Mapping the landscape of machine learning models used for predicting transfusions in surgical procedures: a scoping review
Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and...
Saved in:
| Published in | BMC medical informatics and decision making Vol. 24; no. 1; pp. 312 - 11 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
25.10.2024
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1472-6947 1472-6947 |
| DOI | 10.1186/s12911-024-02729-3 |
Cover
| Abstract | Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions.
The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.
A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.
Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. |
|---|---|
| AbstractList | Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. Keywords: Transfusion, Machine learning, Prediction, Massive haemorrhage Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions. Abstract Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. |
| ArticleNumber | 312 |
| Audience | Academic |
| Author | van Etten-Jamaludin, Faridi S. Duranteau, Olivier Blanchard, Florian Popoff, Benjamin Tuna, Turgay Preckel, Benedikt |
| Author_xml | – sequence: 1 givenname: Olivier surname: Duranteau fullname: Duranteau, Olivier email: olivier.duranteau@hubruxelles.be organization: Anesthesiology Department, Hôpital Erasme, Faculté de médecine, Université Libre de Bruxelles, Intensive Care, HIA Percy – sequence: 2 givenname: Florian surname: Blanchard fullname: Blanchard, Florian organization: DMU DREAM, Department of Anesthesiology and Critical Care, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital – sequence: 3 givenname: Benjamin surname: Popoff fullname: Popoff, Benjamin organization: Anesthesiology and Intensive Care Department, CHU Rouen, LTSI-UMR 1099, CHU Rennes, Inserm, University of Rennes – sequence: 4 givenname: Faridi S. surname: van Etten-Jamaludin fullname: van Etten-Jamaludin, Faridi S. organization: Medical Library AMC, Amsterdam UMC location University of Amsterdam – sequence: 5 givenname: Turgay surname: Tuna fullname: Tuna, Turgay organization: Anesthesiology Department, Hôpital Erasme, Faculté de médecine, Université Libre de Bruxelles – sequence: 6 givenname: Benedikt surname: Preckel fullname: Preckel, Benedikt organization: Department of Anesthesiology, Amsterdam UMC location AMC |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39456049$$D View this record in MEDLINE/PubMed https://hal.science/hal-04785412$$DView record in HAL |
| BookMark | eNqNkktv1DAUhSNURB_wB1igSGxgMcXvxGyqUQW0UhEbWFu2cz3jUcYO9qRV-fU4M6XtVAihKIp1853j63t8XB2EGKCqXmN0inErPmRMJMYzRFh5GyJn9Fl1hFlDZkKy5uDR-rA6znmFEG5ayl9Uh1QyLhCTR9Wvr3oYfFjUmyXUvQ5dtnqAOrp6re3Sh1IEncJErGMHfa7HDF3tYqqHBJ23m6046ZDdmH0MufahzmNaeKv7wkQL3Zggf6x1nW3c7pXg2sPNy-q5032GV3ffk-rH50_fzy9mV9--XJ7Pr2aWS7qZYY6NNEIY4FZyJqnjDknQDgmNJAHWEcOYoNxw0WktjONgadcRQARJ5-hJdbnz7aJeqSH5tU63KmqvtoWYFkqnjbc9KImoo4Qjg9qWsdZog7CwxhhmERIcFy-68xrDoG9vdN_fG2KkplTULhVVUlHbVBQtqrOdahjNGjoLoQys32tl_0_wS7WI18WQY045Kw7vdw7LJ7qL-ZWaaog1LWeYXE89vrvbLcWfI-SNWvtsoS_pQhyzophgxFtBpsbePkFXcUyhpDFRovg1lDxQC11m5IOLpUk7map5i6loGyploU7_QpWng7W35eY6X-p7gjePp3J_rD-XswBkB9gUc07g_m_WdwnlAocFpIcj_UP1G4nPBYw |
| Cites_doi | 10.1016/j.tmrv.2017.06.003 10.14444/7012 10.1097/BRS.0000000000002515 10.1111/trf.15935 10.1007/s12630-017-0925-x 10.1097/ALN.0000000000002694 10.1016/j.jclinepi.2019.02.004 10.1046/j.1537-2995.1997.37597293874.x 10.1007/s00264-013-1795-7 10.1007/s00134-021-06531-x 10.23736/S0375-9393.19.13687-5 10.4338/ACI-2016-11-RA-0195 10.1111/j.1537-2995.2010.02711.x 10.3389/fmed.2021.632210 10.1016/j.ijsu.2021.106183 10.1001/jamapediatrics.2013.25 10.1186/1471-2288-4-22 10.1213/01.ANE.0000132928.45858.92 10.1111/tme.12777 10.3389/fmed.2021.694733 10.1016/j.jpedsurg.2020.10.021 10.6061/clinics/2014(10)04 10.1007/BF02913909 10.1001/jama.2015.12 10.1001/archotol.129.12.1297 10.1001/jamasurg.2021.0522 10.1288/00005537-199508001-00001 10.1016/j.jsurg.2018.04.010 10.1016/j.athoracsur.2004.04.083 10.1186/s13054-019-2347-3 10.1007/s00246-020-02451-7 10.1111/tme.12794 10.1002/bjs.10164 10.1136/bmj.n71 10.1055/s-2007-1020354 10.1016/j.ejvs.2016.12.016 10.1080/14767058.2021.1918670 10.5858/2003-127-0415-FATOFF 10.1186/s13054-014-0518-9 10.1046/j.1537-2995.2001.41101193.x 10.1097/ALN.0b013e31819df9e0 10.1016/j.arth.2017.04.048 10.1213/ANE.0000000000004988 10.1007/s00167-019-05602-3 10.1038/s41551-022-00914-1 10.1186/s12891-021-04715-6 10.1016/0003-4975(95)00808-X 10.2450/2019.0245-18 10.1097/SLA.0000000000003771 10.1213/ANE.0000000000006047 10.1016/j.ajog.2017.01.004 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial - NoDerivatives The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial - NoDerivatives – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12911-024-02729-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Database PROQUEST Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) ProQuest Health Management Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1472-6947 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_903f3250b088448bab016cbbb4c00651 10.1186/s12911-024-02729-3 PMC11515354 oai:HAL:hal-04785412v1 A813687399 39456049 10_1186_s12911_024_02729_3 |
| Genre | Journal Article Scoping Review |
| GeographicLocations | Belgium United States--US |
| GeographicLocations_xml | – name: Belgium – name: United States--US |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0T M1P M48 M7P M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 123 1XC 2VQ 4.4 ADRAZ AHSBF C1A EJD H13 IPNFZ RIG VOOES 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c593t-151b9b66be5c95493f5f09eaf06a092e4d2b44635b56daa6bf5ec3dd2e0209ff3 |
| IEDL.DBID | M48 |
| ISSN | 1472-6947 |
| IngestDate | Fri Oct 03 12:38:11 EDT 2025 Sun Oct 26 02:45:08 EDT 2025 Tue Sep 30 17:07:21 EDT 2025 Tue Oct 14 20:48:13 EDT 2025 Fri Sep 05 10:45:38 EDT 2025 Tue Oct 07 05:31:32 EDT 2025 Mon Oct 20 22:48:33 EDT 2025 Mon Oct 20 16:55:16 EDT 2025 Fri Jan 31 01:44:18 EST 2025 Wed Oct 01 04:44:45 EDT 2025 Sat Sep 06 07:31:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Transfusion Massive haemorrhage Machine learning Prediction |
| Language | English |
| License | 2024. The Author(s). Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c593t-151b9b66be5c95493f5f09eaf06a092e4d2b44635b56daa6bf5ec3dd2e0209ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-3 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2854-0909 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-024-02729-3 |
| PMID | 39456049 |
| PQID | 3126412732 |
| PQPubID | 42572 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_903f3250b088448bab016cbbb4c00651 unpaywall_primary_10_1186_s12911_024_02729_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11515354 hal_primary_oai_HAL_hal_04785412v1 proquest_miscellaneous_3121058623 proquest_journals_3126412732 gale_infotracmisc_A813687399 gale_infotracacademiconefile_A813687399 pubmed_primary_39456049 crossref_primary_10_1186_s12911_024_02729_3 springer_journals_10_1186_s12911_024_02729_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-25 |
| PublicationDateYYYYMMDD | 2024-10-25 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical informatics and decision making |
| PublicationTitleAbbrev | BMC Med Inform Decis Mak |
| PublicationTitleAlternate | BMC Med Inform Decis Mak |
| PublicationYear | 2024 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | C Ngufor (2729_CR30) 2015; 216 NL Krupp (2729_CR56) 2003; 129 R Shen (2729_CR23) 2021; 42 H Huang (2729_CR25) 2021; 31 CW Connor (2729_CR12) 2019; 131 Y Isomatsu (2729_CR48) 2001; 49 2729_CR52 J Slover (2729_CR34) 2017; 32 JM Meier (2729_CR10) 2022; 135 2729_CR49 S Rashiq (2729_CR47) 2004; 99 A Mitterecker (2729_CR9) 2020; 60 Z Wang (2729_CR24) 2022; 12 M De Pasquale (2729_CR32) 2017; 21 D Hayn (2729_CR28) 2017; 8 T Sakai (2729_CR7) 2019; 85 JP McAteer (2729_CR57) 2013; 167 B Muirhead (2729_CR2) 2017; 64 BJ Larocque (2729_CR45) 1997; 37 APJ Vlaar (2729_CR5) 2021; 47 RC Arora (2729_CR33) 2004; 78 2729_CR15 Y Feng (2729_CR37) 2021; 31 ZK McQuilten (2729_CR1) 2018; 32 2729_CR54 2729_CR11 MJ Page (2729_CR13) 2021; 372 AF Cristante (2729_CR53) 2014; 69 BS Brooke (2729_CR14) 2021; 156 LT Da Luz (2729_CR8) 2014; 18 ZB Perkins (2729_CR29) 2021; 274 RSP Huang (2729_CR46) 2015; 45 R Covin (2729_CR31) 2003; 127 N Shahi (2729_CR22) 2021; 56 S Liu (2729_CR39) 2021; 9 X Huang (2729_CR17) 2021; 8 I Welsby (2729_CR19) 2010; 50 B Lenoir (2729_CR35) 2009; 110 J Stanhiser (2729_CR42) 2017; 216 K Karkouti (2729_CR43) 2001; 41 Y Yao (2729_CR20) 2019; 17 M Pieri (2729_CR51) 2017; 53 2729_CR26 A Kadar (2729_CR50) 2013; 37 T Raman (2729_CR21) 2020; 14 DR Spahn (2729_CR3) 2019; 23 Y Kim (2729_CR44) 2016; 103 E Christodoulou (2729_CR60) 2019; 110 C Jo (2729_CR55) 2020; 28 C Canal (2729_CR58) 2018; 75 JQ Wang (2729_CR27) 2020; 26 2729_CR40 2729_CR36 M Muñoz (2729_CR4) 2019; 17 R Krishnan (2729_CR59) 2022; 6 LP Liu (2729_CR38) 2021; 8 P Katrak (2729_CR16) 2004; 4 TV Bilfinger (2729_CR18) 1989; 37 RS Weber (2729_CR41) 1995; 105 JB Holcomb (2729_CR6) 2015; 313 |
| References_xml | – volume: 17 start-page: 340 year: 2019 ident: 2729_CR20 publication-title: J – volume: 32 start-page: 6 year: 2018 ident: 2729_CR1 publication-title: Transfus Med Rev doi: 10.1016/j.tmrv.2017.06.003 – volume: 14 start-page: 87 year: 2020 ident: 2729_CR21 publication-title: Int J Spine Surg doi: 10.14444/7012 – ident: 2729_CR54 doi: 10.1097/BRS.0000000000002515 – volume: 60 start-page: 1977 year: 2020 ident: 2729_CR9 publication-title: Transfusion doi: 10.1111/trf.15935 – volume: 64 start-page: 962 year: 2017 ident: 2729_CR2 publication-title: Can J Anesth/J Can Anesth doi: 10.1007/s12630-017-0925-x – volume: 131 start-page: 1346 year: 2019 ident: 2729_CR12 publication-title: Anesthesiology doi: 10.1097/ALN.0000000000002694 – volume: 110 start-page: 12 year: 2019 ident: 2729_CR60 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2019.02.004 – volume: 37 start-page: 463 year: 1997 ident: 2729_CR45 publication-title: Transfusion doi: 10.1046/j.1537-2995.1997.37597293874.x – volume: 37 start-page: 693 year: 2013 ident: 2729_CR50 publication-title: Int Orthop doi: 10.1007/s00264-013-1795-7 – volume: 47 start-page: 1368 year: 2021 ident: 2729_CR5 publication-title: Intensive Care Med doi: 10.1007/s00134-021-06531-x – volume: 85 start-page: 1346 year: 2019 ident: 2729_CR7 publication-title: Minerva Anestesiol doi: 10.23736/S0375-9393.19.13687-5 – volume: 8 start-page: 617 year: 2017 ident: 2729_CR28 publication-title: Appl Clin Inf doi: 10.4338/ACI-2016-11-RA-0195 – volume: 50 start-page: 2337 issue: 11 year: 2010 ident: 2729_CR19 publication-title: Transfusion doi: 10.1111/j.1537-2995.2010.02711.x – volume: 8 start-page: 632210 year: 2021 ident: 2729_CR38 publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2021.632210 – ident: 2729_CR49 doi: 10.1016/j.ijsu.2021.106183 – volume: 167 start-page: 468 year: 2013 ident: 2729_CR57 publication-title: JAMA Pediatr doi: 10.1001/jamapediatrics.2013.25 – ident: 2729_CR11 – volume: 4 start-page: 22 year: 2004 ident: 2729_CR16 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-4-22 – volume: 99 start-page: 1239 year: 2004 ident: 2729_CR47 publication-title: Anesth Analg doi: 10.1213/01.ANE.0000132928.45858.92 – volume: 31 start-page: 250 year: 2021 ident: 2729_CR25 publication-title: Transfus Med doi: 10.1111/tme.12777 – volume: 8 start-page: 694733 year: 2021 ident: 2729_CR17 publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2021.694733 – volume: 56 start-page: 379 year: 2021 ident: 2729_CR22 publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2020.10.021 – volume: 69 start-page: 672 year: 2014 ident: 2729_CR53 publication-title: Clinics doi: 10.6061/clinics/2014(10)04 – ident: 2729_CR15 – volume: 12 start-page: 1355 year: 2022 ident: 2729_CR24 publication-title: Sci – volume: 26 start-page: e920255 year: 2020 ident: 2729_CR27 publication-title: Med Sci Monit – volume: 49 start-page: 438 year: 2001 ident: 2729_CR48 publication-title: Jpn J Thorac Cardiovasc Surg doi: 10.1007/BF02913909 – volume: 313 start-page: 471 year: 2015 ident: 2729_CR6 publication-title: JAMA doi: 10.1001/jama.2015.12 – volume: 129 start-page: 1297 year: 2003 ident: 2729_CR56 publication-title: Arch Otolaryngol Head Neck Surg doi: 10.1001/archotol.129.12.1297 – volume: 156 start-page: 787 year: 2021 ident: 2729_CR14 publication-title: JAMA Surg doi: 10.1001/jamasurg.2021.0522 – volume: 105 start-page: 1 year: 1995 ident: 2729_CR41 publication-title: Laryngoscope doi: 10.1288/00005537-199508001-00001 – volume: 45 start-page: 181 year: 2015 ident: 2729_CR46 publication-title: Ann Clin Lab Sci – volume: 75 start-page: 1566 year: 2018 ident: 2729_CR58 publication-title: J Surg Educ doi: 10.1016/j.jsurg.2018.04.010 – volume: 78 start-page: 1547 year: 2004 ident: 2729_CR33 publication-title: Ann Thorac Surg doi: 10.1016/j.athoracsur.2004.04.083 – volume: 23 start-page: 98 year: 2019 ident: 2729_CR3 publication-title: Crit Care doi: 10.1186/s13054-019-2347-3 – volume: 42 start-page: 47 year: 2021 ident: 2729_CR23 publication-title: Pediatr Cardiol doi: 10.1007/s00246-020-02451-7 – volume: 31 start-page: 262 year: 2021 ident: 2729_CR37 publication-title: Transfus Med doi: 10.1111/tme.12794 – volume: 21 start-page: 1703 year: 2017 ident: 2729_CR32 publication-title: IEEE j – volume: 9 start-page: 530 year: 2021 ident: 2729_CR39 publication-title: Ann – volume: 103 start-page: 1173 year: 2016 ident: 2729_CR44 publication-title: Br J Surg doi: 10.1002/bjs.10164 – volume: 372 start-page: n71 year: 2021 ident: 2729_CR13 publication-title: BMJ doi: 10.1136/bmj.n71 – volume: 37 start-page: 365 year: 1989 ident: 2729_CR18 publication-title: Thorac Cardiovasc Surg doi: 10.1055/s-2007-1020354 – volume: 53 start-page: 347 year: 2017 ident: 2729_CR51 publication-title: Eur J Vasc Endovasc Surg doi: 10.1016/j.ejvs.2016.12.016 – volume: 216 start-page: 721 year: 2015 ident: 2729_CR30 publication-title: Stud Health Technol Inf – ident: 2729_CR52 doi: 10.1080/14767058.2021.1918670 – volume: 127 start-page: 415 year: 2003 ident: 2729_CR31 publication-title: Arch Pathol Lab Med doi: 10.5858/2003-127-0415-FATOFF – volume: 18 start-page: 518 year: 2014 ident: 2729_CR8 publication-title: Crit Care doi: 10.1186/s13054-014-0518-9 – volume: 41 start-page: 1193 year: 2001 ident: 2729_CR43 publication-title: Transfusion doi: 10.1046/j.1537-2995.2001.41101193.x – volume: 110 start-page: 1050 year: 2009 ident: 2729_CR35 publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31819df9e0 – volume: 32 start-page: 2684 year: 2017 ident: 2729_CR34 publication-title: J Arthroplasty doi: 10.1016/j.arth.2017.04.048 – ident: 2729_CR36 doi: 10.1213/ANE.0000000000004988 – volume: 28 start-page: 1757 year: 2020 ident: 2729_CR55 publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-019-05602-3 – volume: 6 start-page: 1346 year: 2022 ident: 2729_CR59 publication-title: Nat Biomed Eng doi: 10.1038/s41551-022-00914-1 – ident: 2729_CR26 doi: 10.1186/s12891-021-04715-6 – ident: 2729_CR40 doi: 10.1016/0003-4975(95)00808-X – volume: 17 start-page: 112 year: 2019 ident: 2729_CR4 publication-title: Blood Transfus doi: 10.2450/2019.0245-18 – volume: 274 start-page: e1119 year: 2021 ident: 2729_CR29 publication-title: Ann Surg doi: 10.1097/SLA.0000000000003771 – volume: 135 start-page: 524 year: 2022 ident: 2729_CR10 publication-title: Anesth Analgesia doi: 10.1213/ANE.0000000000006047 – volume: 216 start-page: e5061 year: 2017 ident: 2729_CR42 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2017.01.004 |
| SSID | ssj0017835 |
| Score | 2.3829236 |
| SecondaryResourceType | review_article |
| Snippet | Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review... Abstract Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This... |
| SourceID | doaj unpaywall pubmedcentral hal proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 312 |
| SubjectTerms | Anesthesiology Artificial intelligence Bioengineering Blood pressure Blood products Blood Transfusion Blood transfusions Body mass index Body size Case reports Creatinine Data collection Deep learning Fibrinogen Forecasts and trends Health aspects Health Informatics Hemoglobin Hemorrhage Humans Information Systems and Communication Service Keywords Learning algorithms Leukocytes Life Sciences Literature reviews Machine Learning Management of Computing and Information Systems Massive haemorrhage Medicine Medicine & Public Health Methodology Plasma Prediction Prediction models Programming languages Python Regression analysis Risk Risk Assessment Risk factors Software Statistical analysis Statistical models Surgery Surgical Procedures, Operative Thromboplastin Transfusion Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBx4HxJvAggxC4kCjJnbs2twWRLVCLCcq9WbZjk0rlexqswHBr2fGyYZGlYADV9tJHM-M5xvPw4S8rC3jlnnM24qHecVcyJUOIi-0qqK2Fh7CfOflJ7k4rj6ciJMLV31hTFhfHrhfuANd8MhBTzsQBzAlnHUAUrxzrvKoPpPhUyi9M6YG_wGeZ-xSZJQ8aEGr4VEgq9BnyXTOJ2ooVesf9-SrpxgSeRlvXg6bHH2nN8n1rlnbH9_t-fkF9XR0m9wacCWd9_9zh1wJzV1ybTl4zu-Rn0uLlRi-UAB8NOX3YuQTXUX6NYVTQuNwSELT5Tgt7dpQU4C0dL3Bt2zTwwnmdnjC1tKzhrbdJu2cNOnBugPb_Q21FFNdcHifF3OfHB-9__xukQ_3LuReaL7NAQQ47aR0QXj0AvIoYqGDjYW0hWahqpkDK5ILJ2RtrXRRBM_rmgXAnjpG_oDsNasmPCJUW8eisqr2FrBA7ZXV0lbSljwUdYwyI693ZDDrvryGSWaJkqYnmgGimUQ0wzPyFik1jsTS2KkBGMYMDGP-xjAZeYV0NijAsGreDnkIMGEshWXmquRSHQJwy8hsMhIEz0-6XwCnTCazmH802IYlj0RVsm_wtdmOkcywO7SGlwBDSwCOLCPPx258PUa8NWHVpTEAfcHehL9-2PPd-CmuAfaCaZcRNeHIyVymPc3ZaaodXiKA5aLKyP6OeX_P608rvz8y-D8Q6vH_INQTcoOhxAJQYGJG9rabLjwFBLh1z5Kw_wILL1Vy priority: 102 providerName: Directory of Open Access Journals – databaseName: PROQUEST dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_a9QwFA_bDfzyg_jd6ilRBH9wZW3SZo0gcpONQ7xDxMF-C0mTbIPZO69XRf9638u1nWUw_DVJ26Tv5b3Py_sSQl5bzbhmJeZt-f04Y8bFhXR5nMgi81JreAjznWdzMT3OPp3kJ1tk3uXCYFhlJxODoLaLEs_I93gKqjsFZcs-LH_EeGsUele7KzR0e7WCfR9KjG2THYaVsUZk5-Bw_uVr71fAc44udaYQezVoOzwiZBn6MpmM-UA9hSr-vazePsNQyas49Go4Ze9TvU1uNtVS__6lLy7-UVtHd8mdFm_SyYZB7pEtV90nN2atR_0B-TPTWKHhlAIQpCHvFyOi6MLT7yHMEhrbwxMaLs2paVM7SwHq0uUK37IODwf42-DJW03PK1o3qyBRadCPtgGb_h3VFFNgcPgmX-YhOT46_PZxGrf3McRlLvk6BnBgpBHCuLxE7yD3uU-k0z4ROpHMZZYZsC55bnJhtRbG567k1jIHmFR6zx-RUbWo3BNCpTbMF7qwpQaMYMtCS6EzoVPuEuu9iMjbjgxquSm7oYK5Ugi1IZoCoqlANMUjcoCU6kdiyezQsFidqnYHKplwzwHwGZCrYJMabQDtlsaYrEQclkbkDdJZ4caGv1bqNj8BJowlstSkSLko9gHQRWQ8GAkbshx0vwJOGUxmOvmssA1LIeXAxT_ha-OOkVQrNWp1yeMRedl34-sxEq5yiyaMAUgMdiis-vGG7_pPcQlwGEy-iBQDjhzMZdhTnZ-FmuIpAlueZxHZ7Zj3cl7X_fndnsH_g1BPr1_1M3KL4V4EaMDyMRmtV417DphvbV60G_kvCZtUPQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokXgcEG8CCzIIiQONSOzYa3NbKqoVYjlRqTfLdmxaqWRXmw0Ifj0z3mxoVITg6leczIznG88jhLysLeOWeczbitO8Yi7kSgeRF1pVUVsLkzDfefFJzo-rDyfipC-Tg7kwF_33pZJvWtBHeInHKvQ2Mp3zPXIVlJRMjll5OHgM8AZjlxTzx3kjxZPq8w-n8N4pBkFeRpiXAyUHb-lNcr1rVvbHd3t-fkEhHd0mt3okSWdb0t8hV0Jzl1xb9L7ye-TnwmLthS8UIB5NGb0Y60SXkX5NAZTQ2F-L0PQ7nJZ2bagpgFi6WuMqmzQ5AdsO79RaetbQtluns5ImzVd3YK2_pZZicgsO32bC3CfHR-8_H87z_k8LuReab3JQ-047KV0QHv1-PIpY6GBjIW2hWahq5sBu5MIJWVsrXRTB87pmAdCmjpE_IPvNsgmPCNXWsaisqr0F7V97ZbW0lbQlD0Udo8zI6x0ZzGpbUMMkQ0RJsyWaAaKZRDTDM_IOKTWMxGLYqQF4xPSyZXTBIwco5-DEBGvTWQc41jvnKo8Iq8zIK6SzQZGFr-Ztn3kAG8biV2amSi7VFKBaRiajkSBqftT9AjhltJn57KPBNixyJKqSfYOnTXaMZPrzoDUcOBZ6p5xl5PnQjctjjFsTll0aA2AXLEx464dbvhsexTUAXTDmMqJGHDnay7inOTtN1cJLhKxcVBk52DHv73397csfDAz-D4R6_H-rPyE3GMomgAAmJmR_s-7CU0B3G_csifUvsdxGnw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELboVuJx4P0ILMggJA40JbFjb8xtQVQrxFYcqFROlp3YtKJkV5sNiP56ZpxsaChC5WqPEz9mxt_YM2NCnpeGccMKjNvykzhj1sW5ciJOVJ55ZQw0wnjn-b6cHWTvD8VhlyYHY2HO3t-nuXxVw36Eh3gsw9tGpmK-RbalANw9ItsH-x-nn0P40ITFUmWTTVTMXxsOdp6QoL9Xw1tH6AV5HmKe95Tsr0uvkStNtTQ_f5iTkzM70t6N9mmjOiQyREeUr7vN2u4Wp3-kebzYYG-S6x0wpdOWk26RS666TS7Pu6v3O-R0bjCVwxcKiJGGAGF0naILT78Ff0wo7E5ZaHhdp6ZN7UoKmJguV_iVdWgccHKDR3Q1Pa5o3ayC6qVhIy0bMP5fU0MxVgbJ28Cau-Rg792nt7O4e7ghLoTi6xhQhFVWSutEgdeI3AufKGd8Ik2imMtKZsEM5cIKWRojrReu4GXJHIBX5T2_R0bVonIPCFXGMp-bvCwMgImyyI2SJpMm5S4pvZcReblZVL1s83PoYNfkUrfTqWE6dZhOzSPyBte9p8Tc2qEAVkF3oqpVwj0HZGhBAYPxao0FWFxYa7MCAVsakRfINRo1AMxaYbpABugw5tLS0zzlMp8A8ovIeEAJklsMqp8B3w06M5t-0FiGOZNElrLv8Lfxhi11p15qzVPAsSkgTxaRp301fh5d5iq3aAINYGcwWGHU91su7n_FFeBmsA0jkg_4e9CXYU11fBSSj6eIgLnIIrKzEYXf_frXzO_04nKBhXr4f-SPyFWGUgOYgokxGa1XjXsMYHFtn3Ra4hfFFV8P priority: 102 providerName: Unpaywall |
| Title | Mapping the landscape of machine learning models used for predicting transfusions in surgical procedures: a scoping review |
| URI | https://link.springer.com/article/10.1186/s12911-024-02729-3 https://www.ncbi.nlm.nih.gov/pubmed/39456049 https://www.proquest.com/docview/3126412732 https://www.proquest.com/docview/3121058623 https://hal.science/hal-04785412 https://pubmed.ncbi.nlm.nih.gov/PMC11515354 https://doi.org/10.1186/s12911-024-02729-3 https://doaj.org/article/903f3250b088448bab016cbbb4c00651 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010401 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1472-6947 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M48 dateStart: 20010401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfWTeLjAfFNoFQGIfHAAo2duDESQu20MiFaTROVOl4sO7G3SSUtbQOMv547N-2INiF4iVTbcVzfne93tu-OkBe5ZlyzDP22XCeMmbFhKm0StmUaO6k1vIT-zoOhOBjFH8fJeIus0x1VE7i40rTDfFKj-eT1z2_n70Hg33mBT8WbBegs3OhjMZ5IMhnyBtkBTSUxlcMgvjhVwF0O723UYaGQcWftRHNlHzVF5eP5b1btxilemryMSC9frNycrt4k18tips9_6MnkDwXWv01uVciTdlescods2eIuuTaoztbvkV8DjbEaTihAQuo9gPFuFJ06-tVfuITCahuF-vQ5C1oubE4B9NLZHHtZ-pc9EC5xD25Bzwq6KOd-baVeU-YlWPdvqaboDIPNV54z98mov_957yCsMjOEWSL5MgSYYKQRwtgkw3NC7hLXlla7ttBtyWycMwN2Jk9MInKthXGJzXieMwvoVDrHH5DtYlrYR4RKbZhLdZpnGtBCnqVaCh0LHXHbzp0TAXm1JoOarQJwKG-4pEKtiKaAaMoTTfGA9JBSm5YYPNsXTOcnqpJFJdvccYB-BlZYsE6NNoB7M2NMnCEiiwLyEumskOlg1jJdeSrAgDFYluqmERdpB6BdQJq1liCaWa36OXBKbTAH3U8KyzAoUhJH7Dt8rblmJLVmf8UjAKoRQEsWkGebauwe78QVdlr6NgCOwSKFf_1wxXebT3EJwBiMv4CkNY6sjaVeU5yd-ujiEUJcnsQB2V0z78W4_jbzuxsG_wdCPf4vsj4hNxiKJmAGljTJ9nJe2qcABpemRRqdcQeeaf9Di-z09oeHR_BrT-y1_PZKy68A8DzqfYH60fCwe_wbvWtemA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlE4IN4EFjAIxKGNmthJNkZCaHlUW9rtqZX2ZuzEbiuV7LLZUJUfxW9kxnmUqFLFpVfbcZzM6xt7ZkzIm1wxrliGeVt26EdMGz8VJvYDkUZWKAUPYb7zZD8ZH0bfpvF0hfxpc2EwrLLViU5R57MM98i3eAimOwRjyz7Of_p4axSerrZXaNRssWvOz8BlKz_sfAH6vmVs--vB57Hf3CrgZ7HgSx9MnBY6SbSJMzzj4ja2gTDKBokKBDNRzjT4SDzWcZIrlWgbm4znOTOArIS1HOZdJTciDroE5Gc47Ry8EHdR2sScNNkqwZbiBiSL8KSUCZ_3jJ-7I6CzBKvHGIh5GeVeDtbsTmxvk_WqmKvzM3V6-o9R3L5L7jRolo5q9rtHVkxxn9ycNOf1D8jvicL6D0cUYCZ1WcUYb0Vnlv5wQZzQ2GzNUHclT0mr0uQUgDSdL3CWpXvYgesK9_VKelLQslo4fU2d9c2rhSnfU0UxwQaH19k4D8nhtdDlEVkrZoV5QqhQmtlUpXmmAIHkWapEoqJEhdwEubWJRzZaMsh5XdRDOmcoTWRNNAlEk45oknvkE1KqG4kFuV3DbHEkG_mWIuCWA5zUoLXB49VKA5bOtNZRhigv9Mg7pLNEtQF_LVNN9gMsGAtwyVEa8iQdAlz0yKA3EsQ963W_Bk7pLWY82pPYhoWWYpCRX_C2QctIstFJpbyQII-86rpxeoyzK8yscmMAcIOXC1_9uOa77lVcANgGh9IjaY8je2vp9xQnx65ieYiwmceRRzZb5r1Y11V_frNj8P8g1NOrv_olWR8fTPbk3s7-7jNyi6FcAghh8YCsLReVeQ7ocqlfOJGm5Pt165C_4myLeA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokQocEG8CCxiExIFGTezYjbktC6sFuhUHKvVm2YndVirZ1WYDgl_PjJMNjYoQXP2K45mxv_E8TMjL0jBuWIFxW34_zph1ca6ciBOVZ14ZA50w3nl-KGdH2cdjcXwhij94u29Mkm1MA2ZpqtZ7y9K3Ip7LvRpOKbzaYxnaIJmK-Ra5msHphm8YTOSktyPgvcYmVOaP_QbHUcja3-_NW6foGnkZd152n-xtqDfItaZamh_fzfn5hWNqeovc7PAlHbcMcZtccdUdsjPvLOh3yc-5wYwMJxSAHw1xvugBRReefg1ulVDYXZbQ8EhOTZvalRSgLV2ucJR16BzgboM3bTU9q2jdrMIOSsN5WDagw7-hhmLICzZv42PukaPp-y-TWdy9vxAXQvF1DGDAKiuldaJAayD3wifKGZ9IkyjmspJZ0Ca5sEKWxkjrhSt4WTIHGFR5z--T7WpRuYeEKmOZz01eFgYwQVnkRkmTSZNyl5Tey4i83pBBL9s0GzqoJ7nULdE0EE0HomkekbdIqb4lpsgOBYvVie4kTquEew4Az8I-CjqoNRbQbWGtzQrEXWlEXiGdNQoyrFphungEmDCmxNLjPOUy3wcAF5HRoCUIYDGofgGcMpjMbHygsQxTH4ksZd_ga6MNI-lul6g1TwGOpgAgWUSe99U4PHq-VW7RhDYAgUHvhL9-0PJd_ymuAP6CiheRfMCRg7kMa6qz05BDPEUgy0UWkd0N8_6e199Wfrdn8H8g1KP_G_0Z2fn8bqoPPhx-ekyuMxRTQAlMjMj2etW4JwD_1vZpkPBf2IdR1Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELboVuJx4P0ILMggJA40JbFjb8xtQVQrxFYcqFROlp3YtKJkV5sNiP56ZpxsaChC5WqPEz9mxt_YM2NCnpeGccMKjNvykzhj1sW5ciJOVJ55ZQw0wnjn-b6cHWTvD8VhlyYHY2HO3t-nuXxVw36Eh3gsw9tGpmK-RbalANw9ItsH-x-nn0P40ITFUmWTTVTMXxsOdp6QoL9Xw1tH6AV5HmKe95Tsr0uvkStNtTQ_f5iTkzM70t6N9mmjOiQyREeUr7vN2u4Wp3-kebzYYG-S6x0wpdOWk26RS666TS7Pu6v3O-R0bjCVwxcKiJGGAGF0naILT78Ff0wo7E5ZaHhdp6ZN7UoKmJguV_iVdWgccHKDR3Q1Pa5o3ayC6qVhIy0bMP5fU0MxVgbJ28Cau-Rg792nt7O4e7ghLoTi6xhQhFVWSutEgdeI3AufKGd8Ik2imMtKZsEM5cIKWRojrReu4GXJHIBX5T2_R0bVonIPCFXGMp-bvCwMgImyyI2SJpMm5S4pvZcReblZVL1s83PoYNfkUrfTqWE6dZhOzSPyBte9p8Tc2qEAVkF3oqpVwj0HZGhBAYPxao0FWFxYa7MCAVsakRfINRo1AMxaYbpABugw5tLS0zzlMp8A8ovIeEAJklsMqp8B3w06M5t-0FiGOZNElrLv8Lfxhi11p15qzVPAsSkgTxaRp301fh5d5iq3aAINYGcwWGHU91su7n_FFeBmsA0jkg_4e9CXYU11fBSSj6eIgLnIIrKzEYXf_frXzO_04nKBhXr4f-SPyFWGUgOYgokxGa1XjXsMYHFtn3Ra4hfFFV8P |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+landscape+of+machine+learning+models+used+for+predicting+transfusions+in+surgical+procedures%3A+a+scoping+review&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Duranteau%2C+Olivier&rft.au=Blanchard%2C+Florian&rft.au=Popoff%2C+Benjamin&rft.au=van+Etten-Jamaludin%2C+Faridi+S.&rft.date=2024-10-25&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12911-024-02729-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12911_024_02729_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |