371/journal.pone.0212665 10.1146/annurev.ph.58.030196.000445 10.1016/j.jss.2017.09.002 10.1016/j.siny.2014.09.008 10.1080/14767058.2020.1716714 10.1080/14767058.2018.1487395 10.1016/j.siny.2014.09.004 10.1016/j.jpedsurg.2018.02.015 10.1007/978-1-4615-5725-8 10.1002/uog.13223 10.1148/radiology.219.1.r01ap18236 10.1016/j.ejca.2011.11.036 10.1016/j.siny.2014.09.006 10.1016/S0002-9440(10)65000-6 10.1161/CIRCULATIONAHA.114.009124 10.1002/pd.5326 10.1159/000480451 10.1016/j.jpedsurg.2013.03.010 10.1002/pd.5619 10.1016/j.siny.2014.09.005 10.1136/thx.54.5.427 10.1056/NEJMoa2027030 10.1016/j.ejmg.2014.04.012 10.1067/mob.2003.69 10.1002/uog.4052 10.1002/uog.11212 10.1152/ajplung.00333.2009 10.1542/peds.2010-0521 10.1016/j.jpedsurg.2004.02.015 10.1002/pd.5297 10.3390/ijerph15112509 10.1542/peds.2007-3282 10.1055/s-0038-1655755 10.1016/0022-3468(90)90190-K 10.1016/j.jpedsurg.2015.10.082 10.1002/uog.7326 10.1056/NEJMoa2026983 10.1097/PCC.0000000000001912 10.1186/s40537-019-0197-0 10.1016/j.jacr.2020.09.050 10.1515/9781400874668 10.1002/uog.1003 10.1590/1414-431X20133221 10.1016/j.ajog.2006.05.010 10.1053/j.semperi.2019.07.010 10.1161/CIR.0000000000000329 10.1002/uog.16000 10.1002/pd.4408 10.1038/s41598-018-31920-6 10.1152/ajplung.00226.2013 10.1136/amiajnl-2013-001854 10.3389/fped.2020.581809 10.1159/000512966 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Amodeo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Amodeo et al 2021 Amodeo et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Amodeo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Amodeo et al 2021 Amodeo et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0259724 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine Mathematics Physics |
| DocumentTitleAlternate | Artificial Intelligence to predict CDH pulmonary hypertension |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2595527295 oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb 10.1371/journal.pone.0259724 PMC8577746 A681775801 34752491 10_1371_journal_pone_0259724 |
| Genre | Journal Article |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK |
| ID | FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Oct 01 00:11:42 EDT 2023 Fri Oct 03 12:42:32 EDT 2025 Sun Oct 26 03:14:15 EDT 2025 Tue Sep 30 16:26:56 EDT 2025 Mon Sep 08 02:40:32 EDT 2025 Tue Oct 07 07:48:52 EDT 2025 Mon Oct 20 22:04:33 EDT 2025 Mon Oct 20 16:17:47 EDT 2025 Thu Apr 03 06:54:26 EDT 2025 Wed Oct 01 02:32:35 EDT 2025 Thu Apr 24 22:55:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-4921-1437 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0259724 |
| PMID | 34752491 |
| PQID | 2595527295 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_2595527295 doaj_primary_oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb unpaywall_primary_10_1371_journal_pone_0259724 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8577746 proquest_miscellaneous_2596017965 proquest_journals_2595527295 gale_infotracmisc_A681775801 gale_infotracacademiconefile_A681775801 pubmed_primary_34752491 crossref_primary_10_1371_journal_pone_0259724 crossref_citationtrail_10_1371_journal_pone_0259724 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-09 |
| PublicationDateYYYYMMDD | 2021-11-09 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | O Boucherat (pone.0259724.ref018) 2010; 298 S Fuke (pone.0259724.ref045) 2003; 188 E Hernandez‐Andrade (pone.0259724.ref049) 2004; 23 CD Baker (pone.0259724.ref014) 2013; 163 pone.0259724.ref086 A-G Cordier (pone.0259724.ref036) 2020; 44 MA Coughlin (pone.0259724.ref020) 2016; 51 F Martin-Sanchez (pone.0259724.ref052) 2014; 9 JA Deprest (pone.0259724.ref063) 2009; 14 DM Ferguson (pone.0259724.ref066) 2021; 118 A Romiti (pone.0259724.ref077) 2020; 33 FM Russo (pone.0259724.ref023) 2017; 22 JA Deprest (pone.0259724.ref028) 2021; 385 P DeKoninck (pone.0259724.ref051) 2014; 34 R Cruz‐Martinez (pone.0259724.ref064) 2019; 39 I Sluiter (pone.0259724.ref010) 2013; 94 R Chang (pone.0259724.ref016) 2004; 39 RO Duda (pone.0259724.ref080) 2000 C Shorten (pone.0259724.ref084) 2019; 6 P Lambin (pone.0259724.ref085) 2012; 48 G Rizzo (pone.0259724.ref046) 1996; 8 I Amodeo (pone.0259724.ref079) 2020; 8 L Lu (pone.0259724.ref092) 2017; 10 FM Russo (pone.0259724.ref002) 2017; 22 IJ Zamora (pone.0259724.ref039) 2013; 48 J Sokol (pone.0259724.ref047) 2006; 195 C Huang (pone.0259724.ref083) 2019 GD Massaro (pone.0259724.ref008) 1996; 58 AG Cordier (pone.0259724.ref065) 2015; 46 J Deprest (pone.0259724.ref026) 2014; 19 B Ayers (pone.0259724.ref053) 2020; 110 H Liu (pone.0259724.ref087) 1998 B Thébaud (pone.0259724.ref005) 1999; 277 LW Beurskens (pone.0259724.ref006) 2010; 126 C Irles (pone.0259724.ref060) 2018; 15 A Romiti (pone.0259724.ref071) 2020 R Keijzer (pone.0259724.ref004) 2000; 156 SN Acker (pone.0259724.ref012) 2015; 166 D Basurto (pone.0259724.ref044) 2019; 58 AAoPSo Surgery (pone.0259724.ref025) 2008; 121 G Kardon (pone.0259724.ref038) 2017; 10 I Amodeo (pone.0259724.ref069) 2021 EF Hamilton (pone.0259724.ref055) 2020; 33 FM Russo (pone.0259724.ref035) 2017; 49 R Ruano (pone.0259724.ref048) 2006; 195 I Amodeo (pone.0259724.ref067) 2021; 9 BL Short (pone.0259724.ref033) 2005; 29 I Amodeo (pone.0259724.ref032) 2021 D Kluth (pone.0259724.ref003) 1990; 25 MG Gaies (pone.0259724.ref068) 2010; 11 JA Deprest (pone.0259724.ref027) 2021; 385 M Wong (pone.0259724.ref043) 2018; 53 AJ Masino (pone.0259724.ref054) 2019; 14 M Podda (pone.0259724.ref058) 2018; 8 L Sbragia (pone.0259724.ref015) 2014; 47 S Mani (pone.0259724.ref056) 2014; 21 S Savelli (pone.0259724.ref076) 2020; 40 R Cruz‐Martinez (pone.0259724.ref050) 2013; 41 Ö Çiçek (pone.0259724.ref081) 2016 R Ruano (pone.0259724.ref075) 2014; 43 DA Callaway (pone.0259724.ref061) 2018; 7 SM Shehata (pone.0259724.ref017) 1999; 54 FM Russo (pone.0259724.ref041) 2018; 38 M Cannie (pone.0259724.ref072) 2009; 34 M Pierro (pone.0259724.ref009) 2014; 19 MT Harting (pone.0259724.ref021) 2014; 19 C Chung (pone.0259724.ref091) 2021; 18 LE Hollinger (pone.0259724.ref030) 2020; 44 K Van Meurs (pone.0259724.ref034) 1993; 122 KG Snoek (pone.0259724.ref029) 2016; 110 M Au-Yong-Oliveira (pone.0259724.ref090) 2021; 45 P DeKoninck (pone.0259724.ref062) 2011; 87 J Wanner (pone.0259724.ref088) 2020 A Benachi (pone.0259724.ref042) 2014; 19 JN Cooper (pone.0259724.ref059) 2018; 221 AM Slavotinek (pone.0259724.ref037) 2014; 57 MV Fraga (pone.0259724.ref001) 2012 F Rypens (pone.0259724.ref073) 2001; 219 T Dassios (pone.0259724.ref078) 2019; 20 L Van der Veeken (pone.0259724.ref024) 2018; 15 M Yamoto (pone.0259724.ref070) 2018; 34 SH Abman (pone.0259724.ref031) 2015; 132 SN Acker (pone.0259724.ref013) 2013; 305 KG Snoek (pone.0259724.ref019) 2018; 113 V Taormina (pone.0259724.ref089) 2020; 10 B Brooks (pone.0259724.ref057) 2018; 6 J Jani (pone.0259724.ref022) 2007; 30 T Victoria (pone.0259724.ref074) 2012; 32 RS Alphonse (pone.0259724.ref011) 2014; 129 H Bouchghoul (pone.0259724.ref040) 2018; 38 O Ronneberger (pone.0259724.ref082) 2015 LW Beurskens (pone.0259724.ref007) 2013; 97 |
| References_xml | – volume: 11 start-page: 234 issue: 2 year: 2010 ident: pone.0259724.ref068 article-title: Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. publication-title: Pediatr Crit Care Med doi: 10.1097/PCC.0b013e3181b806fc – volume: 32 start-page: 715 issue: 8 year: 2012 ident: pone.0259724.ref074 article-title: Use of magnetic resonance imaging in prenatal prognosis of the fetus with isolated left congenital diaphragmatic hernia publication-title: Prenatal diagnosis doi: 10.1002/pd.3890 – volume: 46 start-page: 155 issue: 2 year: 2015 ident: pone.0259724.ref065 article-title: Stomach position in prediction of survival in left‐sided congenital diaphragmatic hernia with or without fetoscopic endoluminal tracheal occlusion. publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.14759 – volume: 14 start-page: 8 issue: 1 year: 2009 ident: pone.0259724.ref063 article-title: Antenatal prediction of lung volume and in-utero treatment by fetal endoscopic tracheal occlusion in severe isolated congenital diaphragmatic hernia publication-title: Seminars in Fetal and Neonatal Medicine doi: 10.1016/j.siny.2008.08.010 – volume: 58 start-page: 93 year: 2019 ident: pone.0259724.ref044 article-title: Prenatal diagnosis and management of congenital diaphragmatic hernia. publication-title: Best Practice & Research Clinical Obstetrics & Gynaecology. doi: 10.1016/j.bpobgyn.2018.12.010 – volume: 110 start-page: 1193 issue: 4 year: 2020 ident: pone.0259724.ref053 article-title: Predicting Survival after Extracorporeal Membrane Oxygenation using Machine Learning publication-title: The Annals of Thoracic Surgery doi: 10.1016/j.athoracsur.2020.03.128 – volume: 94 start-page: 195 issue: 1 year: 2013 ident: pone.0259724.ref010 article-title: Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia publication-title: Experimental and Molecular Pathology doi: 10.1016/j.yexmp.2012.09.010 – volume: 10 start-page: 955 issue: 8 year: 2017 ident: pone.0259724.ref038 article-title: Congenital diaphragmatic hernias: from genes to mechanisms to therapies. publication-title: Dis Model Mech doi: 10.1242/dmm.028365 – volume: 10 start-page: 6940 issue: 19 year: 2020 ident: pone.0259724.ref089 article-title: Performance of Fine-Tuning Convolutional Neural Networks for HEp-2 Image Classification. publication-title: Applied Sciences. doi: 10.3390/app10196940 – volume: 15 start-page: 9 issue: 1 year: 2018 ident: pone.0259724.ref024 article-title: Fetoscopic endoluminal tracheal occlusion and reestablishment of fetal airways for congenital diaphragmatic hernia. publication-title: Gynecol Surg doi: 10.1186/s10397-018-1041-9 – volume: 34 start-page: 161 issue: 2 year: 2018 ident: pone.0259724.ref070 article-title: The fetal lung-to-liver signal intensity ratio on magnetic resonance imaging as a predictor of outcomes from isolated congenital diaphragmatic hernia. publication-title: Pediatr Surg Int doi: 10.1007/s00383-017-4184-2 – volume: 122 start-page: 893 issue: 6 year: 1993 ident: pone.0259724.ref034 article-title: Congenital diaphragmatic hernia: long-term outcome in neonates treated with extracorporeal membrane oxygenation publication-title: The Journal of pediatrics doi: 10.1016/S0022-3476(09)90013-0 – volume: 163 start-page: 905 issue: 3 year: 2013 ident: pone.0259724.ref014 article-title: Cord blood endothelial colony-forming cells from newborns with congenital diaphragmatic hernia publication-title: The Journal of pediatrics doi: 10.1016/j.jpeds.2013.04.010 – volume: 195 start-page: 470 issue: 2 year: 2006 ident: pone.0259724.ref047 article-title: Fetal pulmonary artery diameter measurements as a predictor of morbidity in antenatally diagnosed congenital diaphragmatic hernia: a prospective study. publication-title: American journal of obstetrics and gynecology doi: 10.1016/j.ajog.2006.02.009 – volume: 39 start-page: 45 issue: 1 year: 2019 ident: pone.0259724.ref064 article-title: Longitudinal changes in lung size and intrapulmonary‐artery Doppler during the second half of pregnancy in fetuses with congenital diaphragmatic hernia publication-title: Prenatal Diagnosis doi: 10.1002/pd.5401 – volume: 166 start-page: 178 issue: 1 year: 2015 ident: pone.0259724.ref012 article-title: Histologic identification of prominent intrapulmonary anastomotic vessels in severe congenital diaphragmatic hernia publication-title: The Journal of pediatrics doi: 10.1016/j.jpeds.2014.09.010 – volume: 110 start-page: 66 issue: 1 year: 2016 ident: pone.0259724.ref029 article-title: Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO consortium consensus-2015 update. publication-title: Neonatology doi: 10.1159/000444210 – volume: 44 start-page: 51163 issue: 1 year: 2020 ident: pone.0259724.ref036 article-title: Prenatal diagnosis, imaging, and prognosis in Congenital Diaphragmatic Hernia. publication-title: Semin Perinatol. doi: 10.1053/j.semperi.2019.07.002 – volume: 8 start-page: 87 issue: 2 year: 1996 ident: pone.0259724.ref046 article-title: Blood flow velocity waveforms from peripheral pulmonary arteries in normally grown and growth‐retarded fetuses. publication-title: Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. doi: 10.1046/j.1469-0705.1996.08020087.x – volume: 9 start-page: 692210 year: 2021 ident: pone.0259724.ref067 article-title: Relationship Between Radiographic Pulmonary Area and Pulmonary Hypertension, Mortality, and Hernia Recurrence in Newborns With CDH. publication-title: NeoAPACHE II.Front Pediatr. doi: 10.3389/fped.2021.692210 – volume: 22 start-page: 383 issue: 6 year: 2017 ident: pone.0259724.ref002 article-title: Current and future antenatal management of isolated congenital diaphragmatic hernia. publication-title: Seminars in Fetal and Neonatal Medicine doi: 10.1016/j.siny.2017.11.002 – volume: 87 start-page: 619 issue: 9 year: 2011 ident: pone.0259724.ref062 article-title: Results of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia and the set up of the randomized controlled TOTAL trial. publication-title: Early Hum Dev doi: 10.1016/j.earlhumdev.2011.08.001 – volume: 97 start-page: 60 issue: 1 year: 2013 ident: pone.0259724.ref007 article-title: Dietary vitamin A intake below the recommended daily intake during pregnancy and the risk of congenital diaphragmatic hernia in the offspring. publication-title: Birth Defects Res Part A: Clin Mol Teratol. doi: 10.1002/bdra.23093 – volume: 45 start-page: 1 issue: 1 year: 2021 ident: pone.0259724.ref090 article-title: The Potential of Big Data Research in HealthCare for Medical Doctors’ Learning. publication-title: J Med Syst. doi: 10.1007/s10916-020-01691-7 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: pone.0259724.ref057 article-title: The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms publication-title: Microbiome doi: 10.1186/s40168-018-0493-5 – volume: 277 start-page: L423 issue: 2 year: 1999 ident: pone.0259724.ref005 article-title: Vitamin A decreases the incidence and severity of nitrofen-induced congenital diaphragmatic hernia in rats publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.1999.277.2.L423 – year: 2020 ident: pone.0259724.ref088 article-title: How much is the black box? The value of explainability in machine learning models. – start-page: 571 volume-title: Lung development: embryology, growth, maturation, and developmental biology. year: 2012 ident: pone.0259724.ref001 – volume: 29 start-page: 45 issue: 1 year: 2005 ident: pone.0259724.ref033 article-title: The effect of extracorporeal life support on the brain: a focus on ECMO publication-title: Semin Perinatol doi: 10.1053/j.semperi.2005.02.007 – volume: 14 start-page: e0212665 issue: 2 year: 2019 ident: pone.0259724.ref054 article-title: Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. publication-title: PLoS One doi: 10.1371/journal.pone.0212665 – volume: 58 start-page: 73 issue: 1 year: 1996 ident: pone.0259724.ref008 article-title: Formation of pulmonary alveoli and gas-exchange surface area: quantitation and regulation publication-title: Annual review of physiology doi: 10.1146/annurev.ph.58.030196.000445 – volume: 10 start-page: 978 year: 2017 ident: pone.0259724.ref092 article-title: Deep learning and convolutional neural networks for medical image computing. Precision Medicine, High Performance and Large-Scale Datasets. publication-title: Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR) – volume: 221 start-page: 311 year: 2018 ident: pone.0259724.ref059 article-title: Postoperative neonatal mortality prediction using superlearning publication-title: J Surg Res doi: 10.1016/j.jss.2017.09.002 – volume: 19 start-page: 357 issue: 6 year: 2014 ident: pone.0259724.ref009 article-title: Understanding and treating pulmonary hypertension in congenital diaphragmatic hernia publication-title: Seminars in Fetal and Neonatal Medicine doi: 10.1016/j.siny.2014.09.008 – start-page: 1 year: 2020 ident: pone.0259724.ref071 article-title: Comparison of mediastinal shift angles obtained with ultrasound and magnetic resonance imaging in fetuses with isolated left sided congenital diaphragmatic hernia. publication-title: The Journal of Maternal-Fetal & Neonatal Medicine. doi: 10.1080/14767058.2020.1716714 – volume: 33 start-page: 73 issue: 1 year: 2020 ident: pone.0259724.ref055 article-title: Estimating risk of severe neonatal morbidity in preterm births under 32 weeks of gestation. publication-title: The Journal of Maternal-Fetal & Neonatal Medicine doi: 10.1080/14767058.2018.1487395 – volume: 19 start-page: 370 issue: 6 year: 2014 ident: pone.0259724.ref021 article-title: The congenital diaphragmatic hernia study group registry update. publication-title: Seminars in Fetal and Neonatal Medicine doi: 10.1016/j.siny.2014.09.004 – volume: 53 start-page: 918 issue: 5 year: 2018 ident: pone.0259724.ref043 article-title: Pulmonary hypertension in congenital diaphragmatic hernia patients: prognostic markers and long-term outcomes publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2018.02.015 – volume-title: Feature extraction, construction and selection: A data mining perspective year: 1998 ident: pone.0259724.ref087 doi: 10.1007/978-1-4615-5725-8 – volume: 43 start-page: 662 issue: 6 year: 2014 ident: pone.0259724.ref075 article-title: Fetal lung volume and quantification of liver herniation by magnetic resonance imaging in isolated congenital diaphragmatic hernia publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.13223 – volume: 219 start-page: 236 issue: 1 year: 2001 ident: pone.0259724.ref073 article-title: Fetal lung volume: estimation at MR imaging—initial results publication-title: Radiology doi: 10.1148/radiology.219.1.r01ap18236 – volume: 48 start-page: 441 issue: 4 year: 2012 ident: pone.0259724.ref085 article-title: Radiomics: Extracting more information from medical images using advanced feature analysis publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 33 start-page: 1330 issue: 8 year: 2020 ident: pone.0259724.ref077 article-title: Ultrasonographic assessment of mediastinal shift angle (MSA) in isolated left congenital diaphragmatic hernia for the prediction of postnatal survival. publication-title: The Journal of Maternal-Fetal & Neonatal Medicine – volume: 19 start-page: 338 issue: 6 year: 2014 ident: pone.0259724.ref026 article-title: Prenatal management of the fetus with isolated congenital diaphragmatic hernia in the era of the TOTAL trial. publication-title: Seminars in Fetal and Neonatal Medicine doi: 10.1016/j.siny.2014.09.006 – volume: 156 start-page: 1299 issue: 4 year: 2000 ident: pone.0259724.ref004 article-title: Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia publication-title: The American journal of pathology doi: 10.1016/S0002-9440(10)65000-6 – volume: 129 start-page: 2144 issue: 21 year: 2014 ident: pone.0259724.ref011 article-title: Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.009124 – volume: 38 start-page: 638 issue: 9 year: 2018 ident: pone.0259724.ref040 article-title: Congenital diaphragmatic hernia has a better prognosis when associated with a hernia sac publication-title: Prenatal Diagnosis doi: 10.1002/pd.5326 – start-page: 424 volume-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation. year: 2016 ident: pone.0259724.ref081 – year: 2021 ident: pone.0259724.ref069 article-title: Fetal MRI mediastinal shift angle and respiratory and cardiovascular pharmacological support in newborns with congenital diaphragmatic hernia publication-title: Eur J Pediatr – volume: 113 start-page: 63 issue: 1 year: 2018 ident: pone.0259724.ref019 article-title: Congenital diaphragmatic hernia: 10-year evaluation of survival, extracorporeal membrane oxygenation, and foetoscopic endotracheal occlusion in four high-volume centres. publication-title: Neonatology doi: 10.1159/000480451 – volume: 48 start-page: 1165 issue: 6 year: 2013 ident: pone.0259724.ref039 article-title: The presence of a hernia sac in congenital diaphragmatic hernia is associated with better fetal lung growth and outcomes publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2013.03.010 – volume: 40 start-page: 136 issue: 1 year: 2020 ident: pone.0259724.ref076 article-title: Fetal MRI assessment of mediastinal shift angle in isolated left congenital diaphragmatic hernia: A new postnatal survival predictive tool? publication-title: Prenatal Diagnosis doi: 10.1002/pd.5619 – volume-title: 3D U2-Net: A 3D Universal U-Net for Multi-Domain Medical Image Segmentation. year: 2019 ident: pone.0259724.ref083 – volume: 19 start-page: 331 issue: 6 year: 2014 ident: pone.0259724.ref042 article-title: Advances in prenatal diagnosis of congenital diaphragmatic hernia publication-title: Seminars in Fetal and Neonatal Medicine doi: 10.1016/j.siny.2014.09.005 – volume: 54 start-page: 427 issue: 5 year: 1999 ident: pone.0259724.ref017 article-title: Enhanced expression of vascular endothelial growth factor in lungs of newborn infants with congenital diaphragmatic hernia and pulmonary hypertension publication-title: Thorax doi: 10.1136/thx.54.5.427 – volume: 385 start-page: 107 issue: 2 year: 2021 ident: pone.0259724.ref027 article-title: Randomized Trial of Fetal Surgery for Severe Left Diaphragmatic Hernia publication-title: N Engl J Med doi: 10.1056/NEJMoa2027030 – volume: 57 start-page: 418 issue: 8 year: 2014 ident: pone.0259724.ref037 article-title: The genetics of common disorders–congenital diaphragmatic hernia publication-title: Eur J Med Genet doi: 10.1016/j.ejmg.2014.04.012 – volume: 188 start-page: 228 issue: 1 year: 2003 ident: pone.0259724.ref045 article-title: Antenatal prediction of pulmonary hypoplasia by acceleration time/ejection time ratio of fetal pulmonary arteries by Doppler blood flow velocimetry. publication-title: American journal of obstetrics and gynecology doi: 10.1067/mob.2003.69 – volume: 30 start-page: 67 issue: 1 year: 2007 ident: pone.0259724.ref022 article-title: Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia publication-title: Ultrasound in obstetrics & gynecology doi: 10.1002/uog.4052 – volume: 41 start-page: 59 issue: 1 year: 2013 ident: pone.0259724.ref050 article-title: Usefulness of lung‐to‐head ratio and intrapulmonary arterial Doppler in predicting neonatal morbidity in fetuses with congenital diaphragmatic hernia treated with fetoscopic tracheal occlusion. publication-title: Ultrasound Obstet Gynecol. doi: 10.1002/uog.11212 – volume: 298 start-page: L849 issue: 6 year: 2010 ident: pone.0259724.ref018 article-title: Defective angiogenesis in hypoplastic human fetal lungs correlates with nitric oxide synthase deficiency that occurs despite enhanced angiopoietin-2 and VEGF. publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology. doi: 10.1152/ajplung.00333.2009 – volume: 126 start-page: 712 issue: 4 year: 2010 ident: pone.0259724.ref006 article-title: Retinol status of newborn infants is associated with congenital diaphragmatic hernia publication-title: Pediatrics doi: 10.1542/peds.2010-0521 – volume: 39 start-page: 825 issue: 6 year: 2004 ident: pone.0259724.ref016 article-title: VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2004.02.015 – year: 2021 ident: pone.0259724.ref032 article-title: Neonatal respiratory and cardiac ECMO in Europe publication-title: Eur J Pediatr – volume: 38 start-page: 629 issue: 9 year: 2018 ident: pone.0259724.ref041 article-title: Proposal for standardized prenatal ultrasound assessment of the fetus with congenital diaphragmatic hernia by the European reference network on rare inherited and congenital anomalies (ERNICA). publication-title: Prenatal Diagnosis doi: 10.1002/pd.5297 – volume: 15 start-page: 2509 issue: 11 year: 2018 ident: pone.0259724.ref060 article-title: Estimation of neonatal intestinal perforation associated with necrotizing enterocolitis by machine learning reveals new key factors publication-title: International journal of environmental research and public health doi: 10.3390/ijerph15112509 – volume: 121 start-page: 627 issue: 3 year: 2008 ident: pone.0259724.ref025 article-title: Postdischarge follow-up of infants with congenital diaphragmatic hernia. publication-title: Pediatrics doi: 10.1542/peds.2007-3282 – volume: 7 start-page: 164 issue: 4 year: 2018 ident: pone.0259724.ref061 article-title: Prioritization of candidate genes for congenital diaphragmatic hernia in a critical region on chromosome 4p16 using a machine-learning algorithm publication-title: Journal of pediatric genetics doi: 10.1055/s-0038-1655755 – volume: 25 start-page: 850 issue: 8 year: 1990 ident: pone.0259724.ref003 article-title: Nitrofen-induced diaphragmatic hernias in rats: an animal model publication-title: J Pediatr Surg doi: 10.1016/0022-3468(90)90190-K – volume: 51 start-page: 1091 issue: 7 year: 2016 ident: pone.0259724.ref020 article-title: Prenatally diagnosed severe CDH: mortality and morbidity remain high publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2015.10.082 – volume: 34 start-page: 678 issue: 6 year: 2009 ident: pone.0259724.ref072 article-title: Diffusion‐weighted MRI in lungs of normal fetuses and those with congenital diaphragmatic hernia. publication-title: Ultrasound in Obstetrics and Gynecology doi: 10.1002/uog.7326 – volume: 385 start-page: 119 issue: 2 year: 2021 ident: pone.0259724.ref028 article-title: Randomized Trial of Fetal Surgery for Moderate Left Diaphragmatic Hernia publication-title: N Engl J Med doi: 10.1056/NEJMoa2026983 – volume: 20 start-page: 534 issue: 6 year: 2019 ident: pone.0259724.ref078 article-title: Prediction of mortality in newborn infants with severe congenital diaphragmatic hernia using the chest radiographic thoracic area. publication-title: Pediatric Critical Care Medicine| Society of Critical Care Medicine. doi: 10.1097/PCC.0000000000001912 – volume: 9 start-page: 14 issue: 1 year: 2014 ident: pone.0259724.ref052 article-title: Big data in medicine is driving big changes. publication-title: Yearb Med Inform – volume: 6 issue: 1 year: 2019 ident: pone.0259724.ref084 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: Journal of Big Data doi: 10.1186/s40537-019-0197-0 – volume: 18 start-page: 170 issue: 1 year: 2021 ident: pone.0259724.ref091 article-title: In the Era of Deep Learning, Why Reconstruct an Image at All? publication-title: J Am Coll Radiol. doi: 10.1016/j.jacr.2020.09.050 – ident: pone.0259724.ref086 doi: 10.1515/9781400874668 – volume: 23 start-page: 369 issue: 4 year: 2004 ident: pone.0259724.ref049 article-title: Fractional moving blood volume estimation in the fetal lung using power Doppler ultrasound: a reproducibility study. publication-title: Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. doi: 10.1002/uog.1003 – volume: 47 start-page: 171 issue: 2 year: 2014 ident: pone.0259724.ref015 article-title: VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen publication-title: Brazilian Journal of Medical and Biological Research doi: 10.1590/1414-431X20133221 – volume: 195 start-page: 1720 issue: 6 year: 2006 ident: pone.0259724.ref048 article-title: Quantitative analysis of fetal pulmonary vasculature by 3-dimensional power Doppler ultrasonography in isolated congenital diaphragmatic hernia publication-title: American journal of obstetrics and gynecology doi: 10.1016/j.ajog.2006.05.010 – volume: 44 start-page: 151171 issue: 1 year: 2020 ident: pone.0259724.ref030 article-title: Long term follow-up in congenital diaphragmatic hernia. publication-title: Semin Perinatol. doi: 10.1053/j.semperi.2019.07.010 – volume: 132 start-page: 2037 issue: 21 year: 2015 ident: pone.0259724.ref031 article-title: Pediatric Pulmonary Hypertension: Guidelines from the American Heart Association and American Thoracic Society publication-title: Circulation doi: 10.1161/CIR.0000000000000329 – volume-title: Pattern Classification year: 2000 ident: pone.0259724.ref080 – start-page: 234 volume-title: U-Net: Convolutional Networks for Biomedical Image Segmentation year: 2015 ident: pone.0259724.ref082 – volume: 22 start-page: 383 issue: 6 year: 2017 ident: pone.0259724.ref023 article-title: Current and future antenatal management of isolated congenital diaphragmatic hernia. publication-title: Semin Fetal Neonatal Med doi: 10.1016/j.siny.2017.11.002 – volume: 49 start-page: 704 issue: 6 year: 2017 ident: pone.0259724.ref035 article-title: Lung size and liver herniation predict need for extracorporeal membrane oxygenation but not pulmonary hypertension in isolated congenital diaphragmatic hernia: systematic review and meta‐analysis publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.16000 – volume: 34 start-page: 977 issue: 10 year: 2014 ident: pone.0259724.ref051 article-title: Assessment of pulmonary vascular reactivity to oxygen using fractional moving blood volume in fetuses with normal lung development and pulmonary hypoplasia in congenital diaphragmatic hernia publication-title: Prenatal diagnosis doi: 10.1002/pd.4408 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: pone.0259724.ref058 article-title: A machine learning approach to estimating preterm infants survival: development of the Preterm Infants Survival Assessment (PISA) predictor. publication-title: Sci Rep. doi: 10.1038/s41598-018-31920-6 – volume: 305 start-page: L943 issue: 12 year: 2013 ident: pone.0259724.ref013 article-title: Pulmonary artery endothelial cell dysfunction and decreased populations of highly proliferative endothelial cells in experimental congenital diaphragmatic hernia publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00226.2013 – volume: 21 start-page: 326 issue: 2 year: 2014 ident: pone.0259724.ref056 article-title: Medical decision support using machine learning for early detection of late-onset neonatal sepsis publication-title: Journal of the American Medical Informatics Association doi: 10.1136/amiajnl-2013-001854 – volume: 8 year: 2020 ident: pone.0259724.ref079 article-title: The NeoAPACHE Study Protocol I: Assessment of the Radiographic Pulmonary Area and Long-Term Respiratory Function in Newborns With Congenital Diaphragmatic Hernia. publication-title: Frontiers in Pediatrics doi: 10.3389/fped.2020.581809 – volume: 118 start-page: 147 issue: 2 year: 2021 ident: pone.0259724.ref066 article-title: Early, Postnatal Pulmonary Hypertension Severity Predicts Inpatient Outcomes in Congenital Diaphragmatic Hernia. publication-title: Neonatology. doi: 10.1159/000512966 |
| SSID | ssj0053866 |
| Score | 2.4827023 |
| SecondaryResourceType | review_article |
| Snippet | Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary... Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal... Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0259724 |
| SubjectTerms | Algorithms Analysis Artificial intelligence Biology and Life Sciences Computer and Information Sciences Data analysis Data collection Deep Learning Diagnosis Diaphragm Engineering and Technology Ethics Extracorporeal membrane oxygenation Extracorporeal Membrane Oxygenation - methods Feature extraction Female Fetuses Forecasting Gynecology Health aspects Hernia Hernias Hernias, Diaphragmatic, Congenital - complications Hernias, Diaphragmatic, Congenital - diagnostic imaging Hernias, Diaphragmatic, Congenital - surgery Humans Hypertension Hypertension, Pulmonary - diagnosis Hypertension, Pulmonary - diagnostic imaging Image processing Image segmentation Infant, Newborn Infants (Newborn) Interdisciplinary aspects Laboratories Learning algorithms Lung - diagnostic imaging Lungs Machine Learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical models Mathematics Medical imaging Medical prognosis Medicine Medicine and Health Sciences Neonates Newborn babies Obstetrics Occlusion Oxygenation Patients Pediatrics Physical Sciences Physics Prediction models Pregnancy Prenatal Diagnosis - methods Pulmonary hypertension Research and Analysis Methods Resonance Resource allocation Retrospective Studies Study Protocol |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlL-2lNH1l07RModDk4I0fkmX1tg0Nm9IuhTSQm5EsKQlsbOP1UvKH-js7srUmpoH00OtKXssz37xs6RtCPlCMkilHSxOFtVighDpQlrIgVLFQlhWiJ6v-vkwX5_TrBbu40-rL7Qnr6YF7wR2lRSEiobLM6ohamWRWhpJLjCox59Iq533DTGyLqd4HoxWnqT8ol_DoyOtlVlelmWGUxxXQUSDq-PoHrzypV9X6vpTz752TjzdlLW9_ydXqTlg6eUae-nwS5v1z7JBHpnxOdrzFruHA00ofviC_53AjXbtsA7LUoI2pwbOrXsLcU4tDW0HduI83LdSb1U21lM0tXGGx2rRmuT6tSrguAVNxhE55Bu4tLmBFjSh0zUcAwYbgkJcdDywsjDvzBQfH3-bL5enZ4vAT_GiqtkLsAebKIKExbVNtD3tCR3X7kpyffPl5vAh8l4agYCJpAxVaLIqMSSiLdWgYS4wUJpFpJmkU61gnkeZKWi4wGHJThCajWhWUSyYYpyp5RSYl6mWXAGaLWODEoebaUBpaJTKtZGaYYZqGhZiSZKuyvPAU5q6TxirvvstxLGV6qedO0blX9JQEw1V1T-HxwPzPDg3DXEfA3f2AsMw9LPOHYDklHx2WcucmcImF9Kcd8D6OcCufp1nEsVYLoynZH81E8y5Gw7sOjduVrnNcpGPNiwXDK7cIvX_4_TDs_tTtpitNtenmpM4TpzjndQ_o4WkTyhmW5HhfPoL6SBzjkfL6quMlzxjHYiKdktlgFP8k8L3_IfA35Ensthu5N_5in0zaZmPeYr7Yqneda_gDWKFtgw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJ24PiJXLCgMZCYntIV0uTpwgIdRNmzpEo4kxaW-RYzvdpC4JaSq0P8Tv5JzUCURMwGvsJE78nZt9_B1C3jKwkgEHSYtklkGAYisrzZhv2akbpZkvozVZ9SwOpufs04V_sUHi9iwMplW2OrFR1KqQuEa-D246koW5kf-x_GZh1SjcXW1LaAhTWkF9aCjG7pBNF5mxBmTz4Cg-_dLqZpDuIDAH6Dzu7Jv5GpdFrsdg_WFkrGegGh7_TlsPykWxvM0V_TOj8v4qL8XNd7FY_Gaujh-TR8bPpJM1MLbIhs6H5OGsI2ldDsm9mdlXH5K7TSIoXtwywr6ku4aReu8J-TGh1wIrbWsqckWV1iU1xKxzOjGs5LQuaFnhI2tarhbXRSyqG3oJcW5V63h5UuT0KqfgxQPq8jOKC8AUgnEAMNYtoYBTwJWYN6OjU43Hxeju4edJHJ-cTffe09OqqAuALQU3mwpa6boq2nOitGHJfUrOj4--Hk4tU-DBkn7k1VZqZxBPae0x31W29n1Pi0h7IggFc1zlKs9RPBUZj8COci1tHTKVSsYFgIGz1HtGBjlM3Tah4GhCbOTaiivNmJ2lUahSEWpf-4rZMhoRr53VRBr2cyzCsUiaLT0OUdB6YhLEQmKwMCJWd1e5Zv_4R_8DBEzXF7m7mwtFNU-MKkgCKSMnSsMwUw7LhBdmwhZcgJ_kci6ydETeIdwS1DAwRCnMQQl4D3J1JZMgdDiEebYzIju9nqAZZK95GwHbjnSZ_JIhuLMF8e3Nb7pmfCgm4uW6WDV9AlTiAfR5vsZ897Ue4z5E8_Be3pOG3u_ot-RXlw2leehziEOCERl3cvNfP_zF37_jJXngYg4SbgNEO2RQVyv9CpzIOn1tNMNP2dV1eg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UJCRELSHpHnYccwtVFRbBKtKpVI5oMiOnbZim0TZrFA58HP4nYwTJyJQBBy4rdbjRyYznpmM5zNCzwhYyYiBpvEszyFA8ZQjc0IdTwZc5jTjHVj1u3k0OyZvTujJGvrY18JYDkKMuCiXbSbf_CgLvWs5uWvwirrsqeuHzO97uBUQuWDBYXTyvEUcMl_GGlOAdA2tRxRc9QlaP54fJh-6THPgRIEX2nK63400Mlctqv-wd0_Myq5yTH89X3l9VVTi8rNYLH4wXvu30Nf-sbszK5_cVSPd7MtPiJD_jS-30U3r9uKkG2UDreniDtqwG8sSb1v065276FuCL4S51VtjUSistK6wBYE9xYlFQMdNiava5JgaXK0WF-Vc1Jf4DKatGz1fHpQFPi8wRAwg4cURNh-bMQT-oCzmjhQMOgEyLE5buFo806Y0DW_vvU3m84Oj2c5LfFiXTQkqgsGlxwLXuqnLviYVt4i899Dx_uv3ezPHXibhZJSHjSO9HGI3rUNCA-VpSkMtuA5FFAviBypQoa-YFDnjYLOZzjwdEyUzwgTllBEZ3keTAli5iTA4tRCHBZ5iShPi5ZLHSopYU00V8TI-RWEvM2lmkdbNhR-LtE0fMoi4Oq6n5t2k9t1MkTP0qjqkkT_QvzLiONAanPD2DxCO1ApFGmUZ97mM41z5JBdhnAtPMAE-WcCYyOUUvTDCnJrdDJaYCVuUAfMYeUqTKPYZhJSeP0VbI0rYhbJR86YRyH6lyxQWacD9Ak6hZ68iVzc_HZrNoObQX6HLVUsTGYMRAc2DTqOGpw0JowHhMC8b6dqIHeOW4vyshU-PKYOYJ5oid9DKv2L4w3_t8AjdCMwJKJOE4Fto0tQr_Rhc2EY-sRvRd0eYo-c priority: 102 providerName: Unpaywall |
| Title | A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34752491 https://www.proquest.com/docview/2595527295 https://www.proquest.com/docview/2596017965 https://pubmed.ncbi.nlm.nih.gov/PMC8577746 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259724&type=printable https://doaj.org/article/6cc919b88fd14fa38fa0a7a614277afb http://dx.doi.org/10.1371/journal.pone.0259724 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6OMClory6UFZGQtAessrDjmMkhLZVyxbRqKKsVE6REzvbStskzWYF_UP8Tmay3ogVRfSSQ_yIY3_2zHjsbwh5w0BKhgJmmszyHAwUVztpzrjjpr5Mc57JBVn1aRyOxuzzBb9YI0tHu-3A2Z2mHcaTGtfTwc-b248w4T-0URuEtyw0qMrCDECGQ_3sbXXjYGgpdMHaOBvrZBPEl8T4DqesczXAhG8dmqjIOKHvBvZ-3b8qXpFfLc1_t5hvVNNydpem-veBywfzolK3P9R0-oc0O35EtqwaSocL3GyTNVM8Jtt2os_onmWj3n9Cfg3ptcIo24aqQlNtTEUtKeuEDi0jOW1KWtXo82loNZ9el7Gqb-kl2Lh1Y-LZSVnQq4KCBg-IK84pbv5SMMQBvBizhAJGAVNq0tLH0pHBq2J07_DLMI5Pzkf77-lZXTYlQJaCik0VrU1Tl8s7orRlyH1KxsdH3w5Hjg3u4GRcBo2TujnYUsYEjPvaNZwHRkkTqDBSzPO1rwNPi1TlQoIMFSZzTcR0mjGhuOSCpcEzslHAuOwQCkom2EW-q4U2jLl5KiOdqshwwzVzM9kjwXLIkswyn2MAjmnSuvMEWECLXk9woBM70D3idKWqBfPHf_IfIBq6vMjb3b4o60lil4EkzDLpyTSKcu2xXAVRrlwlFOhIvhAqT3vkHWIpQbxDEzNlL0nAd5CnKxmGkSfAxHO9HtldyQmrQraSvINoXLZ0lkAjkWzPlxxKLhF6d_LrLhkrxUN4hSnnbZ4QF_AQ8jxfALr724AJDpY8fFesQH2lO1ZTiqvLls484gJskLBHBt2kuFeHv7hHQ1-Shz4eQkI_gNwlG009N69Ai2zSPlkXFwKe0aGHz-NPfbJ5cBSffe23-zL9dpWAd-P4bPj9N4KffD4 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXGEAweEBsfKwy4SCC2h2z5cOIYCaEymFq2VkjbpL4FJ3a6SV0S0lRT_xCP_EauUydQMQEve42dxI7PPb43ts8l5BXFWTJgaGk8SVMMUGxpxSn1LTt2eZz6CV-IVQ-GQe-Ufh75oxXyozkLo7dVNpxYE7XME_2PfA_ddC0W5nL_ffHN0lmj9Opqk0JjAYtDNb_EkG36rv8Rx_e16x58OtnvWSargJX43Kus2E7RiVfKo74rbeX7nhJceSIIBXVc6UrPkSwWKeNI3kwltgqpjBPKBLaA0djD594gN6mHXIL2w0ZtgIfcEQTmeJ7HnD2Dht0iz9Qu-hbYb7o0_dVZAtq5YLWY5NOrHN0_92uuzbJCzC_FZPLbZHhwn9wzXix0F7BbJysq2yB3B60E7HSD3B6YVfsNcqveZqovrhsqmcK20bveeUC-d-FC6DzeCkQmQSpVgJF9HUPXaJ5DlUNR6kdWUMwmF_lQlHM4wyi6rNRw2s8zOM8AYwTEdHYM-vcyYKiP5qGzogBaAaJWjOvWQU_pw2iwvX_UHQ77x72dt_ClzKscjQLQiQcBparKvDmFCrUG70Nyei0D_YisZjh0mwTQjcXIy7Ulk4pSO415KGMRKl_5ktoJ7xCvGdUoMdrqOsXHJKoXDBnGWIuBiTQWIoOFDrHau4qFtsg_6n_QgGnramXw-kJejiNDNFGQJNzhcRim0qGp8MJU2IIJ9MJcxkQad8gbDbdI8xc2MRHmGAa-RyuBRd0gdBgGkbbTIVtLNZF3kqXiTQ3YpqXT6JeF4p0NiK8uftkW64fqbX6Zymd1nUBPEQHWebzAfNtbjzLfpRzfy5asYelzLJdk52e1YHroM4xygg7Zbe3mvz74k7_34wVZ650MjqKj_vDwKbnj6t1OesGBb5HVqpypZ-iuVvHzmiOAfL1uUvoJQQyr8w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGEQMeEBt_VhhwSCC2h2z548QxEkJlY2rZVk3aJvUtOLHTTeqSkKaa9oX4EHw6zqkTqJiAl73GjuPYvzvf2effEfKG4ioZMJQ0nqQpOii2tOKU-pYduzxO_YTPyaoPh0H_lH4Z-aMl8qO5C6PDKhudWCtqmSd6j3wbzXRNFuZyfzs1YRFHu3sfi2-WziClT1qbdBpziOyrq0t036YfBrs4129dd-_zyU7fMhkGrMTnXmXFdooGvVIe9V1pK9_3lODKE0EoqONKV3qOZLFIGUdFzlRiq5DKOKFMYG8YjT1s9xa5zTyP63BCNmqdPdQjQWCu6nnM2TbI2CryTG2hnYFjQBeWwjpjQLsudIpJPr3O6P0zdvPuLCvE1aWYTH5bGPcekgfGooXeHIIrZEllq-T-YUsHO10ly4fmBH-V3KlDTvXDFaNWprBhuK83H5HvPbgQOqe3ApFJkEoVYChgx9Az_OdQ5VCUuskKitnkIh-K8grO0KMuKzWcDvIMzjNAfwHxnR2D3moGdPtRVHSGFECJQASLcd076Ct9MQ02dg56w-HguL_5Ho7KvMpRQAANehBQqqrMmxupUPPxPianNzLRT0gnw6lbI4AmLXphri2ZVJTaacxDGYtQ-cqX1E54l3jNrEaJ4VnX6T4mUX14yNDfmk9MpLEQGSx0idW-Vcx5Rv5R_5MGTFtXs4TXD_JyHBmlEwVJwh0eh2EqHZoKL0yFLZhAi8xlTKRxl7zTcIu0LsMuJsJcycDvaFawqBeEDkOH0na6ZH2hJuqgZKF4TQO26ek0-iWt-GYD4uuLX7fFulEd8pepfFbXCfRyEWCdp3PMt3_rUea7lON32YI0LAzHYkl2flaTp4c-Q48n6JKtVm7-a8Cf_f0_XpFlVEfRwWC4_5zcc3Xgkz574OukU5Uz9QIt1yp-WasIIF9vWif9BG1NsDY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UJCRELSHpHnYccwtVFRbBKtKpVI5oMiOnbZim0TZrFA58HP4nYwTJyJQBBy4rdbjRyYznpmM5zNCzwhYyYiBpvEszyFA8ZQjc0IdTwZc5jTjHVj1u3k0OyZvTujJGvrY18JYDkKMuCiXbSbf_CgLvWs5uWvwirrsqeuHzO97uBUQuWDBYXTyvEUcMl_GGlOAdA2tRxRc9QlaP54fJh-6THPgRIEX2nK63400Mlctqv-wd0_Myq5yTH89X3l9VVTi8rNYLH4wXvu30Nf-sbszK5_cVSPd7MtPiJD_jS-30U3r9uKkG2UDreniDtqwG8sSb1v065276FuCL4S51VtjUSistK6wBYE9xYlFQMdNiava5JgaXK0WF-Vc1Jf4DKatGz1fHpQFPi8wRAwg4cURNh-bMQT-oCzmjhQMOgEyLE5buFo806Y0DW_vvU3m84Oj2c5LfFiXTQkqgsGlxwLXuqnLviYVt4i899Dx_uv3ezPHXibhZJSHjSO9HGI3rUNCA-VpSkMtuA5FFAviBypQoa-YFDnjYLOZzjwdEyUzwgTllBEZ3keTAli5iTA4tRCHBZ5iShPi5ZLHSopYU00V8TI-RWEvM2lmkdbNhR-LtE0fMoi4Oq6n5t2k9t1MkTP0qjqkkT_QvzLiONAanPD2DxCO1ApFGmUZ97mM41z5JBdhnAtPMAE-WcCYyOUUvTDCnJrdDJaYCVuUAfMYeUqTKPYZhJSeP0VbI0rYhbJR86YRyH6lyxQWacD9Ak6hZ68iVzc_HZrNoObQX6HLVUsTGYMRAc2DTqOGpw0JowHhMC8b6dqIHeOW4vyshU-PKYOYJ5oid9DKv2L4w3_t8AjdCMwJKJOE4Fto0tQr_Rhc2EY-sRvRd0eYo-c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+maChine+and+deep+Learning+Approach+to+predict+pulmoNary+hyperteNsIon+in+newbornS+with+congenital+diaphragmatic+Hernia+%28CLANNISH%29%3A+Protocol+for+a+retrospective+study&rft.jtitle=PloS+one&rft.au=Amodeo%2C+Ilaria&rft.au=De+Nunzio%2C+Giorgio&rft.au=Raffaeli%2C+Genny&rft.au=Borzani%2C+Irene&rft.date=2021-11-09&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=11&rft.spage=e0259724&rft_id=info:doi/10.1371%2Fjournal.pone.0259724&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |