遥感与气象数据结合预测小麦灌浆期白粉病

利用多源数据对区域尺度上小麦白粉病的发生状况准确及时地预报能为农业服务和农业植保等部门提供重要信息,实现小麦白粉病的有效预防。研究利用一景2014年5月6日的landsat8遥感影像提取出植被指数、地表温度(land surface temperature,LST)和影像中各波段反射率特征,同时用2014年3月-5月份的站点逐日地面气象资料计算获得各气象特征,并经过GIS空间插值分析得到相应的空间气象特征。通过Relief算法和泊松相关系数相结合的方式进行遥感和气象特征的筛选,最终得出改进的简单比值指数(modified simple ratio index,MSR)、重归一化植被指数(re-...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 9; pp. 165 - 172
Main Author 马慧琴 黄文江 景元书
Format Journal Article
LanguageChinese
Published 南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044 2016
中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.09.023

Cover

Abstract 利用多源数据对区域尺度上小麦白粉病的发生状况准确及时地预报能为农业服务和农业植保等部门提供重要信息,实现小麦白粉病的有效预防。研究利用一景2014年5月6日的landsat8遥感影像提取出植被指数、地表温度(land surface temperature,LST)和影像中各波段反射率特征,同时用2014年3月-5月份的站点逐日地面气象资料计算获得各气象特征,并经过GIS空间插值分析得到相应的空间气象特征。通过Relief算法和泊松相关系数相结合的方式进行遥感和气象特征的筛选,最终得出改进的简单比值指数(modified simple ratio index,MSR)、重归一化植被指数(re-normalized difference vegetation index,RDVI)、3月21日-4月20日总日照时数和4月11日-5月10日大于0.1 mm降雨日数。采用相关向量机(relevance vector machine,RVM)的方法分别用筛选出的遥感、气象数据特征及2种数据特征相结合的方式构建了河北省石家庄市藁城、晋州和赵县3地区小麦灌浆期白粉病的发生预测模型,并对3种不同数据模型进行了验证与评估。试验结果表明,遥感气象数据模型的总体精度达到84.2%,优于遥感数据模型的80.0%和气象数据模型的74.7%。进而得出,相比于单站点准确和空间不连续的气象数据和类型单一的遥感数据,遥感气象数据更适合于区域尺度范围内的作物病虫害发生发展状况的预测研究。
AbstractList 利用多源数据对区域尺度上小麦白粉病的发生状况准确及时地预报能为农业服务和农业植保等部门提供重要信息,实现小麦白粉病的有效预防。研究利用一景2014年5月6日的landsat8遥感影像提取出植被指数、地表温度(land surface temperature,LST)和影像中各波段反射率特征,同时用2014年3月-5月份的站点逐日地面气象资料计算获得各气象特征,并经过GIS空间插值分析得到相应的空间气象特征。通过Relief算法和泊松相关系数相结合的方式进行遥感和气象特征的筛选,最终得出改进的简单比值指数(modified simple ratio index,MSR)、重归一化植被指数(re-normalized difference vegetation index,RDVI)、3月21日-4月20日总日照时数和4月11日-5月10日大于0.1 mm降雨日数。采用相关向量机(relevance vector machine,RVM)的方法分别用筛选出的遥感、气象数据特征及2种数据特征相结合的方式构建了河北省石家庄市藁城、晋州和赵县3地区小麦灌浆期白粉病的发生预测模型,并对3种不同数据模型进行了验证与评估。试验结果表明,遥感气象数据模型的总体精度达到84.2%,优于遥感数据模型的80.0%和气象数据模型的74.7%。进而得出,相比于单站点准确和空间不连续的气象数据和类型单一的遥感数据,遥感气象数据更适合于区域尺度范围内的作物病虫害发生发展状况的预测研究。
S4%TP79; 利用多源数据对区域尺度上小麦白粉病的发生状况准确及时地预报能为农业服务和农业植保等部门提供重要信息,实现小麦白粉病的有效预防。研究利用一景2014年5月6日的landsat8遥感影像提取出植被指数、地表温度(land surface temperature,LST)和影像中各波段反射率特征,同时用2014年3月-5月份的站点逐日地面气象资料计算获得各气象特征,并经过GIS空间插值分析得到相应的空间气象特征。通过Relief算法和泊松相关系数相结合的方式进行遥感和气象特征的筛选,最终得出改进的简单比值指数(modified simple ratio index,MSR)、重归一化植被指数(re-normalized difference vegetation index,RDVI)、3月21日-4月20日总日照时数和4月11日-5月10日大于0.1 mm降雨日数。采用相关向量机(relevance vector machine,RVM)的方法分别用筛选出的遥感、气象数据特征及2种数据特征相结合的方式构建了河北省石家庄市藁城、晋州和赵县3地区小麦灌浆期白粉病的发生预测模型,并对3种不同数据模型进行了验证与评估。试验结果表明,遥感气象数据模型的总体精度达到84.2%,优于遥感数据模型的80.0%和气象数据模型的74.7%。进而得出,相比于单站点准确和空间不连续的气象数据和类型单一的遥感数据,遥感气象数据更适合于区域尺度范围内的作物病虫害发生发展状况的预测研究。
Abstract_FL Powdery mildew is one of the main serious diseases for winter wheat. An accurate and timely forecasting of the wheat powdery mildew occurrence at the regional scale by using multi-source data can provide important information for crop protection decision making, and achieving effective prevention of wheat powdery mildew. In this study, the Landsat8 remote sensing image was used to extract the land surface temperature (LST), the vegetation indices which included normalized difference vegetation index (NDVI), modified simple ratio index (MSR), re-normalized difference vegetation index (RDVI), triangular vegetation index (TVI), optimized soil adjusted vegetation index (OSAVI), green normalized difference vegetation index (GNDVI), and the band reflectance features. Then we obtained the parameters of wheat growth environment condition such as air temperature, number of rainy days with more than 0.1 mm rainfall, total sunshine hour, average relative humidity, temperature-rain coefficient (the ratio of total rainfall in a period of time to average temperature of the same period) and rainfall coefficient (the square root of the product of rainfall and number of rainy days) in different time steps (including month, 10 days and sensitive period) with the site daily meteorological data; and then we got the corresponding space meteorological features by using the inverse distance weighted (IDW) method in GIS (geographic information system) spatial interpolation analysis. Next, we implemented screening features with the combination of relief algorithm and Poisson’s correlation coefficient, and finally got the MSR, the RDVI, the total sunshine hour from March 21st to April 20th, and the number of rainy days with more than 0.1 mm rainfall from April 11th to May 10th, which were as optimal explanatory variables for developing the powdery mildew forecasting model. The relevance vector machine (RVM) model was used to improve business decisions, detect disease, and forecast weather. And then we used it to predict the probability of powdery mildew occurrence in filling stage of wheat in Gaocheng, Jinzhou and Zhaoxian County, Shijiazhuang City, Hebei Province through remote sensing and meteorological data. The model combining remote sensing and meteorological data produced a higher Spearman relevance value than the single remote sensing data or the meteorological data model, and moreover, the values of Somers’D, Goodman-Kruskal Gamma, and Kendal’s Tau-c of the remote sensing and meteorological data model were all higher than those of the other 2 models. They all indicated that the remote sensing and meteorological data model had a better performance than the other 2 models. The results showed that: the overall accuracy of the remote sensing and meteorological data model was the highest among the 3 methods, with lower omission and wrong judgement than the other 2 models. Furthermore, the overall accuracy and the kappa coefficient of the remote sensing and meteorological data model were 84.2% and 0.686 respectively, which showed better performance over the remote sensing data model (80.0% and 0.602) and the meteorological data model (74.7% and 0.500). These results reveal that compared with the single meteorological data or remote sensing data, the combination of remote sensing and meteorological data is more suitable for the prediction of crop disease occurrence situation in the regional scale.
Author 马慧琴 黄文江 景元书
AuthorAffiliation 南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京210044 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094
AuthorAffiliation_xml – name: 南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044; 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044
Author_FL Huang Wenjiang
Ma Huiqin
Jing Yuanshu
Author_FL_xml – sequence: 1
  fullname: Ma Huiqin
– sequence: 2
  fullname: Huang Wenjiang
– sequence: 3
  fullname: Jing Yuanshu
Author_xml – sequence: 1
  fullname: 马慧琴 黄文江 景元书
BookMark eNo9j8tKw0AARWdRwVr7E4K4SpxH5rWU4gsKLnRfZtJMTdGpNoh2Waii-AQVEYSioEupQkEU_8ZO7F8Yqbi6cDmcy50AOduwEQDTCPoISU5n636cJNZHEGKPCSR9DBHzofQhJjmQ_-_HQTFJYg0pIhzCAOWBHLYfXaf79XbmelffL_fuuudOn9OPy8HF4fCh4_rHg9758P0pbZ-4_oG766a3n-nrUXqzPwnGjNpIouJfFsDqwvxaackrrywul-bKXkgl8bTghkLGDJYGGyW5EFgJHUAhaTVSOuSU8kDBKjGcBhhKLiOmuWBEGB0yUgAzI-uuskbZWqXe2GnabK9iW7VwT_8ehTK7mZFTIzJcb9jadpyxW814UzVbFcZEJg8IIT_ge2uh
ClassificationCodes S4%TP79
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.09.023
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Wheat powdery mildew forecasting in filling stage based on remote sensing and meteorological data
DocumentTitle_FL Wheat powdery mildew forecasting in filling stage based on remote sensing and meteorological data
EndPage 172
ExternalDocumentID nygcxb201609023
668754433
GrantInformation_xml – fundername: 中国科学院国际合作局对外合作重点项目主要作物主要病虫害遥感监测与预警研究; 国家自然科学基金项目“多源数据小麦病害遥感识别与监测方法研究”; 江苏省普通高校自然科学研究资助项目。
  funderid: (131211KYSB20150034); (41271412); (15KJA170003)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c593-b87f5066f29f2fa97882a8b40895deabc75574a0d3f75420979e6b78638fbc63
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:18:32 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 气象
relevance vector machine
相关向量机
小麦白粉病
预测
meteorology
forecasting
气象数据
wheat powdery mildew
remote sensing
meteorological data
遥感
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c593-b87f5066f29f2fa97882a8b40895deabc75574a0d3f75420979e6b78638fbc63
Notes Ma Huiqin,Huang Wenjiang,Jing Yuanshu (1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of lnformation Science & Technology, Nanjing 210044, China; 2. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China)
11-2047/S
remote sensing; meteorology; forecasting; relevance vector machine; meteorological data; wheat powdery mildew
Powdery mildew is one of the main serious diseases for winter wheat. An accurate and timely forecasting of the wheat powdery mildew occurrence at the regional scale by using multi-source data can provide important information for crop protection decision making, and achieving effective prevention of wheat powdery mildew. In this study, the Landsat8 remote sensing image was used to extract the land surface temperature(LST), the vegetation indices which included normalized difference vegetation index(NDVI), modified simp
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201609023
chongqing_primary_668754433
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044
中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044
Publisher_xml – name: 中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%中国科学院遥感与数字地球研究所,数字地球重点实验室,北京 100094%南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044
– name: 南京信息工程大学,应用气象学院,气象灾害预报预警与评估协同创新中心,南京 210044
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1362624
Snippet 利用多源数据对区域尺度上小麦白粉病的发生状况准确及时地预报能为农业服务和农业植保等部门提供重要信息,实现小麦白粉病的有效预防。研究利用一景2014年5月6日的landsat8...
S4%TP79; 利用多源数据对区域尺度上小麦白粉病的发生状况准确及时地预报能为农业服务和农业植保等部门提供重要信息,实现小麦白粉病的有效预防。研究利用一景2014年5月6日...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 165
SubjectTerms 小麦白粉病
气象
气象数据
相关向量机
遥感
预测
Title 遥感与气象数据结合预测小麦灌浆期白粉病
URI http://lib.cqvip.com/qk/90712X/201609/668754433.html
https://d.wanfangdata.com.cn/periodical/nygcxb201609023
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_qFkQP4ifWqvTgXJStm2QmM3NMdhOKoBcr9LZsssn2tNW6Be2tUEXxE1REEIqCHqUKBVH8b-yu_S987yWbTT_8hDCEyW_e55A3M8y8YexcZCeuHRtVjeJEV0XkJFWjWlE1FvDzE8JJnDauQ16-4s5cE5fm5NxY5Xxp19JSL5qOl_c8V_I_XoU68Cuekv0HzxZEoQLewb9Qgoeh_Csf88DASJB7kgcu14KbkAeC-5rrAGv8GjeCB5r7gLGwxkisRHCDe4BR3Pe5cXggualxrZGgZyMpbC659vETNNEhfvI97rnYCpjq-hDjEuU6cVfcAKxBlIGOoRrAy_IgGGlqapJJazziokgRKHXO12sQO5AW-Mph1yAZ4SH-GlCKmNS4L8oQUCxTwwBKkawWiDiCuCiqF5Iw8DgkDNS45YWQ7IQmdVoCNlAbBHokALyEuWnRD-Ev9BAkZKFQyP062U8iHXSRwhLwezitaGVIXrvUfDeYPOMH1CrgvrPNn2TFUo0eUi66jEYV8JNAFthTSGUdDjsIyQzdxPi5ZRFDzYEUqhOSIUsKbrfYBZtSB5YiIYZKV-fxLA-Vo6XopeFhgCzuWdmFH_kQyspuY9odnY2SFJ6Rw3TBATdYupRtODt6viMBevd2J74VIQb3EDv72LiNa28VNu75DT8cDf4tXN8oopONOR7c0WRaWg5e5VBsAMPtD5L2QuRi7Gd8KOTF34mIWVjmF7qdGzC2pKN-3bTV7ZRGpbOH2aF8OjnlZf-GI2xsef4oO-h1FvOUOskxZrZW3vVX175_ftxff_7j45v-i_X-ow-Dr882n97berva33iwuf5k68v7wcrD_sbd_uu1watvg0_3By_vHGdXw2C2PlPNL0ypxtI41UirVMIUIrVNaqcto2D23NKRqGkj20kripWUSrRqbSfFe69rRpnEjZSGEJxGseucYJXuQjc5yaZS146E0zYmTjGfpGWE1FYKM9ykLdvSRBNssjBB83qWFqcJtqZsms4Em8qN0sx_ljebO5x46s-QSXYA37PlztOs0ltcSs7ABKAXnc09_xOkQLx8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%81%A5%E6%84%9F%E4%B8%8E%E6%B0%94%E8%B1%A1%E6%95%B0%E6%8D%AE%E7%BB%93%E5%90%88%E9%A2%84%E6%B5%8B%E5%B0%8F%E9%BA%A6%E7%81%8C%E6%B5%86%E6%9C%9F%E7%99%BD%E7%B2%89%E7%97%85&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%A9%AC%E6%85%A7%E7%90%B4&rft.au=%E9%BB%84%E6%96%87%E6%B1%9F&rft.au=%E6%99%AF%E5%85%83%E4%B9%A6&rft.date=2016&rft.pub=%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%EF%BC%8C%E5%BA%94%E7%94%A8%E6%B0%94%E8%B1%A1%E5%AD%A6%E9%99%A2%EF%BC%8C%E6%B0%94%E8%B1%A1%E7%81%BE%E5%AE%B3%E9%A2%84%E6%8A%A5%E9%A2%84%E8%AD%A6%E4%B8%8E%E8%AF%84%E4%BC%B0%E5%8D%8F%E5%90%8C%E5%88%9B%E6%96%B0%E4%B8%AD%E5%BF%83%EF%BC%8C%E5%8D%97%E4%BA%AC+210044&rft.issn=1002-6819&rft.volume=32&rft.issue=9&rft.spage=165&rft.epage=172&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.09.023&rft.externalDocID=nygcxb201609023
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg