altAFplotter: a web app for reliable UPD detection in NGS diagnostics

Background The detection of uniparental disomies (the inheritance of both chromosome homologues from a single parent, UPDs) is not part of most standard or commercial NGS-pipelines in human genetics and thus a common gap in NGS diagnostics. To address this we developed a tool for UPD-detection based...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 25; no. 1; pp. 299 - 5
Main Authors Radtke, Maximilian, Moch, Johanna, Hentschel, Julia, Schumann, Isabell
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.09.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-024-05922-3

Cover

More Information
Summary:Background The detection of uniparental disomies (the inheritance of both chromosome homologues from a single parent, UPDs) is not part of most standard or commercial NGS-pipelines in human genetics and thus a common gap in NGS diagnostics. To address this we developed a tool for UPD-detection based on panel or exome data which is easy to use and publicly available. Results The app is freely available at https://altafplotter.uni-leipzig.de/ and implemented in Python, using the Streamlit framework for data science web apps. It utilizes bcftools and tabix for processing vcf files. The source code is available at https://github.com/HUGLeipzig/altafplotter and can be used to host your own instance of the tool. Conclusion We believe the app to be a great benefit for research and diagnostic labs, which struggle identifying and interpreting UPDs in their NGS diagnostic setup. The information provided allows a quick interpretation of the results and thus is suitable for usage in a high throughput manner by clinicians and biologists.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-024-05922-3