A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study

Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasti...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 11; p. e0259724
Main Authors Amodeo, Ilaria, De Nunzio, Giorgio, Raffaeli, Genny, Borzani, Irene, Griggio, Alice, Conte, Luana, Macchini, Francesco, Condò, Valentina, Persico, Nicola, Fabietti, Isabella, Ghirardello, Stefano, Pierro, Maria, Tafuri, Benedetta, Como, Giuseppe, Cascio, Donato, Colnaghi, Mariarosa, Mosca, Fabio, Cavallaro, Giacomo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 09.11.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0259724

Cover

Abstract Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
AbstractList Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Ethics and dissemination
Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Methods and analytics Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. Ethics and dissemination This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. Registration The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Methods and analytics Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30.sup.th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. Ethics and dissemination This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. Registration The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.INTRODUCTIONOutcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.METHODS AND ANALYTICSPatients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.ETHICS AND DISSEMINATIONThis retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.The study was registered at ClinicalTrials.gov with the identifier NCT04609163.REGISTRATIONThe study was registered at ClinicalTrials.gov with the identifier NCT04609163.
Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Methods and analytics Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns’ and mothers’ clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. Ethics and dissemination This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. Registration The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
Audience Academic
Author Como, Giuseppe
Amodeo, Ilaria
Conte, Luana
De Nunzio, Giorgio
Condò, Valentina
Borzani, Irene
Persico, Nicola
Fabietti, Isabella
Pierro, Maria
Tafuri, Benedetta
Cascio, Donato
Macchini, Francesco
Colnaghi, Mariarosa
Cavallaro, Giacomo
Griggio, Alice
Raffaeli, Genny
Ghirardello, Stefano
Mosca, Fabio
AuthorAffiliation 5 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
3 Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Università del Salento, Lecce, Italy
1 NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
2 Department of Mathematics and Physics “E. De Giorgi”, Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy
4 Azienda Sanitaria Locale (ASL), Lecce, Italy
8 Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
11 Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy
6 Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
10 NICU, Bufalini Hospital, Azienda Unità Sanitaria Locale della Romagna, Cesena, Italy
7 Monza and Brianza Mother and Child Foundation, San Gerardo Hospital, Università degli Studi di Mi
AuthorAffiliation_xml – name: 3 Advanced Data Analysis in Medicine (ADAM), Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), Università del Salento, Lecce, Italy
– name: 11 Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy
– name: 2 Department of Mathematics and Physics “E. De Giorgi”, Laboratory of Biomedical Physics and Environment, Università del Salento, Lecce, Italy
– name: 6 Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
– name: 7 Monza and Brianza Mother and Child Foundation, San Gerardo Hospital, Università degli Studi di Milano-Bicocca, Monza, Italy
– name: 1 NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
– name: Medicina Fetal Mexico, MEXICO
– name: 9 Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
– name: 10 NICU, Bufalini Hospital, Azienda Unità Sanitaria Locale della Romagna, Cesena, Italy
– name: 4 Azienda Sanitaria Locale (ASL), Lecce, Italy
– name: 5 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
– name: 8 Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
Author_xml – sequence: 1
  givenname: Ilaria
  surname: Amodeo
  fullname: Amodeo, Ilaria
– sequence: 2
  givenname: Giorgio
  surname: De Nunzio
  fullname: De Nunzio, Giorgio
– sequence: 3
  givenname: Genny
  surname: Raffaeli
  fullname: Raffaeli, Genny
– sequence: 4
  givenname: Irene
  surname: Borzani
  fullname: Borzani, Irene
– sequence: 5
  givenname: Alice
  surname: Griggio
  fullname: Griggio, Alice
– sequence: 6
  givenname: Luana
  surname: Conte
  fullname: Conte, Luana
– sequence: 7
  givenname: Francesco
  surname: Macchini
  fullname: Macchini, Francesco
– sequence: 8
  givenname: Valentina
  surname: Condò
  fullname: Condò, Valentina
– sequence: 9
  givenname: Nicola
  surname: Persico
  fullname: Persico, Nicola
– sequence: 10
  givenname: Isabella
  surname: Fabietti
  fullname: Fabietti, Isabella
– sequence: 11
  givenname: Stefano
  surname: Ghirardello
  fullname: Ghirardello, Stefano
– sequence: 12
  givenname: Maria
  surname: Pierro
  fullname: Pierro, Maria
– sequence: 13
  givenname: Benedetta
  surname: Tafuri
  fullname: Tafuri, Benedetta
– sequence: 14
  givenname: Giuseppe
  surname: Como
  fullname: Como, Giuseppe
– sequence: 15
  givenname: Donato
  surname: Cascio
  fullname: Cascio, Donato
– sequence: 16
  givenname: Mariarosa
  surname: Colnaghi
  fullname: Colnaghi, Mariarosa
– sequence: 17
  givenname: Fabio
  surname: Mosca
  fullname: Mosca, Fabio
– sequence: 18
  givenname: Giacomo
  orcidid: 0000-0002-4921-1437
  surname: Cavallaro
  fullname: Cavallaro, Giacomo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34752491$$D View this record in MEDLINE/PubMed
BookMark eNqNUttuEzEQXaEieoE_QGCJl_KQsDevd_uAFEVAIkUBqfBszdqziSuvvXi9jfJDfCdOk1ZNVSHkB1vjM2fmnJnz6MRYg1H0NonHScaSTzd2cAb0uAvhcZzSiqX5i-gsqbJ0VKRxdvLofRqd9_1NHNOsLIpX0WmWM5rmVXIW_ZmQFqZrZZCAkUQidmSB4IwyKzLpOmdBrIm3pHMolfCkG3Rrl-C2ZL3t0Hlc9nNriDLE4Ka2zlyTjfJrIqxZoVEeNJEKurWDVQteCTLDQA7kcrqYLJfz69nHK_LDWW-F1aSxjgBx6J3tOxRe3SLp_SC3r6OXDege3xzui-jX1y8_p7PR4vu3-XSyGAlaZX5Ux02RFohZTlMZI6UZQoUZFCXkSSpTmSWS1dCwqowThiLGMpe1yBnQirK8zi6i93veTtueHyzueXCX0pSlFQ2I-R4hLdzwzqk2eMEtKH4XsG7FwQWdGnkhRJVUdVk2MskbyMoGYmBQJHnKGDS7anTPNZgOthvQ-oEwifluyvct8N2U-WHKIe_zocuhblEKNN6BPmrm-MeoNV_ZW15SxlheBILLA4GzvwfsPW9VL1BrMGiHO71FMKgqdno_PIE-78oBtYIgXJnGhrpiR8onRZkwRoPhATV-BhWOxFaFhcFGhfhRwrvHQh8U3u9vAOR7gAgb0zts_tfAqydpImyqV3Znl9L_Tv4LXzgc_w
CitedBy_id crossref_primary_10_3390_app132011313
crossref_primary_10_3390_app132413256
crossref_primary_10_1007_s00431_022_04540_6
crossref_primary_10_1093_radadv_umae034
crossref_primary_10_1259_bjr_20211205
crossref_primary_10_1016_j_humgen_2022_201140
crossref_primary_10_3389_fped_2021_796670
crossref_primary_10_1007_s00431_024_05476_9
crossref_primary_10_1016_j_ajogmf_2022_100693
crossref_primary_10_3389_fmicb_2024_1341152
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_1007_s00431_025_06073_0
crossref_primary_10_3389_fmicb_2024_1348974
Cites_doi 10.1097/PCC.0b013e3181b806fc
10.1002/pd.3890
10.1002/uog.14759
10.1016/j.siny.2008.08.010
10.1016/j.bpobgyn.2018.12.010
10.1016/j.athoracsur.2020.03.128
10.1016/j.yexmp.2012.09.010
10.1242/dmm.028365
10.3390/app10196940
10.1186/s10397-018-1041-9
10.1007/s00383-017-4184-2
10.1016/S0022-3476(09)90013-0
10.1016/j.jpeds.2013.04.010
10.1016/j.ajog.2006.02.009
10.1002/pd.5401
10.1016/j.jpeds.2014.09.010
10.1159/000444210
10.1053/j.semperi.2019.07.002
10.1046/j.1469-0705.1996.08020087.x
10.3389/fped.2021.692210
10.1016/j.siny.2017.11.002
10.1016/j.earlhumdev.2011.08.001
10.1002/bdra.23093
10.1007/s10916-020-01691-7
10.1186/s40168-018-0493-5
10.1152/ajplung.1999.277.2.L423
10.1053/j.semperi.2005.02.007
10.1371/journal.pone.0212665
10.1146/annurev.ph.58.030196.000445
10.1016/j.jss.2017.09.002
10.1016/j.siny.2014.09.008
10.1080/14767058.2020.1716714
10.1080/14767058.2018.1487395
10.1016/j.siny.2014.09.004
10.1016/j.jpedsurg.2018.02.015
10.1007/978-1-4615-5725-8
10.1002/uog.13223
10.1148/radiology.219.1.r01ap18236
10.1016/j.ejca.2011.11.036
10.1016/j.siny.2014.09.006
10.1016/S0002-9440(10)65000-6
10.1161/CIRCULATIONAHA.114.009124
10.1002/pd.5326
10.1159/000480451
10.1016/j.jpedsurg.2013.03.010
10.1002/pd.5619
10.1016/j.siny.2014.09.005
10.1136/thx.54.5.427
10.1056/NEJMoa2027030
10.1016/j.ejmg.2014.04.012
10.1067/mob.2003.69
10.1002/uog.4052
10.1002/uog.11212
10.1152/ajplung.00333.2009
10.1542/peds.2010-0521
10.1016/j.jpedsurg.2004.02.015
10.1002/pd.5297
10.3390/ijerph15112509
10.1542/peds.2007-3282
10.1055/s-0038-1655755
10.1016/0022-3468(90)90190-K
10.1016/j.jpedsurg.2015.10.082
10.1002/uog.7326
10.1056/NEJMoa2026983
10.1097/PCC.0000000000001912
10.1186/s40537-019-0197-0
10.1016/j.jacr.2020.09.050
10.1515/9781400874668
10.1002/uog.1003
10.1590/1414-431X20133221
10.1016/j.ajog.2006.05.010
10.1053/j.semperi.2019.07.010
10.1161/CIR.0000000000000329
10.1002/uog.16000
10.1002/pd.4408
10.1038/s41598-018-31920-6
10.1152/ajplung.00226.2013
10.1136/amiajnl-2013-001854
10.3389/fped.2020.581809
10.1159/000512966
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Amodeo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Amodeo et al 2021 Amodeo et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Amodeo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Amodeo et al 2021 Amodeo et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0259724
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Mathematics
Physics
DocumentTitleAlternate Artificial Intelligence to predict CDH pulmonary hypertension
EISSN 1932-6203
ExternalDocumentID 2595527295
oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb
10.1371/journal.pone.0259724
PMC8577746
A681775801
34752491
10_1371_journal_pone_0259724
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Oct 01 00:11:42 EDT 2023
Fri Oct 03 12:42:32 EDT 2025
Sun Oct 26 03:14:15 EDT 2025
Tue Sep 30 16:26:56 EDT 2025
Mon Sep 08 02:40:32 EDT 2025
Tue Oct 07 07:48:52 EDT 2025
Mon Oct 20 22:04:33 EDT 2025
Mon Oct 20 16:17:47 EDT 2025
Thu Apr 03 06:54:26 EDT 2025
Wed Oct 01 02:32:35 EDT 2025
Thu Apr 24 22:55:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-4921-1437
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0259724
PMID 34752491
PQID 2595527295
PQPubID 1436336
ParticipantIDs plos_journals_2595527295
doaj_primary_oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb
unpaywall_primary_10_1371_journal_pone_0259724
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8577746
proquest_miscellaneous_2596017965
proquest_journals_2595527295
gale_infotracmisc_A681775801
gale_infotracacademiconefile_A681775801
pubmed_primary_34752491
crossref_primary_10_1371_journal_pone_0259724
crossref_citationtrail_10_1371_journal_pone_0259724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-09
PublicationDateYYYYMMDD 2021-11-09
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References O Boucherat (pone.0259724.ref018) 2010; 298
S Fuke (pone.0259724.ref045) 2003; 188
E Hernandez‐Andrade (pone.0259724.ref049) 2004; 23
CD Baker (pone.0259724.ref014) 2013; 163
pone.0259724.ref086
A-G Cordier (pone.0259724.ref036) 2020; 44
MA Coughlin (pone.0259724.ref020) 2016; 51
F Martin-Sanchez (pone.0259724.ref052) 2014; 9
JA Deprest (pone.0259724.ref063) 2009; 14
DM Ferguson (pone.0259724.ref066) 2021; 118
A Romiti (pone.0259724.ref077) 2020; 33
FM Russo (pone.0259724.ref023) 2017; 22
JA Deprest (pone.0259724.ref028) 2021; 385
P DeKoninck (pone.0259724.ref051) 2014; 34
R Cruz‐Martinez (pone.0259724.ref064) 2019; 39
I Sluiter (pone.0259724.ref010) 2013; 94
R Chang (pone.0259724.ref016) 2004; 39
RO Duda (pone.0259724.ref080) 2000
C Shorten (pone.0259724.ref084) 2019; 6
P Lambin (pone.0259724.ref085) 2012; 48
G Rizzo (pone.0259724.ref046) 1996; 8
I Amodeo (pone.0259724.ref079) 2020; 8
L Lu (pone.0259724.ref092) 2017; 10
FM Russo (pone.0259724.ref002) 2017; 22
IJ Zamora (pone.0259724.ref039) 2013; 48
J Sokol (pone.0259724.ref047) 2006; 195
C Huang (pone.0259724.ref083) 2019
GD Massaro (pone.0259724.ref008) 1996; 58
AG Cordier (pone.0259724.ref065) 2015; 46
J Deprest (pone.0259724.ref026) 2014; 19
B Ayers (pone.0259724.ref053) 2020; 110
H Liu (pone.0259724.ref087) 1998
B Thébaud (pone.0259724.ref005) 1999; 277
LW Beurskens (pone.0259724.ref006) 2010; 126
C Irles (pone.0259724.ref060) 2018; 15
A Romiti (pone.0259724.ref071) 2020
R Keijzer (pone.0259724.ref004) 2000; 156
SN Acker (pone.0259724.ref012) 2015; 166
D Basurto (pone.0259724.ref044) 2019; 58
AAoPSo Surgery (pone.0259724.ref025) 2008; 121
G Kardon (pone.0259724.ref038) 2017; 10
I Amodeo (pone.0259724.ref069) 2021
EF Hamilton (pone.0259724.ref055) 2020; 33
FM Russo (pone.0259724.ref035) 2017; 49
R Ruano (pone.0259724.ref048) 2006; 195
I Amodeo (pone.0259724.ref067) 2021; 9
BL Short (pone.0259724.ref033) 2005; 29
I Amodeo (pone.0259724.ref032) 2021
D Kluth (pone.0259724.ref003) 1990; 25
MG Gaies (pone.0259724.ref068) 2010; 11
JA Deprest (pone.0259724.ref027) 2021; 385
M Wong (pone.0259724.ref043) 2018; 53
AJ Masino (pone.0259724.ref054) 2019; 14
M Podda (pone.0259724.ref058) 2018; 8
L Sbragia (pone.0259724.ref015) 2014; 47
S Mani (pone.0259724.ref056) 2014; 21
S Savelli (pone.0259724.ref076) 2020; 40
R Cruz‐Martinez (pone.0259724.ref050) 2013; 41
Ö Çiçek (pone.0259724.ref081) 2016
R Ruano (pone.0259724.ref075) 2014; 43
DA Callaway (pone.0259724.ref061) 2018; 7
SM Shehata (pone.0259724.ref017) 1999; 54
FM Russo (pone.0259724.ref041) 2018; 38
M Cannie (pone.0259724.ref072) 2009; 34
M Pierro (pone.0259724.ref009) 2014; 19
MT Harting (pone.0259724.ref021) 2014; 19
C Chung (pone.0259724.ref091) 2021; 18
LE Hollinger (pone.0259724.ref030) 2020; 44
K Van Meurs (pone.0259724.ref034) 1993; 122
KG Snoek (pone.0259724.ref029) 2016; 110
M Au-Yong-Oliveira (pone.0259724.ref090) 2021; 45
P DeKoninck (pone.0259724.ref062) 2011; 87
J Wanner (pone.0259724.ref088) 2020
A Benachi (pone.0259724.ref042) 2014; 19
JN Cooper (pone.0259724.ref059) 2018; 221
AM Slavotinek (pone.0259724.ref037) 2014; 57
MV Fraga (pone.0259724.ref001) 2012
F Rypens (pone.0259724.ref073) 2001; 219
T Dassios (pone.0259724.ref078) 2019; 20
L Van der Veeken (pone.0259724.ref024) 2018; 15
M Yamoto (pone.0259724.ref070) 2018; 34
SH Abman (pone.0259724.ref031) 2015; 132
SN Acker (pone.0259724.ref013) 2013; 305
KG Snoek (pone.0259724.ref019) 2018; 113
V Taormina (pone.0259724.ref089) 2020; 10
B Brooks (pone.0259724.ref057) 2018; 6
J Jani (pone.0259724.ref022) 2007; 30
T Victoria (pone.0259724.ref074) 2012; 32
RS Alphonse (pone.0259724.ref011) 2014; 129
H Bouchghoul (pone.0259724.ref040) 2018; 38
O Ronneberger (pone.0259724.ref082) 2015
LW Beurskens (pone.0259724.ref007) 2013; 97
References_xml – volume: 11
  start-page: 234
  issue: 2
  year: 2010
  ident: pone.0259724.ref068
  article-title: Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass.
  publication-title: Pediatr Crit Care Med
  doi: 10.1097/PCC.0b013e3181b806fc
– volume: 32
  start-page: 715
  issue: 8
  year: 2012
  ident: pone.0259724.ref074
  article-title: Use of magnetic resonance imaging in prenatal prognosis of the fetus with isolated left congenital diaphragmatic hernia
  publication-title: Prenatal diagnosis
  doi: 10.1002/pd.3890
– volume: 46
  start-page: 155
  issue: 2
  year: 2015
  ident: pone.0259724.ref065
  article-title: Stomach position in prediction of survival in left‐sided congenital diaphragmatic hernia with or without fetoscopic endoluminal tracheal occlusion.
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.14759
– volume: 14
  start-page: 8
  issue: 1
  year: 2009
  ident: pone.0259724.ref063
  article-title: Antenatal prediction of lung volume and in-utero treatment by fetal endoscopic tracheal occlusion in severe isolated congenital diaphragmatic hernia
  publication-title: Seminars in Fetal and Neonatal Medicine
  doi: 10.1016/j.siny.2008.08.010
– volume: 58
  start-page: 93
  year: 2019
  ident: pone.0259724.ref044
  article-title: Prenatal diagnosis and management of congenital diaphragmatic hernia.
  publication-title: Best Practice & Research Clinical Obstetrics & Gynaecology.
  doi: 10.1016/j.bpobgyn.2018.12.010
– volume: 110
  start-page: 1193
  issue: 4
  year: 2020
  ident: pone.0259724.ref053
  article-title: Predicting Survival after Extracorporeal Membrane Oxygenation using Machine Learning
  publication-title: The Annals of Thoracic Surgery
  doi: 10.1016/j.athoracsur.2020.03.128
– volume: 94
  start-page: 195
  issue: 1
  year: 2013
  ident: pone.0259724.ref010
  article-title: Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia
  publication-title: Experimental and Molecular Pathology
  doi: 10.1016/j.yexmp.2012.09.010
– volume: 10
  start-page: 955
  issue: 8
  year: 2017
  ident: pone.0259724.ref038
  article-title: Congenital diaphragmatic hernias: from genes to mechanisms to therapies.
  publication-title: Dis Model Mech
  doi: 10.1242/dmm.028365
– volume: 10
  start-page: 6940
  issue: 19
  year: 2020
  ident: pone.0259724.ref089
  article-title: Performance of Fine-Tuning Convolutional Neural Networks for HEp-2 Image Classification.
  publication-title: Applied Sciences.
  doi: 10.3390/app10196940
– volume: 15
  start-page: 9
  issue: 1
  year: 2018
  ident: pone.0259724.ref024
  article-title: Fetoscopic endoluminal tracheal occlusion and reestablishment of fetal airways for congenital diaphragmatic hernia.
  publication-title: Gynecol Surg
  doi: 10.1186/s10397-018-1041-9
– volume: 34
  start-page: 161
  issue: 2
  year: 2018
  ident: pone.0259724.ref070
  article-title: The fetal lung-to-liver signal intensity ratio on magnetic resonance imaging as a predictor of outcomes from isolated congenital diaphragmatic hernia.
  publication-title: Pediatr Surg Int
  doi: 10.1007/s00383-017-4184-2
– volume: 122
  start-page: 893
  issue: 6
  year: 1993
  ident: pone.0259724.ref034
  article-title: Congenital diaphragmatic hernia: long-term outcome in neonates treated with extracorporeal membrane oxygenation
  publication-title: The Journal of pediatrics
  doi: 10.1016/S0022-3476(09)90013-0
– volume: 163
  start-page: 905
  issue: 3
  year: 2013
  ident: pone.0259724.ref014
  article-title: Cord blood endothelial colony-forming cells from newborns with congenital diaphragmatic hernia
  publication-title: The Journal of pediatrics
  doi: 10.1016/j.jpeds.2013.04.010
– volume: 195
  start-page: 470
  issue: 2
  year: 2006
  ident: pone.0259724.ref047
  article-title: Fetal pulmonary artery diameter measurements as a predictor of morbidity in antenatally diagnosed congenital diaphragmatic hernia: a prospective study.
  publication-title: American journal of obstetrics and gynecology
  doi: 10.1016/j.ajog.2006.02.009
– volume: 39
  start-page: 45
  issue: 1
  year: 2019
  ident: pone.0259724.ref064
  article-title: Longitudinal changes in lung size and intrapulmonary‐artery Doppler during the second half of pregnancy in fetuses with congenital diaphragmatic hernia
  publication-title: Prenatal Diagnosis
  doi: 10.1002/pd.5401
– volume: 166
  start-page: 178
  issue: 1
  year: 2015
  ident: pone.0259724.ref012
  article-title: Histologic identification of prominent intrapulmonary anastomotic vessels in severe congenital diaphragmatic hernia
  publication-title: The Journal of pediatrics
  doi: 10.1016/j.jpeds.2014.09.010
– volume: 110
  start-page: 66
  issue: 1
  year: 2016
  ident: pone.0259724.ref029
  article-title: Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO consortium consensus-2015 update.
  publication-title: Neonatology
  doi: 10.1159/000444210
– volume: 44
  start-page: 51163
  issue: 1
  year: 2020
  ident: pone.0259724.ref036
  article-title: Prenatal diagnosis, imaging, and prognosis in Congenital Diaphragmatic Hernia.
  publication-title: Semin Perinatol.
  doi: 10.1053/j.semperi.2019.07.002
– volume: 8
  start-page: 87
  issue: 2
  year: 1996
  ident: pone.0259724.ref046
  article-title: Blood flow velocity waveforms from peripheral pulmonary arteries in normally grown and growth‐retarded fetuses.
  publication-title: Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology.
  doi: 10.1046/j.1469-0705.1996.08020087.x
– volume: 9
  start-page: 692210
  year: 2021
  ident: pone.0259724.ref067
  article-title: Relationship Between Radiographic Pulmonary Area and Pulmonary Hypertension, Mortality, and Hernia Recurrence in Newborns With CDH.
  publication-title: NeoAPACHE II.Front Pediatr.
  doi: 10.3389/fped.2021.692210
– volume: 22
  start-page: 383
  issue: 6
  year: 2017
  ident: pone.0259724.ref002
  article-title: Current and future antenatal management of isolated congenital diaphragmatic hernia.
  publication-title: Seminars in Fetal and Neonatal Medicine
  doi: 10.1016/j.siny.2017.11.002
– volume: 87
  start-page: 619
  issue: 9
  year: 2011
  ident: pone.0259724.ref062
  article-title: Results of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia and the set up of the randomized controlled TOTAL trial.
  publication-title: Early Hum Dev
  doi: 10.1016/j.earlhumdev.2011.08.001
– volume: 97
  start-page: 60
  issue: 1
  year: 2013
  ident: pone.0259724.ref007
  article-title: Dietary vitamin A intake below the recommended daily intake during pregnancy and the risk of congenital diaphragmatic hernia in the offspring.
  publication-title: Birth Defects Res Part A: Clin Mol Teratol.
  doi: 10.1002/bdra.23093
– volume: 45
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0259724.ref090
  article-title: The Potential of Big Data Research in HealthCare for Medical Doctors’ Learning.
  publication-title: J Med Syst.
  doi: 10.1007/s10916-020-01691-7
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: pone.0259724.ref057
  article-title: The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0493-5
– volume: 277
  start-page: L423
  issue: 2
  year: 1999
  ident: pone.0259724.ref005
  article-title: Vitamin A decreases the incidence and severity of nitrofen-induced congenital diaphragmatic hernia in rats
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.1999.277.2.L423
– year: 2020
  ident: pone.0259724.ref088
  article-title: How much is the black box? The value of explainability in machine learning models.
– start-page: 571
  volume-title: Lung development: embryology, growth, maturation, and developmental biology.
  year: 2012
  ident: pone.0259724.ref001
– volume: 29
  start-page: 45
  issue: 1
  year: 2005
  ident: pone.0259724.ref033
  article-title: The effect of extracorporeal life support on the brain: a focus on ECMO
  publication-title: Semin Perinatol
  doi: 10.1053/j.semperi.2005.02.007
– volume: 14
  start-page: e0212665
  issue: 2
  year: 2019
  ident: pone.0259724.ref054
  article-title: Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212665
– volume: 58
  start-page: 73
  issue: 1
  year: 1996
  ident: pone.0259724.ref008
  article-title: Formation of pulmonary alveoli and gas-exchange surface area: quantitation and regulation
  publication-title: Annual review of physiology
  doi: 10.1146/annurev.ph.58.030196.000445
– volume: 10
  start-page: 978
  year: 2017
  ident: pone.0259724.ref092
  article-title: Deep learning and convolutional neural networks for medical image computing. Precision Medicine, High Performance and Large-Scale Datasets.
  publication-title: Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)
– volume: 221
  start-page: 311
  year: 2018
  ident: pone.0259724.ref059
  article-title: Postoperative neonatal mortality prediction using superlearning
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2017.09.002
– volume: 19
  start-page: 357
  issue: 6
  year: 2014
  ident: pone.0259724.ref009
  article-title: Understanding and treating pulmonary hypertension in congenital diaphragmatic hernia
  publication-title: Seminars in Fetal and Neonatal Medicine
  doi: 10.1016/j.siny.2014.09.008
– start-page: 1
  year: 2020
  ident: pone.0259724.ref071
  article-title: Comparison of mediastinal shift angles obtained with ultrasound and magnetic resonance imaging in fetuses with isolated left sided congenital diaphragmatic hernia.
  publication-title: The Journal of Maternal-Fetal & Neonatal Medicine.
  doi: 10.1080/14767058.2020.1716714
– volume: 33
  start-page: 73
  issue: 1
  year: 2020
  ident: pone.0259724.ref055
  article-title: Estimating risk of severe neonatal morbidity in preterm births under 32 weeks of gestation.
  publication-title: The Journal of Maternal-Fetal & Neonatal Medicine
  doi: 10.1080/14767058.2018.1487395
– volume: 19
  start-page: 370
  issue: 6
  year: 2014
  ident: pone.0259724.ref021
  article-title: The congenital diaphragmatic hernia study group registry update.
  publication-title: Seminars in Fetal and Neonatal Medicine
  doi: 10.1016/j.siny.2014.09.004
– volume: 53
  start-page: 918
  issue: 5
  year: 2018
  ident: pone.0259724.ref043
  article-title: Pulmonary hypertension in congenital diaphragmatic hernia patients: prognostic markers and long-term outcomes
  publication-title: J Pediatr Surg
  doi: 10.1016/j.jpedsurg.2018.02.015
– volume-title: Feature extraction, construction and selection: A data mining perspective
  year: 1998
  ident: pone.0259724.ref087
  doi: 10.1007/978-1-4615-5725-8
– volume: 43
  start-page: 662
  issue: 6
  year: 2014
  ident: pone.0259724.ref075
  article-title: Fetal lung volume and quantification of liver herniation by magnetic resonance imaging in isolated congenital diaphragmatic hernia
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.13223
– volume: 219
  start-page: 236
  issue: 1
  year: 2001
  ident: pone.0259724.ref073
  article-title: Fetal lung volume: estimation at MR imaging—initial results
  publication-title: Radiology
  doi: 10.1148/radiology.219.1.r01ap18236
– volume: 48
  start-page: 441
  issue: 4
  year: 2012
  ident: pone.0259724.ref085
  article-title: Radiomics: Extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 33
  start-page: 1330
  issue: 8
  year: 2020
  ident: pone.0259724.ref077
  article-title: Ultrasonographic assessment of mediastinal shift angle (MSA) in isolated left congenital diaphragmatic hernia for the prediction of postnatal survival.
  publication-title: The Journal of Maternal-Fetal & Neonatal Medicine
– volume: 19
  start-page: 338
  issue: 6
  year: 2014
  ident: pone.0259724.ref026
  article-title: Prenatal management of the fetus with isolated congenital diaphragmatic hernia in the era of the TOTAL trial.
  publication-title: Seminars in Fetal and Neonatal Medicine
  doi: 10.1016/j.siny.2014.09.006
– volume: 156
  start-page: 1299
  issue: 4
  year: 2000
  ident: pone.0259724.ref004
  article-title: Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia
  publication-title: The American journal of pathology
  doi: 10.1016/S0002-9440(10)65000-6
– volume: 129
  start-page: 2144
  issue: 21
  year: 2014
  ident: pone.0259724.ref011
  article-title: Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.009124
– volume: 38
  start-page: 638
  issue: 9
  year: 2018
  ident: pone.0259724.ref040
  article-title: Congenital diaphragmatic hernia has a better prognosis when associated with a hernia sac
  publication-title: Prenatal Diagnosis
  doi: 10.1002/pd.5326
– start-page: 424
  volume-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation.
  year: 2016
  ident: pone.0259724.ref081
– year: 2021
  ident: pone.0259724.ref069
  article-title: Fetal MRI mediastinal shift angle and respiratory and cardiovascular pharmacological support in newborns with congenital diaphragmatic hernia
  publication-title: Eur J Pediatr
– volume: 113
  start-page: 63
  issue: 1
  year: 2018
  ident: pone.0259724.ref019
  article-title: Congenital diaphragmatic hernia: 10-year evaluation of survival, extracorporeal membrane oxygenation, and foetoscopic endotracheal occlusion in four high-volume centres.
  publication-title: Neonatology
  doi: 10.1159/000480451
– volume: 48
  start-page: 1165
  issue: 6
  year: 2013
  ident: pone.0259724.ref039
  article-title: The presence of a hernia sac in congenital diaphragmatic hernia is associated with better fetal lung growth and outcomes
  publication-title: J Pediatr Surg
  doi: 10.1016/j.jpedsurg.2013.03.010
– volume: 40
  start-page: 136
  issue: 1
  year: 2020
  ident: pone.0259724.ref076
  article-title: Fetal MRI assessment of mediastinal shift angle in isolated left congenital diaphragmatic hernia: A new postnatal survival predictive tool?
  publication-title: Prenatal Diagnosis
  doi: 10.1002/pd.5619
– volume-title: 3D U2-Net: A 3D Universal U-Net for Multi-Domain Medical Image Segmentation.
  year: 2019
  ident: pone.0259724.ref083
– volume: 19
  start-page: 331
  issue: 6
  year: 2014
  ident: pone.0259724.ref042
  article-title: Advances in prenatal diagnosis of congenital diaphragmatic hernia
  publication-title: Seminars in Fetal and Neonatal Medicine
  doi: 10.1016/j.siny.2014.09.005
– volume: 54
  start-page: 427
  issue: 5
  year: 1999
  ident: pone.0259724.ref017
  article-title: Enhanced expression of vascular endothelial growth factor in lungs of newborn infants with congenital diaphragmatic hernia and pulmonary hypertension
  publication-title: Thorax
  doi: 10.1136/thx.54.5.427
– volume: 385
  start-page: 107
  issue: 2
  year: 2021
  ident: pone.0259724.ref027
  article-title: Randomized Trial of Fetal Surgery for Severe Left Diaphragmatic Hernia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2027030
– volume: 57
  start-page: 418
  issue: 8
  year: 2014
  ident: pone.0259724.ref037
  article-title: The genetics of common disorders–congenital diaphragmatic hernia
  publication-title: Eur J Med Genet
  doi: 10.1016/j.ejmg.2014.04.012
– volume: 188
  start-page: 228
  issue: 1
  year: 2003
  ident: pone.0259724.ref045
  article-title: Antenatal prediction of pulmonary hypoplasia by acceleration time/ejection time ratio of fetal pulmonary arteries by Doppler blood flow velocimetry.
  publication-title: American journal of obstetrics and gynecology
  doi: 10.1067/mob.2003.69
– volume: 30
  start-page: 67
  issue: 1
  year: 2007
  ident: pone.0259724.ref022
  article-title: Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia
  publication-title: Ultrasound in obstetrics & gynecology
  doi: 10.1002/uog.4052
– volume: 41
  start-page: 59
  issue: 1
  year: 2013
  ident: pone.0259724.ref050
  article-title: Usefulness of lung‐to‐head ratio and intrapulmonary arterial Doppler in predicting neonatal morbidity in fetuses with congenital diaphragmatic hernia treated with fetoscopic tracheal occlusion.
  publication-title: Ultrasound Obstet Gynecol.
  doi: 10.1002/uog.11212
– volume: 298
  start-page: L849
  issue: 6
  year: 2010
  ident: pone.0259724.ref018
  article-title: Defective angiogenesis in hypoplastic human fetal lungs correlates with nitric oxide synthase deficiency that occurs despite enhanced angiopoietin-2 and VEGF.
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology.
  doi: 10.1152/ajplung.00333.2009
– volume: 126
  start-page: 712
  issue: 4
  year: 2010
  ident: pone.0259724.ref006
  article-title: Retinol status of newborn infants is associated with congenital diaphragmatic hernia
  publication-title: Pediatrics
  doi: 10.1542/peds.2010-0521
– volume: 39
  start-page: 825
  issue: 6
  year: 2004
  ident: pone.0259724.ref016
  article-title: VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia
  publication-title: J Pediatr Surg
  doi: 10.1016/j.jpedsurg.2004.02.015
– year: 2021
  ident: pone.0259724.ref032
  article-title: Neonatal respiratory and cardiac ECMO in Europe
  publication-title: Eur J Pediatr
– volume: 38
  start-page: 629
  issue: 9
  year: 2018
  ident: pone.0259724.ref041
  article-title: Proposal for standardized prenatal ultrasound assessment of the fetus with congenital diaphragmatic hernia by the European reference network on rare inherited and congenital anomalies (ERNICA).
  publication-title: Prenatal Diagnosis
  doi: 10.1002/pd.5297
– volume: 15
  start-page: 2509
  issue: 11
  year: 2018
  ident: pone.0259724.ref060
  article-title: Estimation of neonatal intestinal perforation associated with necrotizing enterocolitis by machine learning reveals new key factors
  publication-title: International journal of environmental research and public health
  doi: 10.3390/ijerph15112509
– volume: 121
  start-page: 627
  issue: 3
  year: 2008
  ident: pone.0259724.ref025
  article-title: Postdischarge follow-up of infants with congenital diaphragmatic hernia.
  publication-title: Pediatrics
  doi: 10.1542/peds.2007-3282
– volume: 7
  start-page: 164
  issue: 4
  year: 2018
  ident: pone.0259724.ref061
  article-title: Prioritization of candidate genes for congenital diaphragmatic hernia in a critical region on chromosome 4p16 using a machine-learning algorithm
  publication-title: Journal of pediatric genetics
  doi: 10.1055/s-0038-1655755
– volume: 25
  start-page: 850
  issue: 8
  year: 1990
  ident: pone.0259724.ref003
  article-title: Nitrofen-induced diaphragmatic hernias in rats: an animal model
  publication-title: J Pediatr Surg
  doi: 10.1016/0022-3468(90)90190-K
– volume: 51
  start-page: 1091
  issue: 7
  year: 2016
  ident: pone.0259724.ref020
  article-title: Prenatally diagnosed severe CDH: mortality and morbidity remain high
  publication-title: J Pediatr Surg
  doi: 10.1016/j.jpedsurg.2015.10.082
– volume: 34
  start-page: 678
  issue: 6
  year: 2009
  ident: pone.0259724.ref072
  article-title: Diffusion‐weighted MRI in lungs of normal fetuses and those with congenital diaphragmatic hernia.
  publication-title: Ultrasound in Obstetrics and Gynecology
  doi: 10.1002/uog.7326
– volume: 385
  start-page: 119
  issue: 2
  year: 2021
  ident: pone.0259724.ref028
  article-title: Randomized Trial of Fetal Surgery for Moderate Left Diaphragmatic Hernia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2026983
– volume: 20
  start-page: 534
  issue: 6
  year: 2019
  ident: pone.0259724.ref078
  article-title: Prediction of mortality in newborn infants with severe congenital diaphragmatic hernia using the chest radiographic thoracic area.
  publication-title: Pediatric Critical Care Medicine| Society of Critical Care Medicine.
  doi: 10.1097/PCC.0000000000001912
– volume: 9
  start-page: 14
  issue: 1
  year: 2014
  ident: pone.0259724.ref052
  article-title: Big data in medicine is driving big changes.
  publication-title: Yearb Med Inform
– volume: 6
  issue: 1
  year: 2019
  ident: pone.0259724.ref084
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 18
  start-page: 170
  issue: 1
  year: 2021
  ident: pone.0259724.ref091
  article-title: In the Era of Deep Learning, Why Reconstruct an Image at All?
  publication-title: J Am Coll Radiol.
  doi: 10.1016/j.jacr.2020.09.050
– ident: pone.0259724.ref086
  doi: 10.1515/9781400874668
– volume: 23
  start-page: 369
  issue: 4
  year: 2004
  ident: pone.0259724.ref049
  article-title: Fractional moving blood volume estimation in the fetal lung using power Doppler ultrasound: a reproducibility study.
  publication-title: Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology.
  doi: 10.1002/uog.1003
– volume: 47
  start-page: 171
  issue: 2
  year: 2014
  ident: pone.0259724.ref015
  article-title: VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen
  publication-title: Brazilian Journal of Medical and Biological Research
  doi: 10.1590/1414-431X20133221
– volume: 195
  start-page: 1720
  issue: 6
  year: 2006
  ident: pone.0259724.ref048
  article-title: Quantitative analysis of fetal pulmonary vasculature by 3-dimensional power Doppler ultrasonography in isolated congenital diaphragmatic hernia
  publication-title: American journal of obstetrics and gynecology
  doi: 10.1016/j.ajog.2006.05.010
– volume: 44
  start-page: 151171
  issue: 1
  year: 2020
  ident: pone.0259724.ref030
  article-title: Long term follow-up in congenital diaphragmatic hernia.
  publication-title: Semin Perinatol.
  doi: 10.1053/j.semperi.2019.07.010
– volume: 132
  start-page: 2037
  issue: 21
  year: 2015
  ident: pone.0259724.ref031
  article-title: Pediatric Pulmonary Hypertension: Guidelines from the American Heart Association and American Thoracic Society
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000329
– volume-title: Pattern Classification
  year: 2000
  ident: pone.0259724.ref080
– start-page: 234
  volume-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  year: 2015
  ident: pone.0259724.ref082
– volume: 22
  start-page: 383
  issue: 6
  year: 2017
  ident: pone.0259724.ref023
  article-title: Current and future antenatal management of isolated congenital diaphragmatic hernia.
  publication-title: Semin Fetal Neonatal Med
  doi: 10.1016/j.siny.2017.11.002
– volume: 49
  start-page: 704
  issue: 6
  year: 2017
  ident: pone.0259724.ref035
  article-title: Lung size and liver herniation predict need for extracorporeal membrane oxygenation but not pulmonary hypertension in isolated congenital diaphragmatic hernia: systematic review and meta‐analysis
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.16000
– volume: 34
  start-page: 977
  issue: 10
  year: 2014
  ident: pone.0259724.ref051
  article-title: Assessment of pulmonary vascular reactivity to oxygen using fractional moving blood volume in fetuses with normal lung development and pulmonary hypoplasia in congenital diaphragmatic hernia
  publication-title: Prenatal diagnosis
  doi: 10.1002/pd.4408
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: pone.0259724.ref058
  article-title: A machine learning approach to estimating preterm infants survival: development of the Preterm Infants Survival Assessment (PISA) predictor.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-018-31920-6
– volume: 305
  start-page: L943
  issue: 12
  year: 2013
  ident: pone.0259724.ref013
  article-title: Pulmonary artery endothelial cell dysfunction and decreased populations of highly proliferative endothelial cells in experimental congenital diaphragmatic hernia
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00226.2013
– volume: 21
  start-page: 326
  issue: 2
  year: 2014
  ident: pone.0259724.ref056
  article-title: Medical decision support using machine learning for early detection of late-onset neonatal sepsis
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/amiajnl-2013-001854
– volume: 8
  year: 2020
  ident: pone.0259724.ref079
  article-title: The NeoAPACHE Study Protocol I: Assessment of the Radiographic Pulmonary Area and Long-Term Respiratory Function in Newborns With Congenital Diaphragmatic Hernia.
  publication-title: Frontiers in Pediatrics
  doi: 10.3389/fped.2020.581809
– volume: 118
  start-page: 147
  issue: 2
  year: 2021
  ident: pone.0259724.ref066
  article-title: Early, Postnatal Pulmonary Hypertension Severity Predicts Inpatient Outcomes in Congenital Diaphragmatic Hernia.
  publication-title: Neonatology.
  doi: 10.1159/000512966
SSID ssj0053866
Score 2.4827023
SecondaryResourceType review_article
Snippet Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary...
Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal...
Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0259724
SubjectTerms Algorithms
Analysis
Artificial intelligence
Biology and Life Sciences
Computer and Information Sciences
Data analysis
Data collection
Deep Learning
Diagnosis
Diaphragm
Engineering and Technology
Ethics
Extracorporeal membrane oxygenation
Extracorporeal Membrane Oxygenation - methods
Feature extraction
Female
Fetuses
Forecasting
Gynecology
Health aspects
Hernia
Hernias
Hernias, Diaphragmatic, Congenital - complications
Hernias, Diaphragmatic, Congenital - diagnostic imaging
Hernias, Diaphragmatic, Congenital - surgery
Humans
Hypertension
Hypertension, Pulmonary - diagnosis
Hypertension, Pulmonary - diagnostic imaging
Image processing
Image segmentation
Infant, Newborn
Infants (Newborn)
Interdisciplinary aspects
Laboratories
Learning algorithms
Lung - diagnostic imaging
Lungs
Machine Learning
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical models
Mathematics
Medical imaging
Medical prognosis
Medicine
Medicine and Health Sciences
Neonates
Newborn babies
Obstetrics
Occlusion
Oxygenation
Patients
Pediatrics
Physical Sciences
Physics
Prediction models
Pregnancy
Prenatal Diagnosis - methods
Pulmonary hypertension
Research and Analysis Methods
Resonance
Resource allocation
Retrospective Studies
Study Protocol
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlL-2lNH1l07RModDk4I0fkmX1tg0Nm9IuhTSQm5EsKQlsbOP1UvKH-js7srUmpoH00OtKXssz37xs6RtCPlCMkilHSxOFtVighDpQlrIgVLFQlhWiJ6v-vkwX5_TrBbu40-rL7Qnr6YF7wR2lRSEiobLM6ohamWRWhpJLjCox59Iq533DTGyLqd4HoxWnqT8ol_DoyOtlVlelmWGUxxXQUSDq-PoHrzypV9X6vpTz752TjzdlLW9_ydXqTlg6eUae-nwS5v1z7JBHpnxOdrzFruHA00ofviC_53AjXbtsA7LUoI2pwbOrXsLcU4tDW0HduI83LdSb1U21lM0tXGGx2rRmuT6tSrguAVNxhE55Bu4tLmBFjSh0zUcAwYbgkJcdDywsjDvzBQfH3-bL5enZ4vAT_GiqtkLsAebKIKExbVNtD3tCR3X7kpyffPl5vAh8l4agYCJpAxVaLIqMSSiLdWgYS4wUJpFpJmkU61gnkeZKWi4wGHJThCajWhWUSyYYpyp5RSYl6mWXAGaLWODEoebaUBpaJTKtZGaYYZqGhZiSZKuyvPAU5q6TxirvvstxLGV6qedO0blX9JQEw1V1T-HxwPzPDg3DXEfA3f2AsMw9LPOHYDklHx2WcucmcImF9Kcd8D6OcCufp1nEsVYLoynZH81E8y5Gw7sOjduVrnNcpGPNiwXDK7cIvX_4_TDs_tTtpitNtenmpM4TpzjndQ_o4WkTyhmW5HhfPoL6SBzjkfL6quMlzxjHYiKdktlgFP8k8L3_IfA35Ensthu5N_5in0zaZmPeYr7Yqneda_gDWKFtgw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJ24PiJXLCgMZCYntIV0uTpwgIdRNmzpEo4kxaW-RYzvdpC4JaSq0P8Tv5JzUCURMwGvsJE78nZt9_B1C3jKwkgEHSYtklkGAYisrzZhv2akbpZkvozVZ9SwOpufs04V_sUHi9iwMplW2OrFR1KqQuEa-D246koW5kf-x_GZh1SjcXW1LaAhTWkF9aCjG7pBNF5mxBmTz4Cg-_dLqZpDuIDAH6Dzu7Jv5GpdFrsdg_WFkrGegGh7_TlsPykWxvM0V_TOj8v4qL8XNd7FY_Gaujh-TR8bPpJM1MLbIhs6H5OGsI2ldDsm9mdlXH5K7TSIoXtwywr6ku4aReu8J-TGh1wIrbWsqckWV1iU1xKxzOjGs5LQuaFnhI2tarhbXRSyqG3oJcW5V63h5UuT0KqfgxQPq8jOKC8AUgnEAMNYtoYBTwJWYN6OjU43Hxeju4edJHJ-cTffe09OqqAuALQU3mwpa6boq2nOitGHJfUrOj4--Hk4tU-DBkn7k1VZqZxBPae0x31W29n1Pi0h7IggFc1zlKs9RPBUZj8COci1tHTKVSsYFgIGz1HtGBjlM3Tah4GhCbOTaiivNmJ2lUahSEWpf-4rZMhoRr53VRBr2cyzCsUiaLT0OUdB6YhLEQmKwMCJWd1e5Zv_4R_8DBEzXF7m7mwtFNU-MKkgCKSMnSsMwUw7LhBdmwhZcgJ_kci6ydETeIdwS1DAwRCnMQQl4D3J1JZMgdDiEebYzIju9nqAZZK95GwHbjnSZ_JIhuLMF8e3Nb7pmfCgm4uW6WDV9AlTiAfR5vsZ897Ue4z5E8_Be3pOG3u_ot-RXlw2leehziEOCERl3cvNfP_zF37_jJXngYg4SbgNEO2RQVyv9CpzIOn1tNMNP2dV1eg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UJCRELSHpHnYccwtVFRbBKtKpVI5oMiOnbZim0TZrFA58HP4nYwTJyJQBBy4rdbjRyYznpmM5zNCzwhYyYiBpvEszyFA8ZQjc0IdTwZc5jTjHVj1u3k0OyZvTujJGvrY18JYDkKMuCiXbSbf_CgLvWs5uWvwirrsqeuHzO97uBUQuWDBYXTyvEUcMl_GGlOAdA2tRxRc9QlaP54fJh-6THPgRIEX2nK63400Mlctqv-wd0_Myq5yTH89X3l9VVTi8rNYLH4wXvu30Nf-sbszK5_cVSPd7MtPiJD_jS-30U3r9uKkG2UDreniDtqwG8sSb1v065276FuCL4S51VtjUSistK6wBYE9xYlFQMdNiava5JgaXK0WF-Vc1Jf4DKatGz1fHpQFPi8wRAwg4cURNh-bMQT-oCzmjhQMOgEyLE5buFo806Y0DW_vvU3m84Oj2c5LfFiXTQkqgsGlxwLXuqnLviYVt4i899Dx_uv3ezPHXibhZJSHjSO9HGI3rUNCA-VpSkMtuA5FFAviBypQoa-YFDnjYLOZzjwdEyUzwgTllBEZ3keTAli5iTA4tRCHBZ5iShPi5ZLHSopYU00V8TI-RWEvM2lmkdbNhR-LtE0fMoi4Oq6n5t2k9t1MkTP0qjqkkT_QvzLiONAanPD2DxCO1ApFGmUZ97mM41z5JBdhnAtPMAE-WcCYyOUUvTDCnJrdDJaYCVuUAfMYeUqTKPYZhJSeP0VbI0rYhbJR86YRyH6lyxQWacD9Ak6hZ68iVzc_HZrNoObQX6HLVUsTGYMRAc2DTqOGpw0JowHhMC8b6dqIHeOW4vyshU-PKYOYJ5oid9DKv2L4w3_t8AjdCMwJKJOE4Fto0tQr_Rhc2EY-sRvRd0eYo-c
  priority: 102
  providerName: Unpaywall
Title A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
URI https://www.ncbi.nlm.nih.gov/pubmed/34752491
https://www.proquest.com/docview/2595527295
https://www.proquest.com/docview/2596017965
https://pubmed.ncbi.nlm.nih.gov/PMC8577746
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259724&type=printable
https://doaj.org/article/6cc919b88fd14fa38fa0a7a614277afb
http://dx.doi.org/10.1371/journal.pone.0259724
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6OMClory6UFZGQtAessrDjmMkhLZVyxbRqKKsVE6REzvbStskzWYF_UP8Tmay3ogVRfSSQ_yIY3_2zHjsbwh5w0BKhgJmmszyHAwUVztpzrjjpr5Mc57JBVn1aRyOxuzzBb9YI0tHu-3A2Z2mHcaTGtfTwc-b248w4T-0URuEtyw0qMrCDECGQ_3sbXXjYGgpdMHaOBvrZBPEl8T4DqesczXAhG8dmqjIOKHvBvZ-3b8qXpFfLc1_t5hvVNNydpem-veBywfzolK3P9R0-oc0O35EtqwaSocL3GyTNVM8Jtt2os_onmWj3n9Cfg3ptcIo24aqQlNtTEUtKeuEDi0jOW1KWtXo82loNZ9el7Gqb-kl2Lh1Y-LZSVnQq4KCBg-IK84pbv5SMMQBvBizhAJGAVNq0tLH0pHBq2J07_DLMI5Pzkf77-lZXTYlQJaCik0VrU1Tl8s7orRlyH1KxsdH3w5Hjg3u4GRcBo2TujnYUsYEjPvaNZwHRkkTqDBSzPO1rwNPi1TlQoIMFSZzTcR0mjGhuOSCpcEzslHAuOwQCkom2EW-q4U2jLl5KiOdqshwwzVzM9kjwXLIkswyn2MAjmnSuvMEWECLXk9woBM70D3idKWqBfPHf_IfIBq6vMjb3b4o60lil4EkzDLpyTSKcu2xXAVRrlwlFOhIvhAqT3vkHWIpQbxDEzNlL0nAd5CnKxmGkSfAxHO9HtldyQmrQraSvINoXLZ0lkAjkWzPlxxKLhF6d_LrLhkrxUN4hSnnbZ4QF_AQ8jxfALr724AJDpY8fFesQH2lO1ZTiqvLls484gJskLBHBt2kuFeHv7hHQ1-Shz4eQkI_gNwlG009N69Ai2zSPlkXFwKe0aGHz-NPfbJ5cBSffe23-zL9dpWAd-P4bPj9N4KffD4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXGEAweEBsfKwy4SCC2h2z5cOIYCaEymFq2VkjbpL4FJ3a6SV0S0lRT_xCP_EauUydQMQEve42dxI7PPb43ts8l5BXFWTJgaGk8SVMMUGxpxSn1LTt2eZz6CV-IVQ-GQe-Ufh75oxXyozkLo7dVNpxYE7XME_2PfA_ddC0W5nL_ffHN0lmj9Opqk0JjAYtDNb_EkG36rv8Rx_e16x58OtnvWSargJX43Kus2E7RiVfKo74rbeX7nhJceSIIBXVc6UrPkSwWKeNI3kwltgqpjBPKBLaA0djD594gN6mHXIL2w0ZtgIfcEQTmeJ7HnD2Dht0iz9Qu-hbYb7o0_dVZAtq5YLWY5NOrHN0_92uuzbJCzC_FZPLbZHhwn9wzXix0F7BbJysq2yB3B60E7HSD3B6YVfsNcqveZqovrhsqmcK20bveeUC-d-FC6DzeCkQmQSpVgJF9HUPXaJ5DlUNR6kdWUMwmF_lQlHM4wyi6rNRw2s8zOM8AYwTEdHYM-vcyYKiP5qGzogBaAaJWjOvWQU_pw2iwvX_UHQ77x72dt_ClzKscjQLQiQcBparKvDmFCrUG70Nyei0D_YisZjh0mwTQjcXIy7Ulk4pSO415KGMRKl_5ktoJ7xCvGdUoMdrqOsXHJKoXDBnGWIuBiTQWIoOFDrHau4qFtsg_6n_QgGnramXw-kJejiNDNFGQJNzhcRim0qGp8MJU2IIJ9MJcxkQad8gbDbdI8xc2MRHmGAa-RyuBRd0gdBgGkbbTIVtLNZF3kqXiTQ3YpqXT6JeF4p0NiK8uftkW64fqbX6Zymd1nUBPEQHWebzAfNtbjzLfpRzfy5asYelzLJdk52e1YHroM4xygg7Zbe3mvz74k7_34wVZ650MjqKj_vDwKbnj6t1OesGBb5HVqpypZ-iuVvHzmiOAfL1uUvoJQQyr8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGEQMeEBt_VhhwSCC2h2z548QxEkJlY2rZVk3aJvUtOLHTTeqSkKaa9oX4EHw6zqkTqJiAl73GjuPYvzvf2effEfKG4ioZMJQ0nqQpOii2tOKU-pYduzxO_YTPyaoPh0H_lH4Z-aMl8qO5C6PDKhudWCtqmSd6j3wbzXRNFuZyfzs1YRFHu3sfi2-WziClT1qbdBpziOyrq0t036YfBrs4129dd-_zyU7fMhkGrMTnXmXFdooGvVIe9V1pK9_3lODKE0EoqONKV3qOZLFIGUdFzlRiq5DKOKFMYG8YjT1s9xa5zTyP63BCNmqdPdQjQWCu6nnM2TbI2CryTG2hnYFjQBeWwjpjQLsudIpJPr3O6P0zdvPuLCvE1aWYTH5bGPcekgfGooXeHIIrZEllq-T-YUsHO10ly4fmBH-V3KlDTvXDFaNWprBhuK83H5HvPbgQOqe3ApFJkEoVYChgx9Az_OdQ5VCUuskKitnkIh-K8grO0KMuKzWcDvIMzjNAfwHxnR2D3moGdPtRVHSGFECJQASLcd076Ct9MQ02dg56w-HguL_5Ho7KvMpRQAANehBQqqrMmxupUPPxPianNzLRT0gnw6lbI4AmLXphri2ZVJTaacxDGYtQ-cqX1E54l3jNrEaJ4VnX6T4mUX14yNDfmk9MpLEQGSx0idW-Vcx5Rv5R_5MGTFtXs4TXD_JyHBmlEwVJwh0eh2EqHZoKL0yFLZhAi8xlTKRxl7zTcIu0LsMuJsJcycDvaFawqBeEDkOH0na6ZH2hJuqgZKF4TQO26ek0-iWt-GYD4uuLX7fFulEd8pepfFbXCfRyEWCdp3PMt3_rUea7lON32YI0LAzHYkl2flaTp4c-Q48n6JKtVm7-a8Cf_f0_XpFlVEfRwWC4_5zcc3Xgkz574OukU5Uz9QIt1yp-WasIIF9vWif9BG1NsDY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UJCRELSHpHnYccwtVFRbBKtKpVI5oMiOnbZim0TZrFA58HP4nYwTJyJQBBy4rdbjRyYznpmM5zNCzwhYyYiBpvEszyFA8ZQjc0IdTwZc5jTjHVj1u3k0OyZvTujJGvrY18JYDkKMuCiXbSbf_CgLvWs5uWvwirrsqeuHzO97uBUQuWDBYXTyvEUcMl_GGlOAdA2tRxRc9QlaP54fJh-6THPgRIEX2nK63400Mlctqv-wd0_Myq5yTH89X3l9VVTi8rNYLH4wXvu30Nf-sbszK5_cVSPd7MtPiJD_jS-30U3r9uKkG2UDreniDtqwG8sSb1v065276FuCL4S51VtjUSistK6wBYE9xYlFQMdNiava5JgaXK0WF-Vc1Jf4DKatGz1fHpQFPi8wRAwg4cURNh-bMQT-oCzmjhQMOgEyLE5buFo806Y0DW_vvU3m84Oj2c5LfFiXTQkqgsGlxwLXuqnLviYVt4i899Dx_uv3ezPHXibhZJSHjSO9HGI3rUNCA-VpSkMtuA5FFAviBypQoa-YFDnjYLOZzjwdEyUzwgTllBEZ3keTAli5iTA4tRCHBZ5iShPi5ZLHSopYU00V8TI-RWEvM2lmkdbNhR-LtE0fMoi4Oq6n5t2k9t1MkTP0qjqkkT_QvzLiONAanPD2DxCO1ApFGmUZ97mM41z5JBdhnAtPMAE-WcCYyOUUvTDCnJrdDJaYCVuUAfMYeUqTKPYZhJSeP0VbI0rYhbJR86YRyH6lyxQWacD9Ak6hZ68iVzc_HZrNoObQX6HLVUsTGYMRAc2DTqOGpw0JowHhMC8b6dqIHeOW4vyshU-PKYOYJ5oid9DKv2L4w3_t8AjdCMwJKJOE4Fto0tQr_Rhc2EY-sRvRd0eYo-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+maChine+and+deep+Learning+Approach+to+predict+pulmoNary+hyperteNsIon+in+newbornS+with+congenital+diaphragmatic+Hernia+%28CLANNISH%29%3A+Protocol+for+a+retrospective+study&rft.jtitle=PloS+one&rft.au=Amodeo%2C+Ilaria&rft.au=De+Nunzio%2C+Giorgio&rft.au=Raffaeli%2C+Genny&rft.au=Borzani%2C+Irene&rft.date=2021-11-09&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=11&rft.spage=e0259724&rft_id=info:doi/10.1371%2Fjournal.pone.0259724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon