Cell-Directed Assembly of Lipid-Silica Nanostructures Providing Extended Cell Viability

Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help reli...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 313; no. 5785; pp. 337 - 341
Main Authors Baca, Helen K., Ashley, Carlee, Carnes, Eric, Lopez, Deanna, Flemming, Jeb, Dunphy, Darren, Singh, Seema, Chen, Zhu, Liu, Nanguo, Fan, Hongyou, López, Gabriel P., Brozik, Susan M., Werner-Washburne, Margaret, Brinker, C. Jeffrey
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 21.07.2006
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1126590

Cover

Abstract Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing.
AbstractList Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing. [PUBLICATION ABSTRACT]
Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing.
Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing.
Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing.Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing.
Author Flemming, Jeb
Fan, Hongyou
Lopez, Deanna
Brinker, C. Jeffrey
Chen, Zhu
López, Gabriel P.
Baca, Helen K.
Dunphy, Darren
Ashley, Carlee
Liu, Nanguo
Werner-Washburne, Margaret
Brozik, Susan M.
Carnes, Eric
Singh, Seema
Author_xml – sequence: 1
  givenname: Helen K.
  surname: Baca
  fullname: Baca, Helen K.
– sequence: 2
  givenname: Carlee
  surname: Ashley
  fullname: Ashley, Carlee
– sequence: 3
  givenname: Eric
  surname: Carnes
  fullname: Carnes, Eric
– sequence: 4
  givenname: Deanna
  surname: Lopez
  fullname: Lopez, Deanna
– sequence: 5
  givenname: Jeb
  surname: Flemming
  fullname: Flemming, Jeb
– sequence: 6
  givenname: Darren
  surname: Dunphy
  fullname: Dunphy, Darren
– sequence: 7
  givenname: Seema
  surname: Singh
  fullname: Singh, Seema
– sequence: 8
  givenname: Zhu
  surname: Chen
  fullname: Chen, Zhu
– sequence: 9
  givenname: Nanguo
  surname: Liu
  fullname: Liu, Nanguo
– sequence: 10
  givenname: Hongyou
  surname: Fan
  fullname: Fan, Hongyou
– sequence: 11
  givenname: Gabriel P.
  surname: López
  fullname: López, Gabriel P.
– sequence: 12
  givenname: Susan M.
  surname: Brozik
  fullname: Brozik, Susan M.
– sequence: 13
  givenname: Margaret
  surname: Werner-Washburne
  fullname: Werner-Washburne, Margaret
– sequence: 14
  givenname: C. Jeffrey
  surname: Brinker
  fullname: Brinker, C. Jeffrey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18046037$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16857936$$D View this record in MEDLINE/PubMed
BookMark eNqF0s9rFDEUB_AgFbutnr2IDILexuZNfh_LWm1hUcFfxyGTyUiW2WRNMuL-92bdaQs9uKcQ8vm-hJd3hk588Bah54DfAjT8IhlnvbH_NkzhR2gBWLFaNZicoAXGhNcSC3aKzlJaY1zOFHmCToFLJhThC_RjacexfueiNdn21WVKdtONuyoM1cptXV9_caMzuvqofUg5TiZP0abqcwy_Xe_8z-rqT7a-L9F9oeq7010J5N1T9HjQY7LP5vUcfXt_9XV5Xa8-fbhZXq5qU16S60aD5LwxlFhjqZA9Z5zg3mCDB63xgFUnqLCWSQFDo5UZCO2k6DUTHMBwco7eHOpuY_g12ZTbjUumPEV7G6bUcln6AgBHIRXAgII8Cgnbt5iyo7ABEJzR5igEJalifA9fPYDrMEVf-leKESZLb0hBL2c0dRvbt9voNjru2ts_LeD1DHQyehyi9saleycx5ZiI4i4OzsSQUrTDPcHtfqDaebraebpKgj1IGJd1dsHnqN34n9yLQ26dcoh31xBJOaec_AWmR9xa
CODEN SCIEAS
CitedBy_id crossref_primary_10_1039_b711380c
crossref_primary_10_1126_science_1251821
crossref_primary_10_1021_cm702100t
crossref_primary_10_1002_cctc_201000410
crossref_primary_10_1021_ja109796x
crossref_primary_10_1021_nn5063276
crossref_primary_10_1039_b702586f
crossref_primary_10_1039_C5NJ03563E
crossref_primary_10_1021_la904308g
crossref_primary_10_1002_anie_201704729
crossref_primary_10_5012_bkcs_2010_31_7_1831
crossref_primary_10_1039_B9PY00235A
crossref_primary_10_1021_acs_jpcb_9b02762
crossref_primary_10_1007_s13233_011_0512_x
crossref_primary_10_1002_cey2_113
crossref_primary_10_1021_la802079h
crossref_primary_10_1016_S1369_7021_09_70179_8
crossref_primary_10_1111_j_1551_2916_2008_02722_x
crossref_primary_10_1088_1361_6528_aa5d77
crossref_primary_10_1039_c3cs35377j
crossref_primary_10_1021_nn101793u
crossref_primary_10_1039_c0jm01735c
crossref_primary_10_1007_s00396_014_3383_9
crossref_primary_10_1021_cm103525u
crossref_primary_10_1038_nmat2442
crossref_primary_10_1002_cbic_201700126
crossref_primary_10_1021_acsnano_4c16480
crossref_primary_10_1126_science_1144212
crossref_primary_10_1680_si_2014_3_1_1
crossref_primary_10_1002_adfm_201909539
crossref_primary_10_1039_c2tb00417h
crossref_primary_10_1039_C7NR08556G
crossref_primary_10_1007_s10971_009_1952_z
crossref_primary_10_1038_nrmicro3010
crossref_primary_10_1039_C0CS00039F
crossref_primary_10_1016_j_bbagen_2010_09_005
crossref_primary_10_1002_smll_201402381
crossref_primary_10_1128_mBio_00202_10
crossref_primary_10_1021_jacs_1c00814
crossref_primary_10_1021_ar068129m
crossref_primary_10_1016_j_ijpharm_2009_02_013
crossref_primary_10_1002_adma_201602335
crossref_primary_10_1021_la900748r
crossref_primary_10_1016_j_jcis_2010_08_057
crossref_primary_10_1002_adma_201907001
crossref_primary_10_3390_mi12070740
crossref_primary_10_1039_C9NA00371A
crossref_primary_10_1039_c0cs00136h
crossref_primary_10_1128_mBio_00992_14
crossref_primary_10_1002_ange_200903010
crossref_primary_10_1002_adfm_202108057
crossref_primary_10_1016_j_jece_2023_109542
crossref_primary_10_1007_s10971_007_1562_6
crossref_primary_10_1016_j_bios_2009_08_004
crossref_primary_10_1021_cm703075b
crossref_primary_10_1002_anie_201006231
crossref_primary_10_1021_acsnano_5b01139
crossref_primary_10_1039_b821769f
crossref_primary_10_1021_cm403198z
crossref_primary_10_1002_bies_200900120
crossref_primary_10_1021_acsnano_6b06385
crossref_primary_10_1002_app_45146
crossref_primary_10_1002_ange_201006231
crossref_primary_10_1021_la900971h
crossref_primary_10_1002_anie_200903010
crossref_primary_10_3390_app11199182
crossref_primary_10_1007_s11705_014_1412_3
crossref_primary_10_1016_j_mtbio_2021_100097
crossref_primary_10_1007_s10971_019_04967_8
crossref_primary_10_3724_SP_J_1105_2013_12413
crossref_primary_10_1016_j_apmt_2017_12_009
crossref_primary_10_1016_j_micromeso_2008_09_013
crossref_primary_10_1021_ar600027u
crossref_primary_10_3390_s151025208
crossref_primary_10_1002_adma_200802598
crossref_primary_10_1002_cssc_201100043
crossref_primary_10_1016_j_micromeso_2012_08_016
crossref_primary_10_1039_c2jm32186f
crossref_primary_10_1016_j_solidstatesciences_2010_12_003
crossref_primary_10_1021_ja906190t
crossref_primary_10_1002_adfm_201504480
crossref_primary_10_1016_j_jbiotec_2008_07_1056
crossref_primary_10_1002_cbic_201000494
crossref_primary_10_1021_acsbiomaterials_7b00185
crossref_primary_10_1039_C0CS00052C
crossref_primary_10_1002_smll_200902050
crossref_primary_10_1038_nchembio_264
crossref_primary_10_1016_j_colsurfb_2013_09_024
crossref_primary_10_1016_j_ultramic_2011_02_008
crossref_primary_10_1002_ange_201704729
crossref_primary_10_1039_C0CC03919E
crossref_primary_10_1039_b804933e
crossref_primary_10_1007_s12039_011_0186_0
crossref_primary_10_1002_ejic_202200788
crossref_primary_10_1039_c2sc00583b
crossref_primary_10_1039_c1jm10684h
crossref_primary_10_1002_adfm_201300038
crossref_primary_10_1021_cm1033723
crossref_primary_10_1016_j_colsurfa_2017_02_066
crossref_primary_10_1021_acsnano_4c11549
crossref_primary_10_1016_j_jcis_2009_10_050
crossref_primary_10_1016_j_biomaterials_2008_09_005
crossref_primary_10_1021_acsbiomaterials_5b00261
crossref_primary_10_1021_ar700033b
crossref_primary_10_1021_ja906055m
crossref_primary_10_1039_b807301e
crossref_primary_10_1089_bio_2012_0020
crossref_primary_10_1073_pnas_2322418121
crossref_primary_10_1021_la904179x
crossref_primary_10_1039_b817172f
crossref_primary_10_1007_s10853_009_3565_x
crossref_primary_10_1038_srep13635
crossref_primary_10_1039_b717850f
crossref_primary_10_1021_ar6000389
crossref_primary_10_1039_D2TB00300G
crossref_primary_10_1002_adfm_202112742
crossref_primary_10_1002_adfm_201705699
crossref_primary_10_1002_smll_201202174
crossref_primary_10_1038_nchembio0906_457
crossref_primary_10_1016_j_jiec_2014_11_020
crossref_primary_10_1080_03067310802714839
crossref_primary_10_1021_acsami_8b05715
crossref_primary_10_1039_C2CS35318K
crossref_primary_10_1039_C5CC02053K
crossref_primary_10_1002_adma_201002828
crossref_primary_10_1093_nsr_nwaa097
crossref_primary_10_1039_b818652a
crossref_primary_10_1039_C0CS00122H
crossref_primary_10_3390_polym14071391
Cites_doi 10.1038/38699
10.1038/nature02388
10.1126/science.1095140
10.1111/j.1574-6976.2002.tb00613.x
10.1039/B401724B
10.1364/AO.43.002079
10.1016/0168-1656(93)90113-2
10.1039/b101308o
10.1023/A:1008704208324
10.1007/BF00488377
10.1038/nmat709
10.1038/nbt0204-151
10.1016/S1369-5274(99)80061-7
10.1016/S0304-4157(00)00008-3
10.1021/cm034372t
10.1016/S0039-6028(01)01548-5
10.1021/ja0295523
10.1016/S0006-3495(02)75225-9
10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
10.1021/cm020020v
10.1006/bbrc.1996.1539
10.1126/science.297.5583.962
10.1021/ja0011515
10.1016/S0304-4157(00)00016-2
10.1021/ja9814568
10.1126/science.282.5397.2244
10.1126/science.1106587
10.1038/359710a0
10.1021/jp027214i
10.1006/jcis.2002.8448
ContentType Journal Article
Copyright Copyright 2006 American Association for the Advancement of Science
2007 INIST-CNRS
Copyright American Association for the Advancement of Science Jul 21, 2006
Copyright_xml – notice: Copyright 2006 American Association for the Advancement of Science
– notice: 2007 INIST-CNRS
– notice: Copyright American Association for the Advancement of Science Jul 21, 2006
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7QO
7S9
L.6
7X8
DOI 10.1126/science.1126590
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Biotechnology Research Abstracts
AGRICOLA

CrossRef
Bacteriology Abstracts (Microbiology B)
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 341
ExternalDocumentID 1124293131
16857936
18046037
10_1126_science_1126590
3846646
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: PHS HHS
  grantid: 206-00139-06
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.GJ
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3EH
3R3
4.4
42X
53G
5RE
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
AAYOK
ABBHK
ABDBF
ABDEX
ABDPE
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ACUHS
ADDRP
ADQXQ
ADUKH
ADULT
ADXHL
ADZCM
AEGBM
AENEX
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
AJUXI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HQ3
HTVGU
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J5H
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
SKT
TAE
TEORI
TN5
TWZ
UCV
UHB
UKR
UNMZH
UQL
USG
VOH
VVN
WH7
WI4
X7L
X7M
XIH
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~H1
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
.GO
0-V
186
41~
4R4
66.
692
6OB
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
ABJCF
ABUWG
ADBBV
ADMHC
AETEA
AEUYN
AFHKK
AFKRA
AFQQW
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQEDU
PQGLB
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
UBW
UBY
UHU
UKHRP
UMD
WOQ
WOW
XKJ
XOL
YJ6
YSQ
YXB
ZE2
ZVL
ZVM
~G0
0B8
8P6
ABTAH
CGR
CUY
CVF
DOOOF
ECM
EIF
ESX
GX1
IGG
JSODD
NPM
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7QO
7S9
L.6
7X8
ID FETCH-LOGICAL-c593t-2a18662c43ece478d65630dc0c0faa0f09b747ee5871f2a9cf34b87da57611c63
ISSN 0036-8075
1095-9203
IngestDate Fri Sep 05 07:26:07 EDT 2025
Sun Sep 28 00:52:50 EDT 2025
Sun Sep 28 09:40:07 EDT 2025
Sun Sep 28 09:28:04 EDT 2025
Sun Sep 28 11:14:39 EDT 2025
Fri Jul 25 10:44:35 EDT 2025
Wed Feb 19 01:51:38 EST 2025
Mon Jul 21 09:13:54 EDT 2025
Tue Jul 01 02:42:13 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Thu Jul 03 21:20:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5785
Keywords Yeast
Phospholipid
Lipids
Joining
Nanostructure
Silica
Cell surface
Fungi
Bacteria
Ascomycetes
Saccharomyces cerevisiae
Viability
Thallophyta
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c593t-2a18662c43ece478d65630dc0c0faa0f09b747ee5871f2a9cf34b87da57611c63
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 16857936
PQID 213585633
PQPubID 23462
PageCount 5
ParticipantIDs proquest_miscellaneous_68659111
proquest_miscellaneous_47151418
proquest_miscellaneous_35109545
proquest_miscellaneous_21176542
proquest_miscellaneous_19849562
proquest_journals_213585633
pubmed_primary_16857936
pascalfrancis_primary_18046037
crossref_primary_10_1126_science_1126590
crossref_citationtrail_10_1126_science_1126590
jstor_primary_3846646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-07-21
PublicationDateYYYYMMDD 2006-07-21
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-21
  day: 21
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2006
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_1_21_2
e_1_3_1_22_2
e_1_3_1_23_2
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_7_2
e_1_3_1_40_2
e_1_3_1_9_2
(e_1_3_1_20_2) 2002; 66
e_1_3_1_4_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_6_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_26_2
e_1_3_1_2_2
e_1_3_1_27_2
e_1_3_1_28_2
e_1_3_1_32_2
e_1_3_1_33_2
e_1_3_1_34_2
e_1_3_1_35_2
e_1_3_1_13_2
e_1_3_1_12_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_17_2
e_1_3_1_16_2
e_1_3_1_15_2
e_1_3_1_14_2
e_1_3_1_36_2
e_1_3_1_37_2
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_18_2
e_1_3_1_39_2
References_xml – ident: e_1_3_1_26_2
  doi: 10.1038/38699
– ident: e_1_3_1_3_2
  doi: 10.1038/nature02388
– ident: e_1_3_1_39_2
  doi: 10.1126/science.1095140
– ident: e_1_3_1_29_2
  doi: 10.1111/j.1574-6976.2002.tb00613.x
– ident: e_1_3_1_15_2
  doi: 10.1039/B401724B
– ident: e_1_3_1_38_2
  doi: 10.1364/AO.43.002079
– ident: e_1_3_1_13_2
  doi: 10.1016/0168-1656(93)90113-2
– ident: e_1_3_1_40_2
– ident: e_1_3_1_10_2
  doi: 10.1039/b101308o
– ident: e_1_3_1_11_2
  doi: 10.1023/A:1008704208324
– ident: e_1_3_1_27_2
– ident: e_1_3_1_7_2
  doi: 10.1007/BF00488377
– ident: e_1_3_1_37_2
– ident: e_1_3_1_9_2
  doi: 10.1038/nmat709
– ident: e_1_3_1_5_2
  doi: 10.1038/nbt0204-151
– ident: e_1_3_1_23_2
– ident: e_1_3_1_30_2
  doi: 10.1016/S1369-5274(99)80061-7
– ident: e_1_3_1_35_2
  doi: 10.1016/S0304-4157(00)00008-3
– ident: e_1_3_1_18_2
– ident: e_1_3_1_14_2
  doi: 10.1021/cm034372t
– ident: e_1_3_1_2_2
  doi: 10.1016/S0039-6028(01)01548-5
– ident: e_1_3_1_36_2
– ident: e_1_3_1_21_2
  doi: 10.1021/ja0295523
– ident: e_1_3_1_25_2
  doi: 10.1016/S0006-3495(02)75225-9
– ident: e_1_3_1_17_2
  doi: 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
– ident: e_1_3_1_6_2
  doi: 10.1021/cm020020v
– ident: e_1_3_1_19_2
– ident: e_1_3_1_31_2
  doi: 10.1006/bbrc.1996.1539
– ident: e_1_3_1_4_2
  doi: 10.1126/science.297.5583.962
– ident: e_1_3_1_8_2
  doi: 10.1021/ja0011515
– ident: e_1_3_1_33_2
  doi: 10.1016/S0304-4157(00)00016-2
– ident: e_1_3_1_24_2
– ident: e_1_3_1_12_2
  doi: 10.1021/ja9814568
– ident: e_1_3_1_28_2
  doi: 10.1126/science.282.5397.2244
– volume: 66
  start-page: 041602
  year: 2002
  ident: e_1_3_1_20_2
  publication-title: Phys. Rev. E
– ident: e_1_3_1_16_2
  doi: 10.1126/science.1106587
– ident: e_1_3_1_22_2
  doi: 10.1038/359710a0
– ident: e_1_3_1_32_2
  doi: 10.1021/jp027214i
– ident: e_1_3_1_34_2
  doi: 10.1006/jcis.2002.8448
SSID ssj0009593
Score 2.2763767
Snippet Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and...
Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 337
SubjectTerms Bacillus subtilis - physiology
Bacteria
Biological and medical sciences
Biotechnology
Buffers
Cell lines
Cell Membrane
Cell membranes
cell viability
Cell walls
Cells, Immobilized
Cellular biology
Drying
Escherichia coli - physiology
Fluorescence
Fluorescence Recovery After Photobleaching
Fundamental and applied biological sciences. Psychology
Gene expression
Green Fluorescent Proteins - biosynthesis
Hydrogen-Ion Concentration
Immobilized cells
Lipid Bilayers
Lipids
Material films
Micelles
Microscopy, Electron
Nanocrystals
Nanostructures
Phospholipids
plasmids
protein synthesis
proteins
Recombinant Proteins - biosynthesis
Saccharomyces cerevisiae
Saccharomyces cerevisiae - physiology
Scattering, Radiation
Silica
Silicon Dioxide
Viability
X-Rays
Yeast
Title Cell-Directed Assembly of Lipid-Silica Nanostructures Providing Extended Cell Viability
URI https://www.jstor.org/stable/3846646
https://www.ncbi.nlm.nih.gov/pubmed/16857936
https://www.proquest.com/docview/213585633
https://www.proquest.com/docview/19849562
https://www.proquest.com/docview/21176542
https://www.proquest.com/docview/35109545
https://www.proquest.com/docview/47151418
https://www.proquest.com/docview/68659111
Volume 313
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBsDwmDkgYehKlMSJ07y2I5N4zoEm5j2EtmOLVUK6aS2SPAj-U0cx47rABGMl6pNnbTx-eJz8TnfQeg5aDmS84wElPAkSCipVCP3NChCiuEUIjKuqpHfvSenF8nry_RyNPrhZC2tV-yQf_9jXcn_SBWOgVxVlewNJGsvCgfgPcgXXkHC8PpPMj4SdR1opQR2I5jB4gur2y3zen49r4LlXIXkJg1tFpondg3O9UQX36kQQRcBn6jw_eTrXHN29zZ6u2cfDFG7ueOI1GYpTnUuQZdaYE5z4gwzELrVc06ewKdTMJFN6kktLMzenn04vmqD9pSBN19v6tBmH8-uXr2xGUUmnOsELrIgdpJAbv6n3YXc8Ci7CznWVa0GsYrFx1mZseaWMUoea7at3_WH0_FStB9T3c20z9T9iwa1eY1RrvaZcXYLbcUZ2HJjtDWdvZydDNJAG7Ipp4yr-9GenaRTZVXeLl3Coyt1z5Vhp6g1js7vobvGq_GnGqLbaCSaHXRb9zn9toO2zcwu_QNDc_7iPvrcQ6_foddfSN9Fr99Hr2_R63fo9RV6fYveXXRxcnx-dBqYNh8Bh9lYBTFVpIsxT7DgIsnyiijOuoqHPJSUhjIsGPi8QqTg28uYFlzihOVZRcFVjiJO8AM0bhaNeIR8WYWskHnGBJaJELhIZMqSirG8SmVFpIcOu0ktueHAV61Y6rL1hWNSGimURgoeOrAnXGv6l-Ghu62U7Dicq9YNxEP7PaltrmPA4qG9ToylWVyWZRxhcOQJxh56Zr-FlV_NKG3EYr0soyJX0Y14eEQcRZlqSDc8AoNKLsCJGh4Bxiv4VFE-PILkcPtgMnnoocbg5g5JnoL-J4__NgV76M5mhXiCxgAq8RSM_RXbN0_QT7I6BbI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-directed+assembly+of+lipid-silica+nanostructures+providing+extended+cell+viability&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=BACA%2C+Helen+K&rft.au=ASHLEY%2C+Carlee&rft.au=LOPEZ%2C+Gabriel+P&rft.au=BROZIK%2C+Susan+M&rft.date=2006-07-21&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.volume=313&rft.issue=5785&rft.spage=337&rft.epage=341&rft_id=info:doi/10.1126%2Fscience.1126590&rft.externalDBID=n%2Fa&rft.externalDocID=18046037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon