Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur

Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorit...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 33; no. 1; pp. 112 - 120
Main Authors Grassi, Lorenzo, Hraiech, Najah, Schileo, Enrico, Ansaloni, Mauro, Rochette, Michel, Viceconti, Marco
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2011
Elsevier
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2010.09.014

Cover

Abstract Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good ( R 2 > 0.9, RMSE% < 10%) and not statistically different from the standard meshes ( p-value = 0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement ( p-value > 0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.
AbstractList Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%<10%) and not statistically different from the standard meshes (p-value=0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value>0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%<10%) and not statistically different from the standard meshes (p-value=0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value>0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.
Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R super(2) > 0.9, RMSE% < 10%) and not statistically different from the standard meshes (p-value = 0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value > 0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.
Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good ( R 2 > 0.9, RMSE% < 10%) and not statistically different from the standard meshes ( p-value = 0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement ( p-value > 0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.
Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%<10%) and not statistically different from the standard meshes (p-value=0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value>0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.
Abstract Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good ( R2 > 0.9, RMSE% < 10%) and not statistically different from the standard meshes ( p -value = 0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement ( p -value > 0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.
Author Grassi, Lorenzo
Viceconti, Marco
Schileo, Enrico
Hraiech, Najah
Ansaloni, Mauro
Rochette, Michel
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Grassi
  fullname: Grassi, Lorenzo
  organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
– sequence: 2
  givenname: Najah
  surname: Hraiech
  fullname: Hraiech, Najah
  organization: ANSYS, Bâtiment Einstein, 11 Avenue Albert Einstein, 69100 Villeurbanne, France
– sequence: 3
  givenname: Enrico
  surname: Schileo
  fullname: Schileo, Enrico
  email: schileo@tecno.ior.it
  organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
– sequence: 4
  givenname: Mauro
  surname: Ansaloni
  fullname: Ansaloni, Mauro
  organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
– sequence: 5
  givenname: Michel
  surname: Rochette
  fullname: Rochette, Michel
  organization: ANSYS, Bâtiment Einstein, 11 Avenue Albert Einstein, 69100 Villeurbanne, France
– sequence: 6
  givenname: Marco
  surname: Viceconti
  fullname: Viceconti, Marco
  organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23757326$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21036655$$D View this record in MEDLINE/PubMed
BookMark eNqVks1u1DAUhS1URH_gFcAbxCqDHceJswBUVaVFqsQC2GJ5nOuJh8QOdtIqb4_TGYpUCTGsbNnfOfY9956iI-cdIPSKkhUltHy7XfXQgNsM7bzKSTol9YrQ4gk6oaJiWUEYOUp7xklWcMaO0WmMW0JIUZTsGTrOKWFlyfkJ-n55q7pJjdY77A0eW8AbcBBUZ8cZK9dgpfUUlJ6Xa4Ud3OEeYot7H4bWug0egtfQTAGw8eHeoJ165bCBfgrP0VOjuggv9usZ-vbx8uvFdXbz-erTxflNpnmdj5kRnBjKqdGmYUKLXPGy1HktqobSci1KYkQOnDZNVVBeFA2FkhS5MVqvIdeanSGx853coOY71XVyCLZXYZaUyCUyuZUPkcklMklqmSJL0jc7aSrk5wRxlL2NGrpOOfBTlEKwJC9SpP8kGae04kwk8uWenNbp1Ye__M49Aa_3gIpadSYop238w7GKVywvE1ftOB18jAHMf5T17pFS2_G-z2NQtjtAf77TQ2rbrYUgo7bgUqttAD3KxtsDPN4_8tCddTYV_ANmiFs_BZemQlIZc0nkl2Vel3GlaVJTVHUy-PB3g4O-8Au2gP4B
CitedBy_id crossref_primary_10_1016_j_jbiomech_2017_06_015
crossref_primary_10_1016_j_medengphy_2014_06_021
crossref_primary_10_1016_j_cad_2015_07_003
crossref_primary_10_1016_j_media_2015_06_001
crossref_primary_10_1007_s12008_018_0487_3
crossref_primary_10_1016_j_medengphy_2024_104136
crossref_primary_10_1109_RBME_2018_2876450
crossref_primary_10_3390_app11115204
crossref_primary_10_1080_02724634_2016_1111225
crossref_primary_10_1109_JBHI_2015_2406883
crossref_primary_10_1016_j_cad_2012_10_033
crossref_primary_10_1016_j_medengphy_2014_09_006
crossref_primary_10_1002_cnm_2530
crossref_primary_10_1002_cnm_2536
crossref_primary_10_1002_jor_24526
crossref_primary_10_1115_1_4048575
crossref_primary_10_1002_cnm_3109
crossref_primary_10_1007_s00198_016_3597_4
crossref_primary_10_1111_joa_12871
crossref_primary_10_1007_s12008_022_00882_5
crossref_primary_10_1088_1361_6560_acbde2
crossref_primary_10_1007_s10237_021_01435_7
crossref_primary_10_1007_s11517_023_03013_8
crossref_primary_10_1016_j_jmbbm_2021_104434
crossref_primary_10_1016_j_jbiomech_2013_07_042
crossref_primary_10_1016_j_jbiomech_2011_11_048
crossref_primary_10_1080_10255842_2011_629614
crossref_primary_10_1080_10255842_2018_1448391
crossref_primary_10_1016_j_compbiomed_2023_107052
crossref_primary_10_1016_j_medengphy_2019_04_007
crossref_primary_10_1002_jor_26011
crossref_primary_10_1016_j_bone_2025_117419
crossref_primary_10_1002_cnm_2500
crossref_primary_10_1371_journal_pone_0297437
crossref_primary_10_1109_MCE_2017_2709598
crossref_primary_10_1016_j_jbiomech_2015_01_013
crossref_primary_10_1007_s10439_015_1432_2
crossref_primary_10_1002_cnm_2468
crossref_primary_10_1007_s00198_013_2591_3
crossref_primary_10_1007_s10439_024_03636_4
crossref_primary_10_1016_j_bone_2013_12_019
crossref_primary_10_1016_j_cmpb_2024_108583
crossref_primary_10_1007_s00170_015_7185_0
crossref_primary_10_1007_s10334_023_01066_2
crossref_primary_10_1002_jor_25519
crossref_primary_10_1007_s10439_022_03050_8
crossref_primary_10_1016_j_ijmecsci_2022_107262
crossref_primary_10_1142_S0219519417500129
crossref_primary_10_3390_biomechanics2010012
crossref_primary_10_1007_s11517_016_1526_5
crossref_primary_10_1016_j_jbiomech_2015_01_002
crossref_primary_10_1016_j_medengphy_2019_09_007
crossref_primary_10_1007_s10237_024_01903_w
crossref_primary_10_1371_journal_pone_0151680
crossref_primary_10_1016_j_jbiomech_2014_08_030
crossref_primary_10_1007_s12283_021_00352_3
crossref_primary_10_1016_j_jmbbm_2016_06_013
crossref_primary_10_1007_s00167_020_06413_7
crossref_primary_10_3389_fbioe_2020_00560
crossref_primary_10_1016_j_medengphy_2015_08_004
crossref_primary_10_1007_s10439_015_1497_y
crossref_primary_10_1038_s41598_022_09063_6
Cites_doi 10.1080/10255840500289921
10.1016/j.jbiomech.2008.02.019
10.1111/1467-8659.00334
10.1016/j.jbiomech.2003.12.030
10.1016/j.jbiomech.2007.02.010
10.1111/1467-8659.00575
10.1006/cgip.1994.1015
10.1109/IEMBS.2006.260908
10.1016/j.medengphy.2009.10.008
10.1007/s10439-009-9821-z
10.1023/A:1019039027754
10.1016/j.medengphy.2009.08.001
10.1002/ajpa.1330600309
10.1615/CritRevBiomedEng.v31.i12.20
10.1016/S0021-9290(03)00071-X
10.1007/s12541-009-0009-0
10.1097/BRS.0b013e31817d9ce5
10.1097/00003086-199507000-00006
10.1016/S0021-9290(00)00055-5
10.1016/j.jbiomech.2008.05.017
10.1016/S1350-4533(03)00018-3
10.1016/j.jbiomech.2007.09.009
10.2106/00004623-198769080-00010
10.1016/j.cmpb.2009.07.005
10.1016/j.cmpb.2007.05.002
10.1615/CritRevBiomedEng.v25.i4-5.30
10.1016/j.jbiomech.2006.08.003
10.1016/j.jbiomech.2008.10.039
10.1109/TBME.2006.879473
ContentType Journal Article
Copyright 2010 IPEM
IPEM
2015 INIST-CNRS
Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2010 IPEM
– notice: IPEM
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7QP
8FD
FR3
P64
ADTOC
UNPAY
DOI 10.1016/j.medengphy.2010.09.014
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 120
ExternalDocumentID oai:zenodo.org:21682
21036655
23757326
10_1016_j_medengphy_2010_09_014
S1350453310002109
1_s2_0_S1350453310002109
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
AGRNS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7QP
8FD
FR3
P64
ADTOC
UNPAY
ID FETCH-LOGICAL-c592t-f850f151fcfd38c82a566c2987d116b860f82e51dd741544d1e6042ffccbe2cc3
IEDL.DBID UNPAY
ISSN 1350-4533
1873-4030
IngestDate Wed Aug 20 00:16:17 EDT 2025
Wed Oct 01 14:40:05 EDT 2025
Sun Sep 28 08:13:55 EDT 2025
Thu Apr 03 07:07:25 EDT 2025
Mon Jul 21 09:17:13 EDT 2025
Wed Oct 01 05:03:19 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Fri Feb 23 02:29:21 EST 2024
Sun Feb 23 10:20:00 EST 2025
Tue Aug 26 16:32:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Radial basis function
Femur
Mesh morphing
Bone biomechanics
Subject-specific finite element model
Human
Algorithm
Modeling
Osteoarticular system
Biomechanics
Finite element method
Bone
Mesh method
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-f850f151fcfd38c82a566c2987d116b860f82e51dd741544d1e6042ffccbe2cc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.openaccessrepository.it/record/21682
PMID 21036655
PQID 835117538
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_medengphy_2010_09_014
proquest_miscellaneous_883016440
proquest_miscellaneous_835117538
pubmed_primary_21036655
pascalfrancis_primary_23757326
crossref_primary_10_1016_j_medengphy_2010_09_014
crossref_citationtrail_10_1016_j_medengphy_2010_09_014
elsevier_sciencedirect_doi_10_1016_j_medengphy_2010_09_014
elsevier_clinicalkeyesjournals_1_s2_0_S1350453310002109
elsevier_clinicalkey_doi_10_1016_j_medengphy_2010_09_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Bryan, Mohan, Hopkins, Galloway, Taylor, Nair (bib0060) 2009; 32
Viceconti, Taddei, Montanari, Testi, Leardini, Clapworthy (bib0160) 2007; 87
Murphy, Simon, Kijewski, Wilkinson, Griscom (bib0180) 1987; 69
Arad, Dyn, Reisfeld, Yeshurun (bib0145) 1994; 56
Cristofolini (bib0165) 1997; 25
Bessho, Ohnishi, Matsuyama, Matsumoto, Imai, Nakamura (bib0010) 2007; 40
Sigal, Hardisty, Whyne (bib0050) 2008; 41
Athanasiadis, Fudos, Christophoros, Vasiliki (bib0120) 2010
Baldwin, Langenderfer, Rullkoetter, Laz (bib0030) 2009; 97
Sigal, Whyne (bib0035) 2009; 38
Luboz, Couteau, Payan (bib0075) 2001
Taddei, Martelli, Reggiani, Cristofolini, Viceconti (bib0150) 2006; 53
Alexa (bib0045) 2002; 21
Rajamani, Hug, Nolte, Styner (bib0090) 2004
Noble, Box, Kamaric, Fink, Alexander, Tullos (bib0175) 1995
Couteau, Payan, Lavallée (bib0065) 2000; 33
Luboz, Chabanas, Swider, Payan (bib0070) 2005; 8
Bah, Nair, Browne (bib0205) 2009; 31
Viceconti, Lattanzi, Antonietti, Paderni, Olmi, Sudanese (bib0155) 2003; 25
Bishop (bib0100) 2006
Allemang, Brown (bib0195) 1982
Viceconti, Davinelli, Taddei, Cappello (bib0005) 2004; 37
Vollmer, Mencl, uuml (bib0200) 1999; 18
Taosong, Wang, Kaufman (bib0115) 1994
Carr, Beatson, Cherrie, Mitchell, Fright, McCallum (bib0140) 2001
Hraiech, Taddei, Malvesin, Rochette, Viceconti (bib0095) 2008
Schileo, Taddei, Cristofolini, Viceconti (bib0025) 2008; 41
Yoo (bib0110) 2009; 10
Morgan, Bayraktar, Keaveny (bib0190) 2003; 36
Viceconti, Taddei (bib0135) 2003; 31
Trabelsi, Yosibash, Milgrom (bib0015) 2009; 42
Hraiech, Rochette, Taddei, Viceconti (bib0105) 2009
Pettersson, Borga, Andersson, Knutsson (bib0130) 2005
Belenguer Querol, Buchler, Rueckert, Nolte, Gonzalez Ballester (bib0055) 2006; 9
Lin, Lee, Lee (bib0125) 1999; 2
Ruff, Hayes (bib0170) 1983; 60
Tada, Yoshida, Mochimaru (bib0085) 2006
Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0020) 2007; 40
Bryan, Mohan, Hopkins, Galloway, Taylor, Nair (bib0040) 2010; 32
Schileo, Dall’ara, Taddei, Malandrino, Schotkamp, Baleani (bib0185) 2008; 41
O’Reilly, Whyne (bib0080) 2008; 33
O’Reilly (10.1016/j.medengphy.2010.09.014_bib0080) 2008; 33
Hraiech (10.1016/j.medengphy.2010.09.014_bib0095) 2008
Carr (10.1016/j.medengphy.2010.09.014_bib0140) 2001
Sigal (10.1016/j.medengphy.2010.09.014_bib0050) 2008; 41
Taddei (10.1016/j.medengphy.2010.09.014_bib0150) 2006; 53
Belenguer Querol (10.1016/j.medengphy.2010.09.014_bib0055) 2006; 9
Yoo (10.1016/j.medengphy.2010.09.014_bib0110) 2009; 10
Vollmer (10.1016/j.medengphy.2010.09.014_bib0200) 1999; 18
Tada (10.1016/j.medengphy.2010.09.014_bib0085) 2006
Viceconti (10.1016/j.medengphy.2010.09.014_bib0160) 2007; 87
Couteau (10.1016/j.medengphy.2010.09.014_bib0065) 2000; 33
Trabelsi (10.1016/j.medengphy.2010.09.014_bib0015) 2009; 42
Morgan (10.1016/j.medengphy.2010.09.014_bib0190) 2003; 36
Lin (10.1016/j.medengphy.2010.09.014_bib0125) 1999; 2
Schileo (10.1016/j.medengphy.2010.09.014_bib0185) 2008; 41
Cristofolini (10.1016/j.medengphy.2010.09.014_bib0165) 1997; 25
Viceconti (10.1016/j.medengphy.2010.09.014_bib0005) 2004; 37
Bessho (10.1016/j.medengphy.2010.09.014_bib0010) 2007; 40
Bishop (10.1016/j.medengphy.2010.09.014_bib0100) 2006
Arad (10.1016/j.medengphy.2010.09.014_bib0145) 1994; 56
Luboz (10.1016/j.medengphy.2010.09.014_bib0070) 2005; 8
Luboz (10.1016/j.medengphy.2010.09.014_bib0075) 2001
Schileo (10.1016/j.medengphy.2010.09.014_bib0020) 2007; 40
Rajamani (10.1016/j.medengphy.2010.09.014_bib0090) 2004
Noble (10.1016/j.medengphy.2010.09.014_bib0175) 1995
Baldwin (10.1016/j.medengphy.2010.09.014_bib0030) 2009; 97
Hraiech (10.1016/j.medengphy.2010.09.014_bib0105) 2009
Taosong (10.1016/j.medengphy.2010.09.014_bib0115) 1994
Pettersson (10.1016/j.medengphy.2010.09.014_bib0130) 2005
Bah (10.1016/j.medengphy.2010.09.014_bib0205) 2009; 31
Bryan (10.1016/j.medengphy.2010.09.014_bib0060) 2009; 32
Athanasiadis (10.1016/j.medengphy.2010.09.014_bib0120) 2010
Alexa (10.1016/j.medengphy.2010.09.014_bib0045) 2002; 21
Murphy (10.1016/j.medengphy.2010.09.014_bib0180) 1987; 69
Allemang (10.1016/j.medengphy.2010.09.014_bib0195) 1982
Bryan (10.1016/j.medengphy.2010.09.014_bib0040) 2010; 32
Viceconti (10.1016/j.medengphy.2010.09.014_bib0135) 2003; 31
Viceconti (10.1016/j.medengphy.2010.09.014_bib0155) 2003; 25
Schileo (10.1016/j.medengphy.2010.09.014_bib0025) 2008; 41
Sigal (10.1016/j.medengphy.2010.09.014_bib0035) 2009; 38
Ruff (10.1016/j.medengphy.2010.09.014_bib0170) 1983; 60
References_xml – volume: 10
  start-page: 55
  year: 2009
  end-page: 66
  ident: bib0110
  article-title: Three-dimensional morphing of similar shapes using a template mesh
  publication-title: Int J Precision Eng Manuf
– volume: 32
  start-page: 57
  year: 2010
  end-page: 65
  ident: bib0040
  article-title: Statistical modelling of the whole human femur incorporating geometric and material properties
  publication-title: Med Eng Phys
– volume: 60
  start-page: 383
  year: 1983
  end-page: 400
  ident: bib0170
  article-title: Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation. II. Sex, age, side differences
  publication-title: Am J Phys Anthropol
– start-page: 27
  year: 2009
  ident: bib0105
  article-title: Finite element femur generation using morphing and spherical parameterization techniques
  publication-title: Book of Abstracts: IV International Congress on Computational Bioengineering including the first European Symposium on Biomedical Integrative Research: DEIS, Alma Mater Studiorum
– volume: 41
  start-page: 2483
  year: 2008
  end-page: 2491
  ident: bib0185
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J Biomech
– volume: 53
  start-page: 2194
  year: 2006
  end-page: 2200
  ident: bib0150
  article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties
  publication-title: IEEE Trans Biomed Eng
– volume: 42
  start-page: 234
  year: 2009
  end-page: 241
  ident: bib0015
  article-title: Validation of subject-specific automated p-FE analysis of the proximal femur
  publication-title: J Biomech
– volume: 56
  start-page: 161
  year: 1994
  end-page: 172
  ident: bib0145
  article-title: Image warping by radial basis functions: applications to facial expressions. CVGIP: Graph
  publication-title: Models Image Process
– volume: 21
  start-page: 173
  year: 2002
  end-page: 198
  ident: bib0045
  article-title: Recent advances in mesh morphing
  publication-title: Comput Graph Forum
– volume: 32
  start-page: 57
  year: 2009
  end-page: 65
  ident: bib0060
  article-title: Statistical modelling of the whole human femur incorporating geometric and material properties
  publication-title: Med Eng Phys
– volume: 41
  start-page: 1381
  year: 2008
  end-page: 1389
  ident: bib0050
  article-title: Mesh-morphing algorithms for specimen-specific finite element modeling
  publication-title: J Biomech
– start-page: 6639
  year: 2006
  end-page: 6642
  ident: bib0085
  article-title: Geometric modeling of living tissue for subject-specific finite element analysis
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 37
  start-page: 1597
  year: 2004
  end-page: 1605
  ident: bib0005
  article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies
  publication-title: J Biomech
– volume: 40
  start-page: 1745
  year: 2007
  end-page: 1753
  ident: bib0010
  article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method
  publication-title: J Biomech
– year: 2004
  ident: bib0090
  article-title: Bone morphing with statistical shape models for enhanced visualization
  publication-title: Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display
– volume: 25
  start-page: 371
  year: 2003
  end-page: 377
  ident: bib0155
  article-title: CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning
  publication-title: Med Eng Phys
– start-page: 67
  year: 2001
  end-page: 76
  ident: bib0140
  article-title: Reconstruction and representation of 3D objects with radial basis functions
  publication-title: SIGGRAPH 2001, Computer Graphics Proceedings
– volume: 40
  start-page: 2982
  year: 2007
  end-page: 2989
  ident: bib0020
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
– volume: 18
  start-page: 131
  year: 1999
  end-page: 138
  ident: bib0200
  article-title: Improved Laplacian smoothing of noisy surface meshes
  publication-title: Comput Graph Forum
– volume: 97
  start-page: 232
  year: 2009
  end-page: 240
  ident: bib0030
  article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach
  publication-title: Comput Methods Programs Biomed
– start-page: 31
  year: 1995
  end-page: 44
  ident: bib0175
  article-title: The effect of aging on the shape of the proximal femur
  publication-title: Clin Orthop Relat Res
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib0190
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
– start-page: 1561
  year: 2008
  end-page: 1564
  ident: bib0095
  article-title: Fast 3D mesh generation of femur based on planar parameterization and morphing
  publication-title: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI
– start-page: 522
  year: 2001
  ident: bib0075
  article-title: 3D finite element meshing of entire femore by using the mesh matching algorithm
  publication-title: Proceedings of the Transactions of the 47th Annual Meeting of the Orthopaedic Research Society
– year: 2010
  ident: bib0120
  article-title: Feature-based 3D morphing based on geometrically constrained sphere mapping optimization
  publication-title: Proceedings of the 2010 ACM Symposium on Applied Computing
– volume: 38
  start-page: 41
  year: 2009
  end-page: 56
  ident: bib0035
  article-title: Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior
  publication-title: Ann Biomed Eng
– volume: 8
  start-page: 259
  year: 2005
  end-page: 265
  ident: bib0070
  article-title: Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 33
  start-page: 1005
  year: 2000
  end-page: 1009
  ident: bib0065
  article-title: The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures
  publication-title: J Biomech
– year: 2006
  ident: bib0100
  article-title: Pattern recognition and machine learning
– start-page: 85
  year: 1994
  end-page: 92
  ident: bib0115
  article-title: Wavelet-based volume morphing
  publication-title: IEEE Conference on Visualization, 1994, Visualization ‘94 Proceedings
– start-page: 110
  year: 1982
  end-page: 116
  ident: bib0195
  article-title: A correlation coefficient for modal vector analysis
  publication-title: International Modal Analysis Conference
– volume: 33
  start-page: 1876
  year: 2008
  end-page: 1881
  ident: bib0080
  article-title: Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm
  publication-title: Spine (Phila Pa 1976)
– volume: 69
  start-page: 1169
  year: 1987
  end-page: 1176
  ident: bib0180
  article-title: Femoral anteversion
  publication-title: J Bone Joint Surg Am
– volume: 31
  start-page: 1235
  year: 2009
  end-page: 1243
  ident: bib0205
  article-title: Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements
  publication-title: Med Eng Phys
– volume: 9
  start-page: 405
  year: 2006
  end-page: 411
  ident: bib0055
  article-title: Statistical finite element model for bone shape and biomechanical properties
  publication-title: Med Image Comput Comput Assist Interv
– volume: 41
  start-page: 356
  year: 2008
  end-page: 367
  ident: bib0025
  article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro
  publication-title: J Biomech
– volume: 25
  start-page: 409
  year: 1997
  end-page: 483
  ident: bib0165
  article-title: A critical analysis of stress shielding evaluation of hip prostheses
  publication-title: Crit Rev Biomed Eng
– volume: 2
  start-page: 219
  year: 1999
  end-page: 227
  ident: bib0125
  article-title: Distributed volume morphing
  publication-title: Cluster Comput
– year: 2005
  ident: bib0130
  article-title: Volume morphing for segmentation of bone from 3D data
  publication-title: Symposium on Image Analysis SSBA
– volume: 31
  start-page: 27
  year: 2003
  end-page: 72
  ident: bib0135
  article-title: Automatic generation of finite element meshes from computed tomography data
  publication-title: Crit Rev Biomed Eng
– volume: 87
  start-page: 148
  year: 2007
  end-page: 159
  ident: bib0160
  article-title: Multimod data manager: a tool for data fusion
  publication-title: Comput Methods Programs Biomed
– year: 2005
  ident: 10.1016/j.medengphy.2010.09.014_bib0130
  article-title: Volume morphing for segmentation of bone from 3D data
– year: 2004
  ident: 10.1016/j.medengphy.2010.09.014_bib0090
  article-title: Bone morphing with statistical shape models for enhanced visualization
– start-page: 522
  year: 2001
  ident: 10.1016/j.medengphy.2010.09.014_bib0075
  article-title: 3D finite element meshing of entire femore by using the mesh matching algorithm
– volume: 8
  start-page: 259
  year: 2005
  ident: 10.1016/j.medengphy.2010.09.014_bib0070
  article-title: Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255840500289921
– volume: 41
  start-page: 1381
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.014_bib0050
  article-title: Mesh-morphing algorithms for specimen-specific finite element modeling
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.02.019
– year: 2010
  ident: 10.1016/j.medengphy.2010.09.014_bib0120
  article-title: Feature-based 3D morphing based on geometrically constrained sphere mapping optimization
– start-page: 110
  year: 1982
  ident: 10.1016/j.medengphy.2010.09.014_bib0195
  article-title: A correlation coefficient for modal vector analysis
– volume: 18
  start-page: 131
  year: 1999
  ident: 10.1016/j.medengphy.2010.09.014_bib0200
  article-title: Improved Laplacian smoothing of noisy surface meshes
  publication-title: Comput Graph Forum
  doi: 10.1111/1467-8659.00334
– volume: 9
  start-page: 405
  year: 2006
  ident: 10.1016/j.medengphy.2010.09.014_bib0055
  article-title: Statistical finite element model for bone shape and biomechanical properties
  publication-title: Med Image Comput Comput Assist Interv
– volume: 37
  start-page: 1597
  year: 2004
  ident: 10.1016/j.medengphy.2010.09.014_bib0005
  article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2003.12.030
– volume: 40
  start-page: 2982
  year: 2007
  ident: 10.1016/j.medengphy.2010.09.014_bib0020
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 21
  start-page: 173
  year: 2002
  ident: 10.1016/j.medengphy.2010.09.014_bib0045
  article-title: Recent advances in mesh morphing
  publication-title: Comput Graph Forum
  doi: 10.1111/1467-8659.00575
– start-page: 67
  year: 2001
  ident: 10.1016/j.medengphy.2010.09.014_bib0140
  article-title: Reconstruction and representation of 3D objects with radial basis functions
– volume: 56
  start-page: 161
  year: 1994
  ident: 10.1016/j.medengphy.2010.09.014_bib0145
  article-title: Image warping by radial basis functions: applications to facial expressions. CVGIP: Graph
  publication-title: Models Image Process
  doi: 10.1006/cgip.1994.1015
– start-page: 6639
  issue: Suppl.
  year: 2006
  ident: 10.1016/j.medengphy.2010.09.014_bib0085
  article-title: Geometric modeling of living tissue for subject-specific finite element analysis
  publication-title: Conf Proc IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.2006.260908
– volume: 32
  start-page: 57
  year: 2010
  ident: 10.1016/j.medengphy.2010.09.014_bib0040
  article-title: Statistical modelling of the whole human femur incorporating geometric and material properties
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2009.10.008
– volume: 38
  start-page: 41
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.014_bib0035
  article-title: Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9821-z
– volume: 2
  start-page: 219
  year: 1999
  ident: 10.1016/j.medengphy.2010.09.014_bib0125
  article-title: Distributed volume morphing
  publication-title: Cluster Comput
  doi: 10.1023/A:1019039027754
– volume: 31
  start-page: 1235
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.014_bib0205
  article-title: Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2009.08.001
– volume: 60
  start-page: 383
  year: 1983
  ident: 10.1016/j.medengphy.2010.09.014_bib0170
  article-title: Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation. II. Sex, age, side differences
  publication-title: Am J Phys Anthropol
  doi: 10.1002/ajpa.1330600309
– volume: 31
  start-page: 27
  year: 2003
  ident: 10.1016/j.medengphy.2010.09.014_bib0135
  article-title: Automatic generation of finite element meshes from computed tomography data
  publication-title: Crit Rev Biomed Eng
  doi: 10.1615/CritRevBiomedEng.v31.i12.20
– volume: 36
  start-page: 897
  year: 2003
  ident: 10.1016/j.medengphy.2010.09.014_bib0190
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 10
  start-page: 55
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.014_bib0110
  article-title: Three-dimensional morphing of similar shapes using a template mesh
  publication-title: Int J Precision Eng Manuf
  doi: 10.1007/s12541-009-0009-0
– volume: 33
  start-page: 1876
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.014_bib0080
  article-title: Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm
  publication-title: Spine (Phila Pa 1976)
  doi: 10.1097/BRS.0b013e31817d9ce5
– start-page: 31
  year: 1995
  ident: 10.1016/j.medengphy.2010.09.014_bib0175
  article-title: The effect of aging on the shape of the proximal femur
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-199507000-00006
– volume: 33
  start-page: 1005
  year: 2000
  ident: 10.1016/j.medengphy.2010.09.014_bib0065
  article-title: The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(00)00055-5
– volume: 41
  start-page: 2483
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.014_bib0185
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.05.017
– volume: 25
  start-page: 371
  year: 2003
  ident: 10.1016/j.medengphy.2010.09.014_bib0155
  article-title: CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(03)00018-3
– volume: 41
  start-page: 356
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.014_bib0025
  article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.09.009
– start-page: 85
  year: 1994
  ident: 10.1016/j.medengphy.2010.09.014_bib0115
  article-title: Wavelet-based volume morphing
– volume: 69
  start-page: 1169
  year: 1987
  ident: 10.1016/j.medengphy.2010.09.014_bib0180
  article-title: Femoral anteversion
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-198769080-00010
– volume: 97
  start-page: 232
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.014_bib0030
  article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2009.07.005
– volume: 32
  start-page: 57
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.014_bib0060
  article-title: Statistical modelling of the whole human femur incorporating geometric and material properties
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2009.10.008
– volume: 87
  start-page: 148
  year: 2007
  ident: 10.1016/j.medengphy.2010.09.014_bib0160
  article-title: Multimod data manager: a tool for data fusion
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2007.05.002
– volume: 25
  start-page: 409
  year: 1997
  ident: 10.1016/j.medengphy.2010.09.014_bib0165
  article-title: A critical analysis of stress shielding evaluation of hip prostheses
  publication-title: Crit Rev Biomed Eng
  doi: 10.1615/CritRevBiomedEng.v25.i4-5.30
– year: 2006
  ident: 10.1016/j.medengphy.2010.09.014_bib0100
– start-page: 27
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.014_bib0105
  article-title: Finite element femur generation using morphing and spherical parameterization techniques
– volume: 40
  start-page: 1745
  year: 2007
  ident: 10.1016/j.medengphy.2010.09.014_bib0010
  article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.08.003
– volume: 42
  start-page: 234
  year: 2009
  ident: 10.1016/j.medengphy.2010.09.014_bib0015
  article-title: Validation of subject-specific automated p-FE analysis of the proximal femur
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.10.039
– start-page: 1561
  year: 2008
  ident: 10.1016/j.medengphy.2010.09.014_bib0095
  article-title: Fast 3D mesh generation of femur based on planar parameterization and morphing
– volume: 53
  start-page: 2194
  year: 2006
  ident: 10.1016/j.medengphy.2010.09.014_bib0150
  article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.879473
SSID ssj0004463
Score 2.2474203
Snippet Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality,...
Abstract Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality,...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms Algorithms
Biological and medical sciences
Biomechanical Phenomena
Biomechanics. Biorheology
Bone biomechanics
Computer Graphics
Databases, Factual
Femur
Femur - anatomy & histology
Femur - diagnostic imaging
Finite Element Analysis
Fundamental and applied biological sciences. Psychology
Humans
Mesh morphing
Models, Anatomic
Radial basis function
Radiology
Reproducibility of Results
Skeleton and joints
Stress, Mechanical
Subject-specific finite element model
Tissues, organs and organisms biophysics
Tomography, X-Ray Computed
Vertebrates: osteoarticular system, musculoskeletal system
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDk1DKe325T6CDr06a1mSLfdWloRQSC9tIKcKWY80Zde7rNeUXPrbO_IrWZo2gYJPskZGM-OZT9JoBuC98Mw6XxSxLhmLecF4LEupYysSK7UxJW9v8Z9-zk7O-Kdzcb4Ds-EuTAir7G1_Z9Nba923THtuTleXl9MvlAnEI6zdocaFS7jEF7J_oU4f_roO88CmNsgeO8eh91aMFzocV13gfPoYr-IwofxvHurRStfIN98VvLgNke7DXlOt9NVPPZ_f8FLHT-BxDy_Jx24GT2HHVRPYmw1V3SawfyMB4QQenPZH68_g29GY95ssPUFcSC66lNSI04muLEGeNmttrsJrTRCOk4Wrv5PFEkWFo5HWF9pm7QgC4XaAtgAg8W7RrJ_D2fHR19lJ3BdfiI0o0k3spUg8wgFvvGXSyFQj8DNpIXNLaVbKLPEydYJaGzAJ55a6DA2A9yhflxrDXsButazcKyCI4rxzvKAOV28Fmgwu8twKZ6wOyX9cBNnAcGX6zOShQMZcDSFoP9QoKRUkpZJCoaQiSEbCVZec424SOUhUDXdP0VoqdCB3k-a3kbq6_-trRVWdqkT9oZkRfBgpt5T7fp892FK8caYpy0WO6DsCMmiiQmUKBz66csumVjKcEuN6VP6ji2QhyRpPInjZKfH1-BTRTSZEBHTU6vuy-fX_zPgNPOx27sPzFnY368a9Q-i3KQ_af_s3vPZXYQ
  priority: 102
  providerName: Elsevier
Title Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453310002109
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453310002109
https://dx.doi.org/10.1016/j.medengphy.2010.09.014
https://www.ncbi.nlm.nih.gov/pubmed/21036655
https://www.proquest.com/docview/835117538
https://www.proquest.com/docview/883016440
https://www.openaccessrepository.it/record/21682
UnpaywallVersion submittedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VRKJUiEfLwzyiPXB15LW99ppbVLUKoEYgiFQurDb7KIXEieJYqBz47cz6RYsKLUi-xbOb9Xye-dYzOwPwgtlIG5tlvpxFkR9nUezzGZe-ZoHmUqlZXJ3iP5ok42n8-pgdb0HQnoVxaZWub5Ss2gW67-bFqYs2D083bZO0kCYcjW4_cSGlHvSnk7ejj9W-igV-zKru8ZSnODMC-EJKF_oXk5_g329SurJhQOM_OaTbK1ngY7J1f4vLCOgObJf5Sp59k_P5Oad0eBfetcupc1G-DsvNbKi-_1bp8V_Wew_uNAyVjGpI3Yctk-_C9n7bGG4Xds7VMNyFm0dNdH4PPh10pcPJ0hKkluSkrmqNVJ_IXBOcv1xLdeZ-lgQZPVmY4jNZLFHbOBqp3Kku14Ygl64GqHoIEmsW5foBTA8PPuyP_aZ_g69YFm58y1lgkVFYZXXEFQ8lckcVZjzVlCYzngSWh4ZRrR2tiWNNTYI2xFqEiAmVih5CL1_m5jEQJILWmDijBjeAGVqdmKWpZkZp6eoHGQ-SVolCNcXNXY-NuWiz2L6ITvvCaV8EmUDtexB0gqu6vsfVIrxFiWiPr6LBFeiDrhZNLxM1RWM4CkFFEYpAvHdgdlh24RfclWcevOwkG25Uc57rTTu4AOZupWGUshQJvAekRbdAMLmYkczNsiwEd4Fm3NLyv9zCI1enLQ48eFS_GL_Gp0iQEsY8oN2bct3H_OQ_ZJ7Crfqbv7ueQW-zLs1zJI2b2QBuDH_QAfRHr96MJ4PGavwEYLBw8Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9tAEB7RIDVFVdWml3vQfeirGx-79rpvKAKFQvJSkHjqarMHUBEnimNV_PvO-oKotCBV8pO9s9YcO_PtNQPwmdlYG5tlvpzFsU-zmPp8xqWvWaC5VGpGq1v8k2kyPqXfztjZFozauzDuWGXj-2ufXnnr5s2wkeZweXk5_B7GDPFIXK1Q48QlewTblKFP7sH23uHReHpzPZJWBdVce98RbBzzwphj8nNkqTnmlX0JQvq3IPV0KQsUna1rXtwFSnegX-ZLef1LXl3dClQHz-FZgzDJXs3EC9gy-QD6o7aw2wB2buUgHMDjSbO7_hJ-7Hepv8nCEoSG5LzOSo1QnchcExRruZLq2n2WBBE5mZvigswXqC3sjVThUJcrQxALVx1UNQCJNfNy9QpOD_ZPRmO_qb_gK5ZFa99yFlhEBFZZHXPFI4nYT0UZT3UYJjOeBJZHhoVaO1hCqQ5Ngj7AWlSxiZSKX0MvX-TmLRAEctYYmoUGJ3AZeg3K0lQzo7R0-X-MB0krcKGa5OSuRsaVaE-h_RSdpoTTlAgygZryIOgIl3V-jvtJeKtR0V4_RYcpMIbcT5reRWqKZuAXIhRFJALxh3F68LWj3LDvh_12d8PwOk6jOGUpAnAPSGuJAo3J7fnI3CzKQnC3UYxTUv6PJjx2edZo4MGb2ohv-g8R4CSMeRB2Vv1QMb_7H44_QX98MjkWx4fTo_fwpF7Id88H6K1XpfmISHA9221G-m8JZFua
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VW4lSIY7lCkflB16zihM7cXirqlYVUisQrFResBwfbWE3u9pshMqvZ5yLFhVakPK2GXud-TLzOTOeAXjDXWKsy_NQFUkSsjxhoSiECg2PjFBaF6w5xX90nB5O2bsTfrIBUX8WxqdV-r5RqmkX6L-bV-c-2jw5X_dN0mKaCjS6m6kPKY1gc3r8fvdzs6_iUch40z2eigxnRgBfSelC_2LLU_z7XUpXPoko-5NDurdUFT4m1_a3uI6AbsNWXS7VxXc1m11ySgcP4EO_nDYX5dukXhcT_eO3So__st6HcL9jqGS3hdQj2LDlGLb2-sZwY9i-VMNwDHeOuuj8Y_iyP5QOJwtHkFqS07aqNVJ9okpDcP56pfSF_1kRZPRkbqszMl-gtnE00rhTU68sQS7dDND0ECTOzuvVE5ge7H_aOwy7_g2h5nm8Dp3gkUNG4bQzidAiVsgddZyLzFCaFiKNnIgtp8Z4WsOYoTZFG-IcQsTGWidPYVQuSvscCBJBZy3LqcUNYI5Wh_EsM9xqo3z9IBtA2itR6q64ue-xMZN9FttXOWhfeu3LKJeo_QCiQXDZ1ve4WUT0KJH98VU0uBJ90M2i2XWituoMRyWprGIZyY8ezB7LPvyCu_I8gLeDZMeNWs5zu2l3roB5WGmcZDxDAh8A6dEtEUw-ZqRKu6grKXygGbe04i-3iMTXaWNRAM_aF-PX-BQJUsp5AHR4U277mF_8h8xLuNt-8_fXKxitV7V9jaRxXex0duInSnNuZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+generality+and+accuracy+of+a+new+mesh+morphing+procedure+for+the+human+femur&rft.jtitle=Medical+engineering+%26+physics&rft.au=Grassi%2C+Lorenzo&rft.au=Hraiech%2C+Najah&rft.au=Schileo%2C+Enrico&rft.au=Ansaloni%2C+Mauro&rft.date=2011-01-01&rft.eissn=1873-4030&rft.volume=33&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1016%2Fj.medengphy.2010.09.014&rft_id=info%3Apmid%2F21036655&rft.externalDocID=21036655
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453310X0011X%2Fcov150h.gif