Mapping the landscape of machine learning models used for predicting transfusions in surgical procedures: a scoping review

Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 24; no. 1; pp. 312 - 11
Main Authors Duranteau, Olivier, Blanchard, Florian, Popoff, Benjamin, van Etten-Jamaludin, Faridi S., Tuna, Turgay, Preckel, Benedikt
Format Journal Article
LanguageEnglish
Published London BioMed Central 25.10.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-024-02729-3

Cover

Abstract Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.
AbstractList Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.
Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.
Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded.A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies.Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.
Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models. Keywords: Transfusion, Machine learning, Prediction, Massive haemorrhage
Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field's progress and potential directions.
Abstract Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review explores the use of machine learning (ML) models to predict transfusion risk during surgical procedure, focusing on the methodology, variables, and software employed to predict transfusion. This scoping review investigates the development and current state of machine learning models for predicting transfusion risk during surgical procedure, aiming to inform physicians about the field’s progress and potential directions. The review was conducted using the databases Cochrane, Embase, and PubMed. The search included keywords related to blood transfusion, statistical models, and surgical procedures. Peer-reviewed articles were included, while literature reviews, case reports, and non-human studies were excluded. A total of 40 studies met the inclusion criteria. The most frequently studied biological variables included haemoglobin, platelet count, international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, creatinine, white blood cells, and albumin. Clinical variables of importance included age, sex, surgery type, blood pressure, weight, surgery duration, american society of anesthesiology (ASA) status, blood loss, and body mass index (BMI). The software employed varied, with Python, R, SPSS, and SAS being the most commonly used. Logistic regression was the predominant methodology used in 20 studies. Our scoping review highlights the need for improved reporting and transparency in methodology, variables, and software used. Future research should focus on providing detailed descriptions and open access to codes of respective models, promoting reproducibility, and enhancing the clinical relevance of transfusion risk prediction models.
ArticleNumber 312
Audience Academic
Author van Etten-Jamaludin, Faridi S.
Duranteau, Olivier
Blanchard, Florian
Popoff, Benjamin
Tuna, Turgay
Preckel, Benedikt
Author_xml – sequence: 1
  givenname: Olivier
  surname: Duranteau
  fullname: Duranteau, Olivier
  email: olivier.duranteau@hubruxelles.be
  organization: Anesthesiology Department, Hôpital Erasme, Faculté de médecine, Université Libre de Bruxelles, Intensive Care, HIA Percy
– sequence: 2
  givenname: Florian
  surname: Blanchard
  fullname: Blanchard, Florian
  organization: DMU DREAM, Department of Anesthesiology and Critical Care, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital
– sequence: 3
  givenname: Benjamin
  surname: Popoff
  fullname: Popoff, Benjamin
  organization: Anesthesiology and Intensive Care Department, CHU Rouen, LTSI-UMR 1099, CHU Rennes, Inserm, University of Rennes
– sequence: 4
  givenname: Faridi S.
  surname: van Etten-Jamaludin
  fullname: van Etten-Jamaludin, Faridi S.
  organization: Medical Library AMC, Amsterdam UMC location University of Amsterdam
– sequence: 5
  givenname: Turgay
  surname: Tuna
  fullname: Tuna, Turgay
  organization: Anesthesiology Department, Hôpital Erasme, Faculté de médecine, Université Libre de Bruxelles
– sequence: 6
  givenname: Benedikt
  surname: Preckel
  fullname: Preckel, Benedikt
  organization: Department of Anesthesiology, Amsterdam UMC location AMC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39456049$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04785412$$DView record in HAL
BookMark eNqNkktv1DAUhSNURB_wB1igSGxgMcXvxGyqUQW0UhEbWFu2cz3jUcYO9qRV-fU4M6XtVAihKIp1853j63t8XB2EGKCqXmN0inErPmRMJMYzRFh5GyJn9Fl1hFlDZkKy5uDR-rA6znmFEG5ayl9Uh1QyLhCTR9Wvr3oYfFjUmyXUvQ5dtnqAOrp6re3Sh1IEncJErGMHfa7HDF3tYqqHBJ23m6046ZDdmH0MufahzmNaeKv7wkQL3Zggf6x1nW3c7pXg2sPNy-q5032GV3ffk-rH50_fzy9mV9--XJ7Pr2aWS7qZYY6NNEIY4FZyJqnjDknQDgmNJAHWEcOYoNxw0WktjONgadcRQARJ5-hJdbnz7aJeqSH5tU63KmqvtoWYFkqnjbc9KImoo4Qjg9qWsdZog7CwxhhmERIcFy-68xrDoG9vdN_fG2KkplTULhVVUlHbVBQtqrOdahjNGjoLoQys32tl_0_wS7WI18WQY045Kw7vdw7LJ7qL-ZWaaog1LWeYXE89vrvbLcWfI-SNWvtsoS_pQhyzophgxFtBpsbePkFXcUyhpDFRovg1lDxQC11m5IOLpUk7map5i6loGyploU7_QpWng7W35eY6X-p7gjePp3J_rD-XswBkB9gUc07g_m_WdwnlAocFpIcj_UP1G4nPBYw
Cites_doi 10.1016/j.tmrv.2017.06.003
10.14444/7012
10.1097/BRS.0000000000002515
10.1111/trf.15935
10.1007/s12630-017-0925-x
10.1097/ALN.0000000000002694
10.1016/j.jclinepi.2019.02.004
10.1046/j.1537-2995.1997.37597293874.x
10.1007/s00264-013-1795-7
10.1007/s00134-021-06531-x
10.23736/S0375-9393.19.13687-5
10.4338/ACI-2016-11-RA-0195
10.1111/j.1537-2995.2010.02711.x
10.3389/fmed.2021.632210
10.1016/j.ijsu.2021.106183
10.1001/jamapediatrics.2013.25
10.1186/1471-2288-4-22
10.1213/01.ANE.0000132928.45858.92
10.1111/tme.12777
10.3389/fmed.2021.694733
10.1016/j.jpedsurg.2020.10.021
10.6061/clinics/2014(10)04
10.1007/BF02913909
10.1001/jama.2015.12
10.1001/archotol.129.12.1297
10.1001/jamasurg.2021.0522
10.1288/00005537-199508001-00001
10.1016/j.jsurg.2018.04.010
10.1016/j.athoracsur.2004.04.083
10.1186/s13054-019-2347-3
10.1007/s00246-020-02451-7
10.1111/tme.12794
10.1002/bjs.10164
10.1136/bmj.n71
10.1055/s-2007-1020354
10.1016/j.ejvs.2016.12.016
10.1080/14767058.2021.1918670
10.5858/2003-127-0415-FATOFF
10.1186/s13054-014-0518-9
10.1046/j.1537-2995.2001.41101193.x
10.1097/ALN.0b013e31819df9e0
10.1016/j.arth.2017.04.048
10.1213/ANE.0000000000004988
10.1007/s00167-019-05602-3
10.1038/s41551-022-00914-1
10.1186/s12891-021-04715-6
10.1016/0003-4975(95)00808-X
10.2450/2019.0245-18
10.1097/SLA.0000000000003771
10.1213/ANE.0000000000006047
10.1016/j.ajog.2017.01.004
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial - NoDerivatives
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial - NoDerivatives
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12911-024-02729-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
PROQUEST
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
ProQuest Health Management
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
MEDLINE




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 11
ExternalDocumentID oai_doaj_org_article_903f3250b088448bab016cbbb4c00651
10.1186/s12911-024-02729-3
PMC11515354
oai:HAL:hal-04785412v1
A813687399
39456049
10_1186_s12911_024_02729_3
Genre Journal Article
Scoping Review
GeographicLocations Belgium
United States--US
GeographicLocations_xml – name: Belgium
– name: United States--US
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
123
1XC
2VQ
4.4
ADRAZ
AHSBF
C1A
EJD
H13
IPNFZ
RIG
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c593t-151b9b66be5c95493f5f09eaf06a092e4d2b44635b56daa6bf5ec3dd2e0209ff3
IEDL.DBID M48
ISSN 1472-6947
IngestDate Fri Oct 03 12:38:11 EDT 2025
Sun Oct 26 02:45:08 EDT 2025
Tue Sep 30 17:07:21 EDT 2025
Tue Oct 14 20:48:13 EDT 2025
Fri Sep 05 10:45:38 EDT 2025
Tue Oct 07 05:31:32 EDT 2025
Mon Oct 20 22:48:33 EDT 2025
Mon Oct 20 16:55:16 EDT 2025
Fri Jan 31 01:44:18 EST 2025
Wed Oct 01 04:44:45 EDT 2025
Sat Sep 06 07:31:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transfusion
Massive haemorrhage
Machine learning
Prediction
Language English
License 2024. The Author(s).
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-151b9b66be5c95493f5f09eaf06a092e4d2b44635b56daa6bf5ec3dd2e0209ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2854-0909
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-024-02729-3
PMID 39456049
PQID 3126412732
PQPubID 42572
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_903f3250b088448bab016cbbb4c00651
unpaywall_primary_10_1186_s12911_024_02729_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11515354
hal_primary_oai_HAL_hal_04785412v1
proquest_miscellaneous_3121058623
proquest_journals_3126412732
gale_infotracmisc_A813687399
gale_infotracacademiconefile_A813687399
pubmed_primary_39456049
crossref_primary_10_1186_s12911_024_02729_3
springer_journals_10_1186_s12911_024_02729_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-25
PublicationDateYYYYMMDD 2024-10-25
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References C Ngufor (2729_CR30) 2015; 216
NL Krupp (2729_CR56) 2003; 129
R Shen (2729_CR23) 2021; 42
H Huang (2729_CR25) 2021; 31
CW Connor (2729_CR12) 2019; 131
Y Isomatsu (2729_CR48) 2001; 49
2729_CR52
J Slover (2729_CR34) 2017; 32
JM Meier (2729_CR10) 2022; 135
2729_CR49
S Rashiq (2729_CR47) 2004; 99
A Mitterecker (2729_CR9) 2020; 60
Z Wang (2729_CR24) 2022; 12
M De Pasquale (2729_CR32) 2017; 21
D Hayn (2729_CR28) 2017; 8
T Sakai (2729_CR7) 2019; 85
JP McAteer (2729_CR57) 2013; 167
B Muirhead (2729_CR2) 2017; 64
BJ Larocque (2729_CR45) 1997; 37
APJ Vlaar (2729_CR5) 2021; 47
RC Arora (2729_CR33) 2004; 78
2729_CR15
Y Feng (2729_CR37) 2021; 31
ZK McQuilten (2729_CR1) 2018; 32
2729_CR54
2729_CR11
MJ Page (2729_CR13) 2021; 372
AF Cristante (2729_CR53) 2014; 69
BS Brooke (2729_CR14) 2021; 156
LT Da Luz (2729_CR8) 2014; 18
ZB Perkins (2729_CR29) 2021; 274
RSP Huang (2729_CR46) 2015; 45
R Covin (2729_CR31) 2003; 127
N Shahi (2729_CR22) 2021; 56
S Liu (2729_CR39) 2021; 9
X Huang (2729_CR17) 2021; 8
I Welsby (2729_CR19) 2010; 50
B Lenoir (2729_CR35) 2009; 110
J Stanhiser (2729_CR42) 2017; 216
K Karkouti (2729_CR43) 2001; 41
Y Yao (2729_CR20) 2019; 17
M Pieri (2729_CR51) 2017; 53
2729_CR26
A Kadar (2729_CR50) 2013; 37
T Raman (2729_CR21) 2020; 14
DR Spahn (2729_CR3) 2019; 23
Y Kim (2729_CR44) 2016; 103
E Christodoulou (2729_CR60) 2019; 110
C Jo (2729_CR55) 2020; 28
C Canal (2729_CR58) 2018; 75
JQ Wang (2729_CR27) 2020; 26
2729_CR40
2729_CR36
M Muñoz (2729_CR4) 2019; 17
R Krishnan (2729_CR59) 2022; 6
LP Liu (2729_CR38) 2021; 8
P Katrak (2729_CR16) 2004; 4
TV Bilfinger (2729_CR18) 1989; 37
RS Weber (2729_CR41) 1995; 105
JB Holcomb (2729_CR6) 2015; 313
References_xml – volume: 17
  start-page: 340
  year: 2019
  ident: 2729_CR20
  publication-title: J
– volume: 32
  start-page: 6
  year: 2018
  ident: 2729_CR1
  publication-title: Transfus Med Rev
  doi: 10.1016/j.tmrv.2017.06.003
– volume: 14
  start-page: 87
  year: 2020
  ident: 2729_CR21
  publication-title: Int J Spine Surg
  doi: 10.14444/7012
– ident: 2729_CR54
  doi: 10.1097/BRS.0000000000002515
– volume: 60
  start-page: 1977
  year: 2020
  ident: 2729_CR9
  publication-title: Transfusion
  doi: 10.1111/trf.15935
– volume: 64
  start-page: 962
  year: 2017
  ident: 2729_CR2
  publication-title: Can J Anesth/J Can Anesth
  doi: 10.1007/s12630-017-0925-x
– volume: 131
  start-page: 1346
  year: 2019
  ident: 2729_CR12
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002694
– volume: 110
  start-page: 12
  year: 2019
  ident: 2729_CR60
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2019.02.004
– volume: 37
  start-page: 463
  year: 1997
  ident: 2729_CR45
  publication-title: Transfusion
  doi: 10.1046/j.1537-2995.1997.37597293874.x
– volume: 37
  start-page: 693
  year: 2013
  ident: 2729_CR50
  publication-title: Int Orthop
  doi: 10.1007/s00264-013-1795-7
– volume: 47
  start-page: 1368
  year: 2021
  ident: 2729_CR5
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-021-06531-x
– volume: 85
  start-page: 1346
  year: 2019
  ident: 2729_CR7
  publication-title: Minerva Anestesiol
  doi: 10.23736/S0375-9393.19.13687-5
– volume: 8
  start-page: 617
  year: 2017
  ident: 2729_CR28
  publication-title: Appl Clin Inf
  doi: 10.4338/ACI-2016-11-RA-0195
– volume: 50
  start-page: 2337
  issue: 11
  year: 2010
  ident: 2729_CR19
  publication-title: Transfusion
  doi: 10.1111/j.1537-2995.2010.02711.x
– volume: 8
  start-page: 632210
  year: 2021
  ident: 2729_CR38
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2021.632210
– ident: 2729_CR49
  doi: 10.1016/j.ijsu.2021.106183
– volume: 167
  start-page: 468
  year: 2013
  ident: 2729_CR57
  publication-title: JAMA Pediatr
  doi: 10.1001/jamapediatrics.2013.25
– ident: 2729_CR11
– volume: 4
  start-page: 22
  year: 2004
  ident: 2729_CR16
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-4-22
– volume: 99
  start-page: 1239
  year: 2004
  ident: 2729_CR47
  publication-title: Anesth Analg
  doi: 10.1213/01.ANE.0000132928.45858.92
– volume: 31
  start-page: 250
  year: 2021
  ident: 2729_CR25
  publication-title: Transfus Med
  doi: 10.1111/tme.12777
– volume: 8
  start-page: 694733
  year: 2021
  ident: 2729_CR17
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2021.694733
– volume: 56
  start-page: 379
  year: 2021
  ident: 2729_CR22
  publication-title: J Pediatr Surg
  doi: 10.1016/j.jpedsurg.2020.10.021
– volume: 69
  start-page: 672
  year: 2014
  ident: 2729_CR53
  publication-title: Clinics
  doi: 10.6061/clinics/2014(10)04
– ident: 2729_CR15
– volume: 12
  start-page: 1355
  year: 2022
  ident: 2729_CR24
  publication-title: Sci
– volume: 26
  start-page: e920255
  year: 2020
  ident: 2729_CR27
  publication-title: Med Sci Monit
– volume: 49
  start-page: 438
  year: 2001
  ident: 2729_CR48
  publication-title: Jpn J Thorac Cardiovasc Surg
  doi: 10.1007/BF02913909
– volume: 313
  start-page: 471
  year: 2015
  ident: 2729_CR6
  publication-title: JAMA
  doi: 10.1001/jama.2015.12
– volume: 129
  start-page: 1297
  year: 2003
  ident: 2729_CR56
  publication-title: Arch Otolaryngol Head Neck Surg
  doi: 10.1001/archotol.129.12.1297
– volume: 156
  start-page: 787
  year: 2021
  ident: 2729_CR14
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2021.0522
– volume: 105
  start-page: 1
  year: 1995
  ident: 2729_CR41
  publication-title: Laryngoscope
  doi: 10.1288/00005537-199508001-00001
– volume: 45
  start-page: 181
  year: 2015
  ident: 2729_CR46
  publication-title: Ann Clin Lab Sci
– volume: 75
  start-page: 1566
  year: 2018
  ident: 2729_CR58
  publication-title: J Surg Educ
  doi: 10.1016/j.jsurg.2018.04.010
– volume: 78
  start-page: 1547
  year: 2004
  ident: 2729_CR33
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2004.04.083
– volume: 23
  start-page: 98
  year: 2019
  ident: 2729_CR3
  publication-title: Crit Care
  doi: 10.1186/s13054-019-2347-3
– volume: 42
  start-page: 47
  year: 2021
  ident: 2729_CR23
  publication-title: Pediatr Cardiol
  doi: 10.1007/s00246-020-02451-7
– volume: 31
  start-page: 262
  year: 2021
  ident: 2729_CR37
  publication-title: Transfus Med
  doi: 10.1111/tme.12794
– volume: 21
  start-page: 1703
  year: 2017
  ident: 2729_CR32
  publication-title: IEEE j
– volume: 9
  start-page: 530
  year: 2021
  ident: 2729_CR39
  publication-title: Ann
– volume: 103
  start-page: 1173
  year: 2016
  ident: 2729_CR44
  publication-title: Br J Surg
  doi: 10.1002/bjs.10164
– volume: 372
  start-page: n71
  year: 2021
  ident: 2729_CR13
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– volume: 37
  start-page: 365
  year: 1989
  ident: 2729_CR18
  publication-title: Thorac Cardiovasc Surg
  doi: 10.1055/s-2007-1020354
– volume: 53
  start-page: 347
  year: 2017
  ident: 2729_CR51
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1016/j.ejvs.2016.12.016
– volume: 216
  start-page: 721
  year: 2015
  ident: 2729_CR30
  publication-title: Stud Health Technol Inf
– ident: 2729_CR52
  doi: 10.1080/14767058.2021.1918670
– volume: 127
  start-page: 415
  year: 2003
  ident: 2729_CR31
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/2003-127-0415-FATOFF
– volume: 18
  start-page: 518
  year: 2014
  ident: 2729_CR8
  publication-title: Crit Care
  doi: 10.1186/s13054-014-0518-9
– volume: 41
  start-page: 1193
  year: 2001
  ident: 2729_CR43
  publication-title: Transfusion
  doi: 10.1046/j.1537-2995.2001.41101193.x
– volume: 110
  start-page: 1050
  year: 2009
  ident: 2729_CR35
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31819df9e0
– volume: 32
  start-page: 2684
  year: 2017
  ident: 2729_CR34
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2017.04.048
– ident: 2729_CR36
  doi: 10.1213/ANE.0000000000004988
– volume: 28
  start-page: 1757
  year: 2020
  ident: 2729_CR55
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-019-05602-3
– volume: 6
  start-page: 1346
  year: 2022
  ident: 2729_CR59
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-022-00914-1
– ident: 2729_CR26
  doi: 10.1186/s12891-021-04715-6
– ident: 2729_CR40
  doi: 10.1016/0003-4975(95)00808-X
– volume: 17
  start-page: 112
  year: 2019
  ident: 2729_CR4
  publication-title: Blood Transfus
  doi: 10.2450/2019.0245-18
– volume: 274
  start-page: e1119
  year: 2021
  ident: 2729_CR29
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000003771
– volume: 135
  start-page: 524
  year: 2022
  ident: 2729_CR10
  publication-title: Anesth Analgesia
  doi: 10.1213/ANE.0000000000006047
– volume: 216
  start-page: e5061
  year: 2017
  ident: 2729_CR42
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2017.01.004
SSID ssj0017835
Score 2.3829236
SecondaryResourceType review_article
Snippet Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This review...
Abstract Massive transfusion of blood products poses challenges in determining the need for transfusion and the appropriate volume of blood products. This...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 312
SubjectTerms Anesthesiology
Artificial intelligence
Bioengineering
Blood pressure
Blood products
Blood Transfusion
Blood transfusions
Body mass index
Body size
Case reports
Creatinine
Data collection
Deep learning
Fibrinogen
Forecasts and trends
Health aspects
Health Informatics
Hemoglobin
Hemorrhage
Humans
Information Systems and Communication Service
Keywords
Learning algorithms
Leukocytes
Life Sciences
Literature reviews
Machine Learning
Management of Computing and Information Systems
Massive haemorrhage
Medicine
Medicine & Public Health
Methodology
Plasma
Prediction
Prediction models
Programming languages
Python
Regression analysis
Risk
Risk Assessment
Risk factors
Software
Statistical analysis
Statistical models
Surgery
Surgical Procedures, Operative
Thromboplastin
Transfusion
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBx4HxJvAggxC4kCjJnbs2twWRLVCLCcq9WbZjk0rlexqswHBr2fGyYZGlYADV9tJHM-M5xvPw4S8rC3jlnnM24qHecVcyJUOIi-0qqK2Fh7CfOflJ7k4rj6ciJMLV31hTFhfHrhfuANd8MhBTzsQBzAlnHUAUrxzrvKoPpPhUyi9M6YG_wGeZ-xSZJQ8aEGr4VEgq9BnyXTOJ2ooVesf9-SrpxgSeRlvXg6bHH2nN8n1rlnbH9_t-fkF9XR0m9wacCWd9_9zh1wJzV1ybTl4zu-Rn0uLlRi-UAB8NOX3YuQTXUX6NYVTQuNwSELT5Tgt7dpQU4C0dL3Bt2zTwwnmdnjC1tKzhrbdJu2cNOnBugPb_Q21FFNdcHifF3OfHB-9__xukQ_3LuReaL7NAQQ47aR0QXj0AvIoYqGDjYW0hWahqpkDK5ILJ2RtrXRRBM_rmgXAnjpG_oDsNasmPCJUW8eisqr2FrBA7ZXV0lbSljwUdYwyI693ZDDrvryGSWaJkqYnmgGimUQ0wzPyFik1jsTS2KkBGMYMDGP-xjAZeYV0NijAsGreDnkIMGEshWXmquRSHQJwy8hsMhIEz0-6XwCnTCazmH802IYlj0RVsm_wtdmOkcywO7SGlwBDSwCOLCPPx258PUa8NWHVpTEAfcHehL9-2PPd-CmuAfaCaZcRNeHIyVymPc3ZaaodXiKA5aLKyP6OeX_P608rvz8y-D8Q6vH_INQTcoOhxAJQYGJG9rabLjwFBLh1z5Kw_wILL1Vy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: PROQUEST
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_a9QwFA_bDfzyg_jd6ilRBH9wZW3SZo0gcpONQ7xDxMF-C0mTbIPZO69XRf9638u1nWUw_DVJ26Tv5b3Py_sSQl5bzbhmJeZt-f04Y8bFhXR5nMgi81JreAjznWdzMT3OPp3kJ1tk3uXCYFhlJxODoLaLEs_I93gKqjsFZcs-LH_EeGsUele7KzR0e7WCfR9KjG2THYaVsUZk5-Bw_uVr71fAc44udaYQezVoOzwiZBn6MpmM-UA9hSr-vazePsNQyas49Go4Ze9TvU1uNtVS__6lLy7-UVtHd8mdFm_SyYZB7pEtV90nN2atR_0B-TPTWKHhlAIQpCHvFyOi6MLT7yHMEhrbwxMaLs2paVM7SwHq0uUK37IODwf42-DJW03PK1o3qyBRadCPtgGb_h3VFFNgcPgmX-YhOT46_PZxGrf3McRlLvk6BnBgpBHCuLxE7yD3uU-k0z4ROpHMZZYZsC55bnJhtRbG567k1jIHmFR6zx-RUbWo3BNCpTbMF7qwpQaMYMtCS6EzoVPuEuu9iMjbjgxquSm7oYK5Ugi1IZoCoqlANMUjcoCU6kdiyezQsFidqnYHKplwzwHwGZCrYJMabQDtlsaYrEQclkbkDdJZ4caGv1bqNj8BJowlstSkSLko9gHQRWQ8GAkbshx0vwJOGUxmOvmssA1LIeXAxT_ha-OOkVQrNWp1yeMRedl34-sxEq5yiyaMAUgMdiis-vGG7_pPcQlwGEy-iBQDjhzMZdhTnZ-FmuIpAlueZxHZ7Zj3cl7X_fndnsH_g1BPr1_1M3KL4V4EaMDyMRmtV417DphvbV60G_kvCZtUPQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokXgcEG8CCzIIiQONSOzYa3NbKqoVYjlRqTfLdmxaqWRXmw0Ifj0z3mxoVITg6leczIznG88jhLysLeOWeczbitO8Yi7kSgeRF1pVUVsLkzDfefFJzo-rDyfipC-Tg7kwF_33pZJvWtBHeInHKvQ2Mp3zPXIVlJRMjll5OHgM8AZjlxTzx3kjxZPq8w-n8N4pBkFeRpiXAyUHb-lNcr1rVvbHd3t-fkEhHd0mt3okSWdb0t8hV0Jzl1xb9L7ye-TnwmLthS8UIB5NGb0Y60SXkX5NAZTQ2F-L0PQ7nJZ2bagpgFi6WuMqmzQ5AdsO79RaetbQtluns5ImzVd3YK2_pZZicgsO32bC3CfHR-8_H87z_k8LuReab3JQ-047KV0QHv1-PIpY6GBjIW2hWahq5sBu5MIJWVsrXRTB87pmAdCmjpE_IPvNsgmPCNXWsaisqr0F7V97ZbW0lbQlD0Udo8zI6x0ZzGpbUMMkQ0RJsyWaAaKZRDTDM_IOKTWMxGLYqQF4xPSyZXTBIwco5-DEBGvTWQc41jvnKo8Iq8zIK6SzQZGFr-Ztn3kAG8biV2amSi7VFKBaRiajkSBqftT9AjhltJn57KPBNixyJKqSfYOnTXaMZPrzoDUcOBZ6p5xl5PnQjctjjFsTll0aA2AXLEx464dbvhsexTUAXTDmMqJGHDnay7inOTtN1cJLhKxcVBk52DHv73397csfDAz-D4R6_H-rPyE3GMomgAAmJmR_s-7CU0B3G_csifUvsdxGnw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELboVuJx4P0ILMggJA40JbFjb8xtQVQrxFYcqFROlp3YtKJkV5sNiP56ZpxsaChC5WqPEz9mxt_YM2NCnpeGccMKjNvykzhj1sW5ciJOVJ55ZQw0wnjn-b6cHWTvD8VhlyYHY2HO3t-nuXxVw36Eh3gsw9tGpmK-RbalANw9ItsH-x-nn0P40ITFUmWTTVTMXxsOdp6QoL9Xw1tH6AV5HmKe95Tsr0uvkStNtTQ_f5iTkzM70t6N9mmjOiQyREeUr7vN2u4Wp3-kebzYYG-S6x0wpdOWk26RS666TS7Pu6v3O-R0bjCVwxcKiJGGAGF0naILT78Ff0wo7E5ZaHhdp6ZN7UoKmJguV_iVdWgccHKDR3Q1Pa5o3ayC6qVhIy0bMP5fU0MxVgbJ28Cau-Rg792nt7O4e7ghLoTi6xhQhFVWSutEgdeI3AufKGd8Ik2imMtKZsEM5cIKWRojrReu4GXJHIBX5T2_R0bVonIPCFXGMp-bvCwMgImyyI2SJpMm5S4pvZcReblZVL1s83PoYNfkUrfTqWE6dZhOzSPyBte9p8Tc2qEAVkF3oqpVwj0HZGhBAYPxao0FWFxYa7MCAVsakRfINRo1AMxaYbpABugw5tLS0zzlMp8A8ovIeEAJklsMqp8B3w06M5t-0FiGOZNElrLv8Lfxhi11p15qzVPAsSkgTxaRp301fh5d5iq3aAINYGcwWGHU91su7n_FFeBmsA0jkg_4e9CXYU11fBSSj6eIgLnIIrKzEYXf_frXzO_04nKBhXr4f-SPyFWGUgOYgokxGa1XjXsMYHFtn3Ra4hfFFV8P
  priority: 102
  providerName: Unpaywall
Title Mapping the landscape of machine learning models used for predicting transfusions in surgical procedures: a scoping review
URI https://link.springer.com/article/10.1186/s12911-024-02729-3
https://www.ncbi.nlm.nih.gov/pubmed/39456049
https://www.proquest.com/docview/3126412732
https://www.proquest.com/docview/3121058623
https://hal.science/hal-04785412
https://pubmed.ncbi.nlm.nih.gov/PMC11515354
https://doi.org/10.1186/s12911-024-02729-3
https://doaj.org/article/903f3250b088448bab016cbbb4c00651
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfWTeLjAfFNoFQGIfHAAo2duDESQu20MiFaTROVOl4sO7G3SSUtbQOMv547N-2INiF4iVTbcVzfne93tu-OkBe5ZlyzDP22XCeMmbFhKm0StmUaO6k1vIT-zoOhOBjFH8fJeIus0x1VE7i40rTDfFKj-eT1z2_n70Hg33mBT8WbBegs3OhjMZ5IMhnyBtkBTSUxlcMgvjhVwF0O723UYaGQcWftRHNlHzVF5eP5b1btxilemryMSC9frNycrt4k18tips9_6MnkDwXWv01uVciTdlescods2eIuuTaoztbvkV8DjbEaTihAQuo9gPFuFJ06-tVfuITCahuF-vQ5C1oubE4B9NLZHHtZ-pc9EC5xD25Bzwq6KOd-baVeU-YlWPdvqaboDIPNV54z98mov_957yCsMjOEWSL5MgSYYKQRwtgkw3NC7hLXlla7ttBtyWycMwN2Jk9MInKthXGJzXieMwvoVDrHH5DtYlrYR4RKbZhLdZpnGtBCnqVaCh0LHXHbzp0TAXm1JoOarQJwKG-4pEKtiKaAaMoTTfGA9JBSm5YYPNsXTOcnqpJFJdvccYB-BlZYsE6NNoB7M2NMnCEiiwLyEumskOlg1jJdeSrAgDFYluqmERdpB6BdQJq1liCaWa36OXBKbTAH3U8KyzAoUhJH7Dt8rblmJLVmf8UjAKoRQEsWkGebauwe78QVdlr6NgCOwSKFf_1wxXebT3EJwBiMv4CkNY6sjaVeU5yd-ujiEUJcnsQB2V0z78W4_jbzuxsG_wdCPf4vsj4hNxiKJmAGljTJ9nJe2qcABpemRRqdcQeeaf9Di-z09oeHR_BrT-y1_PZKy68A8DzqfYH60fCwe_wbvWtemA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlE4IN4EFjAIxKGNmthJNkZCaHlUW9rtqZX2ZuzEbiuV7LLZUJUfxW9kxnmUqFLFpVfbcZzM6xt7ZkzIm1wxrliGeVt26EdMGz8VJvYDkUZWKAUPYb7zZD8ZH0bfpvF0hfxpc2EwrLLViU5R57MM98i3eAimOwRjyz7Of_p4axSerrZXaNRssWvOz8BlKz_sfAH6vmVs--vB57Hf3CrgZ7HgSx9MnBY6SbSJMzzj4ja2gTDKBokKBDNRzjT4SDzWcZIrlWgbm4znOTOArIS1HOZdJTciDroE5Gc47Ry8EHdR2sScNNkqwZbiBiSL8KSUCZ_3jJ-7I6CzBKvHGIh5GeVeDtbsTmxvk_WqmKvzM3V6-o9R3L5L7jRolo5q9rtHVkxxn9ycNOf1D8jvicL6D0cUYCZ1WcUYb0Vnlv5wQZzQ2GzNUHclT0mr0uQUgDSdL3CWpXvYgesK9_VKelLQslo4fU2d9c2rhSnfU0UxwQaH19k4D8nhtdDlEVkrZoV5QqhQmtlUpXmmAIHkWapEoqJEhdwEubWJRzZaMsh5XdRDOmcoTWRNNAlEk45oknvkE1KqG4kFuV3DbHEkG_mWIuCWA5zUoLXB49VKA5bOtNZRhigv9Mg7pLNEtQF_LVNN9gMsGAtwyVEa8iQdAlz0yKA3EsQ963W_Bk7pLWY82pPYhoWWYpCRX_C2QctIstFJpbyQII-86rpxeoyzK8yscmMAcIOXC1_9uOa77lVcANgGh9IjaY8je2vp9xQnx65ieYiwmceRRzZb5r1Y11V_frNj8P8g1NOrv_olWR8fTPbk3s7-7jNyi6FcAghh8YCsLReVeQ7ocqlfOJGm5Pt165C_4myLeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokQocEG8CCxiExIFGTezYjbktC6sFuhUHKvVm2YndVirZ1WYDgl_PjJMNjYoQXP2K45mxv_E8TMjL0jBuWIFxW34_zph1ca6ciBOVZ14ZA50w3nl-KGdH2cdjcXwhij94u29Mkm1MA2ZpqtZ7y9K3Ip7LvRpOKbzaYxnaIJmK-Ra5msHphm8YTOSktyPgvcYmVOaP_QbHUcja3-_NW6foGnkZd152n-xtqDfItaZamh_fzfn5hWNqeovc7PAlHbcMcZtccdUdsjPvLOh3yc-5wYwMJxSAHw1xvugBRReefg1ulVDYXZbQ8EhOTZvalRSgLV2ucJR16BzgboM3bTU9q2jdrMIOSsN5WDagw7-hhmLICzZv42PukaPp-y-TWdy9vxAXQvF1DGDAKiuldaJAayD3wifKGZ9IkyjmspJZ0Ca5sEKWxkjrhSt4WTIHGFR5z--T7WpRuYeEKmOZz01eFgYwQVnkRkmTSZNyl5Tey4i83pBBL9s0GzqoJ7nULdE0EE0HomkekbdIqb4lpsgOBYvVie4kTquEew4Az8I-CjqoNRbQbWGtzQrEXWlEXiGdNQoyrFphungEmDCmxNLjPOUy3wcAF5HRoCUIYDGofgGcMpjMbHygsQxTH4ksZd_ga6MNI-lul6g1TwGOpgAgWUSe99U4PHq-VW7RhDYAgUHvhL9-0PJd_ymuAP6CiheRfMCRg7kMa6qz05BDPEUgy0UWkd0N8_6e199Wfrdn8H8g1KP_G_0Z2fn8bqoPPhx-ekyuMxRTQAlMjMj2etW4JwD_1vZpkPBf2IdR1Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELboVuJx4P0ILMggJA40JbFjb8xtQVQrxFYcqFROlp3YtKJkV5sNiP56ZpxsaChC5WqPEz9mxt_YM2NCnpeGccMKjNvykzhj1sW5ciJOVJ55ZQw0wnjn-b6cHWTvD8VhlyYHY2HO3t-nuXxVw36Eh3gsw9tGpmK-RbalANw9ItsH-x-nn0P40ITFUmWTTVTMXxsOdp6QoL9Xw1tH6AV5HmKe95Tsr0uvkStNtTQ_f5iTkzM70t6N9mmjOiQyREeUr7vN2u4Wp3-kebzYYG-S6x0wpdOWk26RS666TS7Pu6v3O-R0bjCVwxcKiJGGAGF0naILT78Ff0wo7E5ZaHhdp6ZN7UoKmJguV_iVdWgccHKDR3Q1Pa5o3ayC6qVhIy0bMP5fU0MxVgbJ28Cau-Rg792nt7O4e7ghLoTi6xhQhFVWSutEgdeI3AufKGd8Ik2imMtKZsEM5cIKWRojrReu4GXJHIBX5T2_R0bVonIPCFXGMp-bvCwMgImyyI2SJpMm5S4pvZcReblZVL1s83PoYNfkUrfTqWE6dZhOzSPyBte9p8Tc2qEAVkF3oqpVwj0HZGhBAYPxao0FWFxYa7MCAVsakRfINRo1AMxaYbpABugw5tLS0zzlMp8A8ovIeEAJklsMqp8B3w06M5t-0FiGOZNElrLv8Lfxhi11p15qzVPAsSkgTxaRp301fh5d5iq3aAINYGcwWGHU91su7n_FFeBmsA0jkg_4e9CXYU11fBSSj6eIgLnIIrKzEYXf_frXzO_04nKBhXr4f-SPyFWGUgOYgokxGa1XjXsMYHFtn3Ra4hfFFV8P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+landscape+of+machine+learning+models+used+for+predicting+transfusions+in+surgical+procedures%3A+a+scoping+review&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Duranteau%2C+Olivier&rft.au=Blanchard%2C+Florian&rft.au=Popoff%2C+Benjamin&rft.au=van+Etten-Jamaludin%2C+Faridi+S.&rft.date=2024-10-25&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12911-024-02729-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12911_024_02729_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon