基于足底压力信息的跌倒姿态聚类识别方法

为了进一步提高基于足底压力传感器的老年跌倒检测系统的识别率,以及准确地判断人体跌倒方向,提出了利用自组织映射神经网络(SOM)和足底压力传感信息对人体动作进行聚类分析的方法。为了验证SOM方法的识别效果,采取包含跌倒在内的13类常见动作的130个样本对训练好的SOM网络进行测试。测试结果表明,系统灵敏度、特异度及准确度分别为92.5%、93.3%、93.1%,其结果均优于常用的阈值法。综上,SOM方法对人体跌倒姿态识别具有较高的可靠性和准确度。...

Full description

Saved in:
Bibliographic Details
Published in电子技术应用 Vol. 42; no. 5; pp. 113 - 115
Main Author 陈洪波 高青 冯涛 朱振朋 刘喻
Format Journal Article
LanguageChinese
Published 桂林电子科技大学生命与环境科学学院,广西桂林,541004 2016
Subjects
Online AccessGet full text
ISSN0258-7998
DOI10.16157/j.issn.0258-7998.2016.05.031

Cover

Abstract 为了进一步提高基于足底压力传感器的老年跌倒检测系统的识别率,以及准确地判断人体跌倒方向,提出了利用自组织映射神经网络(SOM)和足底压力传感信息对人体动作进行聚类分析的方法。为了验证SOM方法的识别效果,采取包含跌倒在内的13类常见动作的130个样本对训练好的SOM网络进行测试。测试结果表明,系统灵敏度、特异度及准确度分别为92.5%、93.3%、93.1%,其结果均优于常用的阈值法。综上,SOM方法对人体跌倒姿态识别具有较高的可靠性和准确度。
AbstractList 为了进一步提高基于足底压力传感器的老年跌倒检测系统的识别率,以及准确地判断人体跌倒方向,提出了利用自组织映射神经网络(SOM)和足底压力传感信息对人体动作进行聚类分析的方法。为了验证SOM方法的识别效果,采取包含跌倒在内的13类常见动作的130个样本对训练好的SOM网络进行测试。测试结果表明,系统灵敏度、特异度及准确度分别为92.5%、93.3%、93.1%,其结果均优于常用的阈值法。综上,SOM方法对人体跌倒姿态识别具有较高的可靠性和准确度。
TM501; 为了进一步提高基于足底压力传感器的老年跌倒检测系统的识别率,以及准确地判断人体跌倒方向,提出了利用自组织映射神经网络(SOM)和足底压力传感信息对人体动作进行聚类分析的方法.为了验证SOM方法的识别效果,采取包含跌倒在内的13类常见动作的130个样本对训练好的SOM网络进行测试.测试结果表明,系统灵敏度、特异度及准确度分别为92.5%、93.3%、93.1%,其结果均优于常用的阈值法.综上,SOM方法对人体跌倒姿态识别具有较高的可靠性和准确度.
Author 陈洪波 高青 冯涛 朱振朋 刘喻
AuthorAffiliation 桂林电子科技大学生命与环境科学学院,广西桂林541004
AuthorAffiliation_xml – name: 桂林电子科技大学生命与环境科学学院,广西桂林,541004
Author_FL Liu Yu
Feng Tao
Chen Hongbo
Zhu Zhenpeng
Gao Qing
Author_FL_xml – sequence: 1
  fullname: Chen Hongbo
– sequence: 2
  fullname: Gao Qing
– sequence: 3
  fullname: Feng Tao
– sequence: 4
  fullname: Zhu Zhenpeng
– sequence: 5
  fullname: Liu Yu
Author_xml – sequence: 1
  fullname: 陈洪波 高青 冯涛 朱振朋 刘喻
BookMark eNo9j09LAkEYxudgkJVfIohOu70zr7M7cwzpHwhdvMvsuGsrNZZLhJ0UIqLCQ2AHO0SnDh0khCI7-GWcdT9GhtHpgYcfv4dnheRM04SEbFBwqUe5v9Vw4yQxLjAuHF9K4TKgngvcBaQ5kv_vl0khSeIAgFJggmOeSPs8no572cfIjvu2d2dvn6aTl7Q7nA2uss9723mwr5O00826g9n7dza8tjdv6eNXOuqvkaVIHSdh4S9XSWV3p1Lad8qHewel7bKjuURHA4ZUKs6KHAMRCgm-oj4PFFM17YkAERTXTCs_0FiUgBENGCpQtSKLGEpcJZsL7YUykTL1aqN53jLzwWrtspG0279PgQPinFxfkPqoaepn8Zw9bcUnqtWuep7wPSoB8AezR2yF
ClassificationCodes TM501
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16157/j.issn.0258-7998.2016.05.031
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Clustering method for body falling gesture recognition based on sole pressure information
DocumentTitle_FL Clustering method for body falling gesture recognition based on sole pressure information
EndPage 115
ExternalDocumentID dzjsyy201605033
668761900
GrantInformation_xml – fundername: 国家自然科学基金; 广西科技攻关计划项目; 广西自然科学基金
  funderid: (81460273); (桂科攻1348020-10); (2013GXNSFA019325)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c593-c03e19a52453b8e8907a175ba2adc68b330a5c2ca7bc34903f1b23a0ad42f2393
ISSN 0258-7998
IngestDate Thu May 29 04:04:53 EDT 2025
Wed Feb 14 10:18:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords body gesture recognition
Self-Organizing Map(SOM) neural network
足底压力传感信息
自组织映射神经网络
cluster analysis
聚类分析
人体跌倒姿态识别
sole pressure sensor
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c593-c03e19a52453b8e8907a175ba2adc68b330a5c2ca7bc34903f1b23a0ad42f2393
Notes In order to improve the performance of fall detection system for the elderly based on sole pressure sensor, and accurately to judge the fall direction of human body, a method was put forward based on self-organizing map neural network( SOM) and the information of sole pressure sensor to cluster and analyze the human motion. To verify the recognition results of the SOM method, 130 samples of 13 common action including fall were participated in the SOM network testing. The results show that the sensitivity, specificity and accuracy of the new system were 92.5 %, 93.3 % and 93.1 % respectively. These results were better than those of the method of threshold value.
11-2305/TN
Self-Organizing Map(SOM) neural network;cluster analysis;sole pressure sensor;body gesture recognition
Chen Hongbo, Gao Qing, Feng Tao, Zhu Zhenpeng, Liu Yu (School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China)
PageCount 3
ParticipantIDs wanfang_journals_dzjsyy201605033
chongqing_primary_668761900
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 电子技术应用
PublicationTitleAlternate Application of Electronic Technique
PublicationTitle_FL Application of Electronic Technique
PublicationYear 2016
Publisher 桂林电子科技大学生命与环境科学学院,广西桂林,541004
Publisher_xml – name: 桂林电子科技大学生命与环境科学学院,广西桂林,541004
SSID ssib001102853
ssib017479494
ssib038074684
ssib051374551
ssj0042189
ssib023646353
Score 2.0447254
Snippet 为了进一步提高基于足底压力传感器的老年跌倒检测系统的识别率,以及准确地判断人体跌倒方向,提出了利用自组织映射神经网络(SOM)和足底压力传感信息对人体动作进行聚类分...
TM501; 为了进一步提高基于足底压力传感器的老年跌倒检测系统的识别率,以及准确地判断人体跌倒方向,提出了利用自组织映射神经网络(SOM)和足底压力传感信息对人体动作进行...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 113
SubjectTerms 人体跌倒姿态识别
聚类分析
自组织映射神经网络
足底压力传感信息
Title 基于足底压力信息的跌倒姿态聚类识别方法
URI http://lib.cqvip.com/qk/90393X/201605/668761900.html
https://d.wanfangdata.com.cn/periodical/dzjsyy201605033
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  issn: 0258-7998
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0042189
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR09b9Uw0CpFQjAgPkUpoDfgqUpJYju2x_iRpwoJpiJ1e0ryklYMr0DboZ36JIQQoA5IZSgDYmJgqFAlEGXoT2FpXt_P4M7JS4NAFbBYp_P57uxL7LPlOxNyO0gTHeQyc-KUuQ4XOfxzIhNOLmOV40sP5VsE9x8Ecw_5vQWxMDHxo3FraW01mU03_hhX8j9WBRzYFaNk_8GyNVNAAAz2hRIsDOVf2ZhGguoONSGNOJYqopGiJqCGYRVgtEAA8MpYADDGEndo6NEoAEeShh0aSaqhObfNJVVtS-xS7SMQSqRHYhfpgQZKoIdWxqPGIAaYqMC2AtggsQY1NAKgTPnC5dgJtuJAB6tbeJdq1zIPkT82bFuVSv15RRzWV25ppKnWKAd5Q01YCQn9GawD6VpZIuCMKIGahbYDMDTazFRCTDkA7aoOMMrMVF1ADsJ2wTTPRcqAzWri9IVypC5ftx7P8txvfM2iMWV7ZSxstfp7ZXDpbwsLOH7SriwoYbaWgHcDA5v6tVrLfs3dHQQKj4lc9xQ57SPU2PNbfxXdu2N_CXaHMD0eT5CY3B8cwroeHwfgwXFgsfCY5ELUd5o4-Gt2vzdW7wyhY-XvnKQ6JhZZWu4vPgF3yUav9fO4v9hwtOYvkPPVDqkVlp_7RTKxsXSJnGvkzbxMdPF-_3B_a_Rlr9jfLrZeFS_fHR58GA52j3aejb6-LjbfFB8PhpuD0WDn6PP30e7z4sWn4dtvw73tK2S-E82355zqDRAnFZo5qcsyT8fC54IlKlPalTE4vEnsx700UAljbixSP41lkjKuXZZ7ic9iN-5xP8fsflfJZH-5n10jLZFoT-bgvvcyl8dSw3DqvOcFeQ_2LIzLKTJdj0H3cZnqpVsbcIq0qlHpVhPASre38WhlfR2HEZMqsesnMpgmZ5GyPL27QSZXn65lN8GfXU1u2W_iJwQleP8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%B6%B3%E5%BA%95%E5%8E%8B%E5%8A%9B%E4%BF%A1%E6%81%AF%E7%9A%84%E8%B7%8C%E5%80%92%E5%A7%BF%E6%80%81%E8%81%9A%E7%B1%BB%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8&rft.au=%E9%99%88%E6%B4%AA%E6%B3%A2+%E9%AB%98%E9%9D%92+%E5%86%AF%E6%B6%9B+%E6%9C%B1%E6%8C%AF%E6%9C%8B+%E5%88%98%E5%96%BB&rft.date=2016&rft.issn=0258-7998&rft.volume=42&rft.issue=5&rft.spage=113&rft.epage=115&rft_id=info:doi/10.16157%2Fj.issn.0258-7998.2016.05.031&rft.externalDocID=668761900
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90393X%2F90393X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzjsyy%2Fdzjsyy.jpg