Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur
Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorit...
Saved in:
Published in | Medical engineering & physics Vol. 33; no. 1; pp. 112 - 120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.01.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1350-4533 1873-4030 1873-4030 |
DOI | 10.1016/j.medengphy.2010.09.014 |
Cover
Abstract | Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm.
A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation.
Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (
R
2
>
0.9, RMSE%
<
10%) and not statistically different from the standard meshes (
p-value
=
0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (
p-value
>
0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10
min.
The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. |
---|---|
AbstractList | Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%<10%) and not statistically different from the standard meshes (p-value=0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value>0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling.Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%<10%) and not statistically different from the standard meshes (p-value=0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value>0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R super(2) > 0.9, RMSE% < 10%) and not statistically different from the standard meshes (p-value = 0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value > 0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good ( R 2 > 0.9, RMSE% < 10%) and not statistically different from the standard meshes ( p-value = 0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement ( p-value > 0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%<10%) and not statistically different from the standard meshes (p-value=0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement (p-value>0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. Abstract Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good ( R2 > 0.9, RMSE% < 10%) and not statistically different from the standard meshes ( p -value = 0.1083). The algorithm was robust to inter- and intra-operator variability, target geometry refinement ( p -value > 0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. |
Author | Grassi, Lorenzo Viceconti, Marco Schileo, Enrico Hraiech, Najah Ansaloni, Mauro Rochette, Michel |
Author_xml | – sequence: 1 givenname: Lorenzo surname: Grassi fullname: Grassi, Lorenzo organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy – sequence: 2 givenname: Najah surname: Hraiech fullname: Hraiech, Najah organization: ANSYS, Bâtiment Einstein, 11 Avenue Albert Einstein, 69100 Villeurbanne, France – sequence: 3 givenname: Enrico surname: Schileo fullname: Schileo, Enrico email: schileo@tecno.ior.it organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy – sequence: 4 givenname: Mauro surname: Ansaloni fullname: Ansaloni, Mauro organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy – sequence: 5 givenname: Michel surname: Rochette fullname: Rochette, Michel organization: ANSYS, Bâtiment Einstein, 11 Avenue Albert Einstein, 69100 Villeurbanne, France – sequence: 6 givenname: Marco surname: Viceconti fullname: Viceconti, Marco organization: Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23757326$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21036655$$D View this record in MEDLINE/PubMed |
BookMark | eNqVks1u1DAUhS1URH_gFcAbxCqDHceJswBUVaVFqsQC2GJ5nOuJh8QOdtIqb4_TGYpUCTGsbNnfOfY9956iI-cdIPSKkhUltHy7XfXQgNsM7bzKSTol9YrQ4gk6oaJiWUEYOUp7xklWcMaO0WmMW0JIUZTsGTrOKWFlyfkJ-n55q7pJjdY77A0eW8AbcBBUZ8cZK9dgpfUUlJ6Xa4Ud3OEeYot7H4bWug0egtfQTAGw8eHeoJ165bCBfgrP0VOjuggv9usZ-vbx8uvFdXbz-erTxflNpnmdj5kRnBjKqdGmYUKLXPGy1HktqobSci1KYkQOnDZNVVBeFA2FkhS5MVqvIdeanSGx853coOY71XVyCLZXYZaUyCUyuZUPkcklMklqmSJL0jc7aSrk5wRxlL2NGrpOOfBTlEKwJC9SpP8kGae04kwk8uWenNbp1Ye__M49Aa_3gIpadSYop238w7GKVywvE1ftOB18jAHMf5T17pFS2_G-z2NQtjtAf77TQ2rbrYUgo7bgUqttAD3KxtsDPN4_8tCddTYV_ANmiFs_BZemQlIZc0nkl2Vel3GlaVJTVHUy-PB3g4O-8Au2gP4B |
CitedBy_id | crossref_primary_10_1016_j_jbiomech_2017_06_015 crossref_primary_10_1016_j_medengphy_2014_06_021 crossref_primary_10_1016_j_cad_2015_07_003 crossref_primary_10_1016_j_media_2015_06_001 crossref_primary_10_1007_s12008_018_0487_3 crossref_primary_10_1016_j_medengphy_2024_104136 crossref_primary_10_1109_RBME_2018_2876450 crossref_primary_10_3390_app11115204 crossref_primary_10_1080_02724634_2016_1111225 crossref_primary_10_1109_JBHI_2015_2406883 crossref_primary_10_1016_j_cad_2012_10_033 crossref_primary_10_1016_j_medengphy_2014_09_006 crossref_primary_10_1002_cnm_2530 crossref_primary_10_1002_cnm_2536 crossref_primary_10_1002_jor_24526 crossref_primary_10_1115_1_4048575 crossref_primary_10_1002_cnm_3109 crossref_primary_10_1007_s00198_016_3597_4 crossref_primary_10_1111_joa_12871 crossref_primary_10_1007_s12008_022_00882_5 crossref_primary_10_1088_1361_6560_acbde2 crossref_primary_10_1007_s10237_021_01435_7 crossref_primary_10_1007_s11517_023_03013_8 crossref_primary_10_1016_j_jmbbm_2021_104434 crossref_primary_10_1016_j_jbiomech_2013_07_042 crossref_primary_10_1016_j_jbiomech_2011_11_048 crossref_primary_10_1080_10255842_2011_629614 crossref_primary_10_1080_10255842_2018_1448391 crossref_primary_10_1016_j_compbiomed_2023_107052 crossref_primary_10_1016_j_medengphy_2019_04_007 crossref_primary_10_1002_jor_26011 crossref_primary_10_1016_j_bone_2025_117419 crossref_primary_10_1002_cnm_2500 crossref_primary_10_1371_journal_pone_0297437 crossref_primary_10_1109_MCE_2017_2709598 crossref_primary_10_1016_j_jbiomech_2015_01_013 crossref_primary_10_1007_s10439_015_1432_2 crossref_primary_10_1002_cnm_2468 crossref_primary_10_1007_s00198_013_2591_3 crossref_primary_10_1007_s10439_024_03636_4 crossref_primary_10_1016_j_bone_2013_12_019 crossref_primary_10_1016_j_cmpb_2024_108583 crossref_primary_10_1007_s00170_015_7185_0 crossref_primary_10_1007_s10334_023_01066_2 crossref_primary_10_1002_jor_25519 crossref_primary_10_1007_s10439_022_03050_8 crossref_primary_10_1016_j_ijmecsci_2022_107262 crossref_primary_10_1142_S0219519417500129 crossref_primary_10_3390_biomechanics2010012 crossref_primary_10_1007_s11517_016_1526_5 crossref_primary_10_1016_j_jbiomech_2015_01_002 crossref_primary_10_1016_j_medengphy_2019_09_007 crossref_primary_10_1007_s10237_024_01903_w crossref_primary_10_1371_journal_pone_0151680 crossref_primary_10_1016_j_jbiomech_2014_08_030 crossref_primary_10_1007_s12283_021_00352_3 crossref_primary_10_1016_j_jmbbm_2016_06_013 crossref_primary_10_1007_s00167_020_06413_7 crossref_primary_10_3389_fbioe_2020_00560 crossref_primary_10_1016_j_medengphy_2015_08_004 crossref_primary_10_1007_s10439_015_1497_y crossref_primary_10_1038_s41598_022_09063_6 |
Cites_doi | 10.1080/10255840500289921 10.1016/j.jbiomech.2008.02.019 10.1111/1467-8659.00334 10.1016/j.jbiomech.2003.12.030 10.1016/j.jbiomech.2007.02.010 10.1111/1467-8659.00575 10.1006/cgip.1994.1015 10.1109/IEMBS.2006.260908 10.1016/j.medengphy.2009.10.008 10.1007/s10439-009-9821-z 10.1023/A:1019039027754 10.1016/j.medengphy.2009.08.001 10.1002/ajpa.1330600309 10.1615/CritRevBiomedEng.v31.i12.20 10.1016/S0021-9290(03)00071-X 10.1007/s12541-009-0009-0 10.1097/BRS.0b013e31817d9ce5 10.1097/00003086-199507000-00006 10.1016/S0021-9290(00)00055-5 10.1016/j.jbiomech.2008.05.017 10.1016/S1350-4533(03)00018-3 10.1016/j.jbiomech.2007.09.009 10.2106/00004623-198769080-00010 10.1016/j.cmpb.2009.07.005 10.1016/j.cmpb.2007.05.002 10.1615/CritRevBiomedEng.v25.i4-5.30 10.1016/j.jbiomech.2006.08.003 10.1016/j.jbiomech.2008.10.039 10.1109/TBME.2006.879473 |
ContentType | Journal Article |
Copyright | 2010 IPEM IPEM 2015 INIST-CNRS Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2010 IPEM – notice: IPEM – notice: 2015 INIST-CNRS – notice: Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7QP 8FD FR3 P64 ADTOC UNPAY |
DOI | 10.1016/j.medengphy.2010.09.014 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 120 |
ExternalDocumentID | oai:zenodo.org:21682 21036655 23757326 10_1016_j_medengphy_2010_09_014 S1350453310002109 1_s2_0_S1350453310002109 |
Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX ACLOT CITATION ~HD AGRNS IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7QP 8FD FR3 P64 ADTOC UNPAY |
ID | FETCH-LOGICAL-c592t-f850f151fcfd38c82a566c2987d116b860f82e51dd741544d1e6042ffccbe2cc3 |
IEDL.DBID | UNPAY |
ISSN | 1350-4533 1873-4030 |
IngestDate | Wed Aug 20 00:16:17 EDT 2025 Wed Oct 01 14:40:05 EDT 2025 Sun Sep 28 08:13:55 EDT 2025 Thu Apr 03 07:07:25 EDT 2025 Mon Jul 21 09:17:13 EDT 2025 Wed Oct 01 05:03:19 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Fri Feb 23 02:29:21 EST 2024 Sun Feb 23 10:20:00 EST 2025 Tue Aug 26 16:32:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Radial basis function Femur Mesh morphing Bone biomechanics Subject-specific finite element model Human Algorithm Modeling Osteoarticular system Biomechanics Finite element method Bone Mesh method Biomedical engineering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved. other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-f850f151fcfd38c82a566c2987d116b860f82e51dd741544d1e6042ffccbe2cc3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.openaccessrepository.it/record/21682 |
PMID | 21036655 |
PQID | 835117538 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | unpaywall_primary_10_1016_j_medengphy_2010_09_014 proquest_miscellaneous_883016440 proquest_miscellaneous_835117538 pubmed_primary_21036655 pascalfrancis_primary_23757326 crossref_primary_10_1016_j_medengphy_2010_09_014 crossref_citationtrail_10_1016_j_medengphy_2010_09_014 elsevier_sciencedirect_doi_10_1016_j_medengphy_2010_09_014 elsevier_clinicalkeyesjournals_1_s2_0_S1350453310002109 elsevier_clinicalkey_doi_10_1016_j_medengphy_2010_09_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Bryan, Mohan, Hopkins, Galloway, Taylor, Nair (bib0060) 2009; 32 Viceconti, Taddei, Montanari, Testi, Leardini, Clapworthy (bib0160) 2007; 87 Murphy, Simon, Kijewski, Wilkinson, Griscom (bib0180) 1987; 69 Arad, Dyn, Reisfeld, Yeshurun (bib0145) 1994; 56 Cristofolini (bib0165) 1997; 25 Bessho, Ohnishi, Matsuyama, Matsumoto, Imai, Nakamura (bib0010) 2007; 40 Sigal, Hardisty, Whyne (bib0050) 2008; 41 Athanasiadis, Fudos, Christophoros, Vasiliki (bib0120) 2010 Baldwin, Langenderfer, Rullkoetter, Laz (bib0030) 2009; 97 Sigal, Whyne (bib0035) 2009; 38 Luboz, Couteau, Payan (bib0075) 2001 Taddei, Martelli, Reggiani, Cristofolini, Viceconti (bib0150) 2006; 53 Alexa (bib0045) 2002; 21 Rajamani, Hug, Nolte, Styner (bib0090) 2004 Noble, Box, Kamaric, Fink, Alexander, Tullos (bib0175) 1995 Couteau, Payan, Lavallée (bib0065) 2000; 33 Luboz, Chabanas, Swider, Payan (bib0070) 2005; 8 Bah, Nair, Browne (bib0205) 2009; 31 Viceconti, Lattanzi, Antonietti, Paderni, Olmi, Sudanese (bib0155) 2003; 25 Bishop (bib0100) 2006 Allemang, Brown (bib0195) 1982 Viceconti, Davinelli, Taddei, Cappello (bib0005) 2004; 37 Vollmer, Mencl, uuml (bib0200) 1999; 18 Taosong, Wang, Kaufman (bib0115) 1994 Carr, Beatson, Cherrie, Mitchell, Fright, McCallum (bib0140) 2001 Hraiech, Taddei, Malvesin, Rochette, Viceconti (bib0095) 2008 Schileo, Taddei, Cristofolini, Viceconti (bib0025) 2008; 41 Yoo (bib0110) 2009; 10 Morgan, Bayraktar, Keaveny (bib0190) 2003; 36 Viceconti, Taddei (bib0135) 2003; 31 Trabelsi, Yosibash, Milgrom (bib0015) 2009; 42 Hraiech, Rochette, Taddei, Viceconti (bib0105) 2009 Pettersson, Borga, Andersson, Knutsson (bib0130) 2005 Belenguer Querol, Buchler, Rueckert, Nolte, Gonzalez Ballester (bib0055) 2006; 9 Lin, Lee, Lee (bib0125) 1999; 2 Ruff, Hayes (bib0170) 1983; 60 Tada, Yoshida, Mochimaru (bib0085) 2006 Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib0020) 2007; 40 Bryan, Mohan, Hopkins, Galloway, Taylor, Nair (bib0040) 2010; 32 Schileo, Dall’ara, Taddei, Malandrino, Schotkamp, Baleani (bib0185) 2008; 41 O’Reilly, Whyne (bib0080) 2008; 33 O’Reilly (10.1016/j.medengphy.2010.09.014_bib0080) 2008; 33 Hraiech (10.1016/j.medengphy.2010.09.014_bib0095) 2008 Carr (10.1016/j.medengphy.2010.09.014_bib0140) 2001 Sigal (10.1016/j.medengphy.2010.09.014_bib0050) 2008; 41 Taddei (10.1016/j.medengphy.2010.09.014_bib0150) 2006; 53 Belenguer Querol (10.1016/j.medengphy.2010.09.014_bib0055) 2006; 9 Yoo (10.1016/j.medengphy.2010.09.014_bib0110) 2009; 10 Vollmer (10.1016/j.medengphy.2010.09.014_bib0200) 1999; 18 Tada (10.1016/j.medengphy.2010.09.014_bib0085) 2006 Viceconti (10.1016/j.medengphy.2010.09.014_bib0160) 2007; 87 Couteau (10.1016/j.medengphy.2010.09.014_bib0065) 2000; 33 Trabelsi (10.1016/j.medengphy.2010.09.014_bib0015) 2009; 42 Morgan (10.1016/j.medengphy.2010.09.014_bib0190) 2003; 36 Lin (10.1016/j.medengphy.2010.09.014_bib0125) 1999; 2 Schileo (10.1016/j.medengphy.2010.09.014_bib0185) 2008; 41 Cristofolini (10.1016/j.medengphy.2010.09.014_bib0165) 1997; 25 Viceconti (10.1016/j.medengphy.2010.09.014_bib0005) 2004; 37 Bessho (10.1016/j.medengphy.2010.09.014_bib0010) 2007; 40 Bishop (10.1016/j.medengphy.2010.09.014_bib0100) 2006 Arad (10.1016/j.medengphy.2010.09.014_bib0145) 1994; 56 Luboz (10.1016/j.medengphy.2010.09.014_bib0070) 2005; 8 Luboz (10.1016/j.medengphy.2010.09.014_bib0075) 2001 Schileo (10.1016/j.medengphy.2010.09.014_bib0020) 2007; 40 Rajamani (10.1016/j.medengphy.2010.09.014_bib0090) 2004 Noble (10.1016/j.medengphy.2010.09.014_bib0175) 1995 Baldwin (10.1016/j.medengphy.2010.09.014_bib0030) 2009; 97 Hraiech (10.1016/j.medengphy.2010.09.014_bib0105) 2009 Taosong (10.1016/j.medengphy.2010.09.014_bib0115) 1994 Pettersson (10.1016/j.medengphy.2010.09.014_bib0130) 2005 Bah (10.1016/j.medengphy.2010.09.014_bib0205) 2009; 31 Bryan (10.1016/j.medengphy.2010.09.014_bib0060) 2009; 32 Athanasiadis (10.1016/j.medengphy.2010.09.014_bib0120) 2010 Alexa (10.1016/j.medengphy.2010.09.014_bib0045) 2002; 21 Murphy (10.1016/j.medengphy.2010.09.014_bib0180) 1987; 69 Allemang (10.1016/j.medengphy.2010.09.014_bib0195) 1982 Bryan (10.1016/j.medengphy.2010.09.014_bib0040) 2010; 32 Viceconti (10.1016/j.medengphy.2010.09.014_bib0135) 2003; 31 Viceconti (10.1016/j.medengphy.2010.09.014_bib0155) 2003; 25 Schileo (10.1016/j.medengphy.2010.09.014_bib0025) 2008; 41 Sigal (10.1016/j.medengphy.2010.09.014_bib0035) 2009; 38 Ruff (10.1016/j.medengphy.2010.09.014_bib0170) 1983; 60 |
References_xml | – volume: 10 start-page: 55 year: 2009 end-page: 66 ident: bib0110 article-title: Three-dimensional morphing of similar shapes using a template mesh publication-title: Int J Precision Eng Manuf – volume: 32 start-page: 57 year: 2010 end-page: 65 ident: bib0040 article-title: Statistical modelling of the whole human femur incorporating geometric and material properties publication-title: Med Eng Phys – volume: 60 start-page: 383 year: 1983 end-page: 400 ident: bib0170 article-title: Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation. II. Sex, age, side differences publication-title: Am J Phys Anthropol – start-page: 27 year: 2009 ident: bib0105 article-title: Finite element femur generation using morphing and spherical parameterization techniques publication-title: Book of Abstracts: IV International Congress on Computational Bioengineering including the first European Symposium on Biomedical Integrative Research: DEIS, Alma Mater Studiorum – volume: 41 start-page: 2483 year: 2008 end-page: 2491 ident: bib0185 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J Biomech – volume: 53 start-page: 2194 year: 2006 end-page: 2200 ident: bib0150 article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties publication-title: IEEE Trans Biomed Eng – volume: 42 start-page: 234 year: 2009 end-page: 241 ident: bib0015 article-title: Validation of subject-specific automated p-FE analysis of the proximal femur publication-title: J Biomech – volume: 56 start-page: 161 year: 1994 end-page: 172 ident: bib0145 article-title: Image warping by radial basis functions: applications to facial expressions. CVGIP: Graph publication-title: Models Image Process – volume: 21 start-page: 173 year: 2002 end-page: 198 ident: bib0045 article-title: Recent advances in mesh morphing publication-title: Comput Graph Forum – volume: 32 start-page: 57 year: 2009 end-page: 65 ident: bib0060 article-title: Statistical modelling of the whole human femur incorporating geometric and material properties publication-title: Med Eng Phys – volume: 41 start-page: 1381 year: 2008 end-page: 1389 ident: bib0050 article-title: Mesh-morphing algorithms for specimen-specific finite element modeling publication-title: J Biomech – start-page: 6639 year: 2006 end-page: 6642 ident: bib0085 article-title: Geometric modeling of living tissue for subject-specific finite element analysis publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 37 start-page: 1597 year: 2004 end-page: 1605 ident: bib0005 article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies publication-title: J Biomech – volume: 40 start-page: 1745 year: 2007 end-page: 1753 ident: bib0010 article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method publication-title: J Biomech – year: 2004 ident: bib0090 article-title: Bone morphing with statistical shape models for enhanced visualization publication-title: Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display – volume: 25 start-page: 371 year: 2003 end-page: 377 ident: bib0155 article-title: CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning publication-title: Med Eng Phys – start-page: 67 year: 2001 end-page: 76 ident: bib0140 article-title: Reconstruction and representation of 3D objects with radial basis functions publication-title: SIGGRAPH 2001, Computer Graphics Proceedings – volume: 40 start-page: 2982 year: 2007 end-page: 2989 ident: bib0020 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech – volume: 18 start-page: 131 year: 1999 end-page: 138 ident: bib0200 article-title: Improved Laplacian smoothing of noisy surface meshes publication-title: Comput Graph Forum – volume: 97 start-page: 232 year: 2009 end-page: 240 ident: bib0030 article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach publication-title: Comput Methods Programs Biomed – start-page: 31 year: 1995 end-page: 44 ident: bib0175 article-title: The effect of aging on the shape of the proximal femur publication-title: Clin Orthop Relat Res – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib0190 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech – start-page: 1561 year: 2008 end-page: 1564 ident: bib0095 article-title: Fast 3D mesh generation of femur based on planar parameterization and morphing publication-title: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI – start-page: 522 year: 2001 ident: bib0075 article-title: 3D finite element meshing of entire femore by using the mesh matching algorithm publication-title: Proceedings of the Transactions of the 47th Annual Meeting of the Orthopaedic Research Society – year: 2010 ident: bib0120 article-title: Feature-based 3D morphing based on geometrically constrained sphere mapping optimization publication-title: Proceedings of the 2010 ACM Symposium on Applied Computing – volume: 38 start-page: 41 year: 2009 end-page: 56 ident: bib0035 article-title: Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior publication-title: Ann Biomed Eng – volume: 8 start-page: 259 year: 2005 end-page: 265 ident: bib0070 article-title: Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes publication-title: Comput Methods Biomech Biomed Eng – volume: 33 start-page: 1005 year: 2000 end-page: 1009 ident: bib0065 article-title: The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures publication-title: J Biomech – year: 2006 ident: bib0100 article-title: Pattern recognition and machine learning – start-page: 85 year: 1994 end-page: 92 ident: bib0115 article-title: Wavelet-based volume morphing publication-title: IEEE Conference on Visualization, 1994, Visualization ‘94 Proceedings – start-page: 110 year: 1982 end-page: 116 ident: bib0195 article-title: A correlation coefficient for modal vector analysis publication-title: International Modal Analysis Conference – volume: 33 start-page: 1876 year: 2008 end-page: 1881 ident: bib0080 article-title: Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm publication-title: Spine (Phila Pa 1976) – volume: 69 start-page: 1169 year: 1987 end-page: 1176 ident: bib0180 article-title: Femoral anteversion publication-title: J Bone Joint Surg Am – volume: 31 start-page: 1235 year: 2009 end-page: 1243 ident: bib0205 article-title: Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements publication-title: Med Eng Phys – volume: 9 start-page: 405 year: 2006 end-page: 411 ident: bib0055 article-title: Statistical finite element model for bone shape and biomechanical properties publication-title: Med Image Comput Comput Assist Interv – volume: 41 start-page: 356 year: 2008 end-page: 367 ident: bib0025 article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro publication-title: J Biomech – volume: 25 start-page: 409 year: 1997 end-page: 483 ident: bib0165 article-title: A critical analysis of stress shielding evaluation of hip prostheses publication-title: Crit Rev Biomed Eng – volume: 2 start-page: 219 year: 1999 end-page: 227 ident: bib0125 article-title: Distributed volume morphing publication-title: Cluster Comput – year: 2005 ident: bib0130 article-title: Volume morphing for segmentation of bone from 3D data publication-title: Symposium on Image Analysis SSBA – volume: 31 start-page: 27 year: 2003 end-page: 72 ident: bib0135 article-title: Automatic generation of finite element meshes from computed tomography data publication-title: Crit Rev Biomed Eng – volume: 87 start-page: 148 year: 2007 end-page: 159 ident: bib0160 article-title: Multimod data manager: a tool for data fusion publication-title: Comput Methods Programs Biomed – year: 2005 ident: 10.1016/j.medengphy.2010.09.014_bib0130 article-title: Volume morphing for segmentation of bone from 3D data – year: 2004 ident: 10.1016/j.medengphy.2010.09.014_bib0090 article-title: Bone morphing with statistical shape models for enhanced visualization – start-page: 522 year: 2001 ident: 10.1016/j.medengphy.2010.09.014_bib0075 article-title: 3D finite element meshing of entire femore by using the mesh matching algorithm – volume: 8 start-page: 259 year: 2005 ident: 10.1016/j.medengphy.2010.09.014_bib0070 article-title: Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255840500289921 – volume: 41 start-page: 1381 year: 2008 ident: 10.1016/j.medengphy.2010.09.014_bib0050 article-title: Mesh-morphing algorithms for specimen-specific finite element modeling publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.02.019 – year: 2010 ident: 10.1016/j.medengphy.2010.09.014_bib0120 article-title: Feature-based 3D morphing based on geometrically constrained sphere mapping optimization – start-page: 110 year: 1982 ident: 10.1016/j.medengphy.2010.09.014_bib0195 article-title: A correlation coefficient for modal vector analysis – volume: 18 start-page: 131 year: 1999 ident: 10.1016/j.medengphy.2010.09.014_bib0200 article-title: Improved Laplacian smoothing of noisy surface meshes publication-title: Comput Graph Forum doi: 10.1111/1467-8659.00334 – volume: 9 start-page: 405 year: 2006 ident: 10.1016/j.medengphy.2010.09.014_bib0055 article-title: Statistical finite element model for bone shape and biomechanical properties publication-title: Med Image Comput Comput Assist Interv – volume: 37 start-page: 1597 year: 2004 ident: 10.1016/j.medengphy.2010.09.014_bib0005 article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies publication-title: J Biomech doi: 10.1016/j.jbiomech.2003.12.030 – volume: 40 start-page: 2982 year: 2007 ident: 10.1016/j.medengphy.2010.09.014_bib0020 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.02.010 – volume: 21 start-page: 173 year: 2002 ident: 10.1016/j.medengphy.2010.09.014_bib0045 article-title: Recent advances in mesh morphing publication-title: Comput Graph Forum doi: 10.1111/1467-8659.00575 – start-page: 67 year: 2001 ident: 10.1016/j.medengphy.2010.09.014_bib0140 article-title: Reconstruction and representation of 3D objects with radial basis functions – volume: 56 start-page: 161 year: 1994 ident: 10.1016/j.medengphy.2010.09.014_bib0145 article-title: Image warping by radial basis functions: applications to facial expressions. CVGIP: Graph publication-title: Models Image Process doi: 10.1006/cgip.1994.1015 – start-page: 6639 issue: Suppl. year: 2006 ident: 10.1016/j.medengphy.2010.09.014_bib0085 article-title: Geometric modeling of living tissue for subject-specific finite element analysis publication-title: Conf Proc IEEE Eng Med Biol Soc doi: 10.1109/IEMBS.2006.260908 – volume: 32 start-page: 57 year: 2010 ident: 10.1016/j.medengphy.2010.09.014_bib0040 article-title: Statistical modelling of the whole human femur incorporating geometric and material properties publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2009.10.008 – volume: 38 start-page: 41 year: 2009 ident: 10.1016/j.medengphy.2010.09.014_bib0035 article-title: Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9821-z – volume: 2 start-page: 219 year: 1999 ident: 10.1016/j.medengphy.2010.09.014_bib0125 article-title: Distributed volume morphing publication-title: Cluster Comput doi: 10.1023/A:1019039027754 – volume: 31 start-page: 1235 year: 2009 ident: 10.1016/j.medengphy.2010.09.014_bib0205 article-title: Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2009.08.001 – volume: 60 start-page: 383 year: 1983 ident: 10.1016/j.medengphy.2010.09.014_bib0170 article-title: Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation. II. Sex, age, side differences publication-title: Am J Phys Anthropol doi: 10.1002/ajpa.1330600309 – volume: 31 start-page: 27 year: 2003 ident: 10.1016/j.medengphy.2010.09.014_bib0135 article-title: Automatic generation of finite element meshes from computed tomography data publication-title: Crit Rev Biomed Eng doi: 10.1615/CritRevBiomedEng.v31.i12.20 – volume: 36 start-page: 897 year: 2003 ident: 10.1016/j.medengphy.2010.09.014_bib0190 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech doi: 10.1016/S0021-9290(03)00071-X – volume: 10 start-page: 55 year: 2009 ident: 10.1016/j.medengphy.2010.09.014_bib0110 article-title: Three-dimensional morphing of similar shapes using a template mesh publication-title: Int J Precision Eng Manuf doi: 10.1007/s12541-009-0009-0 – volume: 33 start-page: 1876 year: 2008 ident: 10.1016/j.medengphy.2010.09.014_bib0080 article-title: Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm publication-title: Spine (Phila Pa 1976) doi: 10.1097/BRS.0b013e31817d9ce5 – start-page: 31 year: 1995 ident: 10.1016/j.medengphy.2010.09.014_bib0175 article-title: The effect of aging on the shape of the proximal femur publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199507000-00006 – volume: 33 start-page: 1005 year: 2000 ident: 10.1016/j.medengphy.2010.09.014_bib0065 article-title: The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures publication-title: J Biomech doi: 10.1016/S0021-9290(00)00055-5 – volume: 41 start-page: 2483 year: 2008 ident: 10.1016/j.medengphy.2010.09.014_bib0185 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.05.017 – volume: 25 start-page: 371 year: 2003 ident: 10.1016/j.medengphy.2010.09.014_bib0155 article-title: CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning publication-title: Med Eng Phys doi: 10.1016/S1350-4533(03)00018-3 – volume: 41 start-page: 356 year: 2008 ident: 10.1016/j.medengphy.2010.09.014_bib0025 article-title: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.09.009 – start-page: 85 year: 1994 ident: 10.1016/j.medengphy.2010.09.014_bib0115 article-title: Wavelet-based volume morphing – volume: 69 start-page: 1169 year: 1987 ident: 10.1016/j.medengphy.2010.09.014_bib0180 article-title: Femoral anteversion publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-198769080-00010 – volume: 97 start-page: 232 year: 2009 ident: 10.1016/j.medengphy.2010.09.014_bib0030 article-title: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2009.07.005 – volume: 32 start-page: 57 year: 2009 ident: 10.1016/j.medengphy.2010.09.014_bib0060 article-title: Statistical modelling of the whole human femur incorporating geometric and material properties publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2009.10.008 – volume: 87 start-page: 148 year: 2007 ident: 10.1016/j.medengphy.2010.09.014_bib0160 article-title: Multimod data manager: a tool for data fusion publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2007.05.002 – volume: 25 start-page: 409 year: 1997 ident: 10.1016/j.medengphy.2010.09.014_bib0165 article-title: A critical analysis of stress shielding evaluation of hip prostheses publication-title: Crit Rev Biomed Eng doi: 10.1615/CritRevBiomedEng.v25.i4-5.30 – year: 2006 ident: 10.1016/j.medengphy.2010.09.014_bib0100 – start-page: 27 year: 2009 ident: 10.1016/j.medengphy.2010.09.014_bib0105 article-title: Finite element femur generation using morphing and spherical parameterization techniques – volume: 40 start-page: 1745 year: 2007 ident: 10.1016/j.medengphy.2010.09.014_bib0010 article-title: Prediction of strength and strain of the proximal femur by a CT-based finite element method publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.08.003 – volume: 42 start-page: 234 year: 2009 ident: 10.1016/j.medengphy.2010.09.014_bib0015 article-title: Validation of subject-specific automated p-FE analysis of the proximal femur publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.10.039 – start-page: 1561 year: 2008 ident: 10.1016/j.medengphy.2010.09.014_bib0095 article-title: Fast 3D mesh generation of femur based on planar parameterization and morphing – volume: 53 start-page: 2194 year: 2006 ident: 10.1016/j.medengphy.2010.09.014_bib0150 article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.879473 |
SSID | ssj0004463 |
Score | 2.2474203 |
Snippet | Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality,... Abstract Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality,... |
SourceID | unpaywall proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112 |
SubjectTerms | Algorithms Biological and medical sciences Biomechanical Phenomena Biomechanics. Biorheology Bone biomechanics Computer Graphics Databases, Factual Femur Femur - anatomy & histology Femur - diagnostic imaging Finite Element Analysis Fundamental and applied biological sciences. Psychology Humans Mesh morphing Models, Anatomic Radial basis function Radiology Reproducibility of Results Skeleton and joints Stress, Mechanical Subject-specific finite element model Tissues, organs and organisms biophysics Tomography, X-Ray Computed Vertebrates: osteoarticular system, musculoskeletal system |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDk1DKe325T6CDr06a1mSLfdWloRQSC9tIKcKWY80Zde7rNeUXPrbO_IrWZo2gYJPskZGM-OZT9JoBuC98Mw6XxSxLhmLecF4LEupYysSK7UxJW9v8Z9-zk7O-Kdzcb4Ds-EuTAir7G1_Z9Nba923THtuTleXl9MvlAnEI6zdocaFS7jEF7J_oU4f_roO88CmNsgeO8eh91aMFzocV13gfPoYr-IwofxvHurRStfIN98VvLgNke7DXlOt9NVPPZ_f8FLHT-BxDy_Jx24GT2HHVRPYmw1V3SawfyMB4QQenPZH68_g29GY95ssPUFcSC66lNSI04muLEGeNmttrsJrTRCOk4Wrv5PFEkWFo5HWF9pm7QgC4XaAtgAg8W7RrJ_D2fHR19lJ3BdfiI0o0k3spUg8wgFvvGXSyFQj8DNpIXNLaVbKLPEydYJaGzAJ55a6DA2A9yhflxrDXsButazcKyCI4rxzvKAOV28Fmgwu8twKZ6wOyX9cBNnAcGX6zOShQMZcDSFoP9QoKRUkpZJCoaQiSEbCVZec424SOUhUDXdP0VoqdCB3k-a3kbq6_-trRVWdqkT9oZkRfBgpt5T7fp892FK8caYpy0WO6DsCMmiiQmUKBz66csumVjKcEuN6VP6ji2QhyRpPInjZKfH1-BTRTSZEBHTU6vuy-fX_zPgNPOx27sPzFnY368a9Q-i3KQ_af_s3vPZXYQ priority: 102 providerName: Elsevier |
Title | Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453310002109 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453310002109 https://dx.doi.org/10.1016/j.medengphy.2010.09.014 https://www.ncbi.nlm.nih.gov/pubmed/21036655 https://www.proquest.com/docview/835117538 https://www.proquest.com/docview/883016440 https://www.openaccessrepository.it/record/21682 |
UnpaywallVersion | submittedVersion |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VRKJUiEfLwzyiPXB15LW99ppbVLUKoEYgiFQurDb7KIXEieJYqBz47cz6RYsKLUi-xbOb9Xye-dYzOwPwgtlIG5tlvpxFkR9nUezzGZe-ZoHmUqlZXJ3iP5ok42n8-pgdb0HQnoVxaZWub5Ss2gW67-bFqYs2D083bZO0kCYcjW4_cSGlHvSnk7ejj9W-igV-zKru8ZSnODMC-EJKF_oXk5_g329SurJhQOM_OaTbK1ngY7J1f4vLCOgObJf5Sp59k_P5Oad0eBfetcupc1G-DsvNbKi-_1bp8V_Wew_uNAyVjGpI3Yctk-_C9n7bGG4Xds7VMNyFm0dNdH4PPh10pcPJ0hKkluSkrmqNVJ_IXBOcv1xLdeZ-lgQZPVmY4jNZLFHbOBqp3Kku14Ygl64GqHoIEmsW5foBTA8PPuyP_aZ_g69YFm58y1lgkVFYZXXEFQ8lckcVZjzVlCYzngSWh4ZRrR2tiWNNTYI2xFqEiAmVih5CL1_m5jEQJILWmDijBjeAGVqdmKWpZkZp6eoHGQ-SVolCNcXNXY-NuWiz2L6ITvvCaV8EmUDtexB0gqu6vsfVIrxFiWiPr6LBFeiDrhZNLxM1RWM4CkFFEYpAvHdgdlh24RfclWcevOwkG25Uc57rTTu4AOZupWGUshQJvAekRbdAMLmYkczNsiwEd4Fm3NLyv9zCI1enLQ48eFS_GL_Gp0iQEsY8oN2bct3H_OQ_ZJ7Crfqbv7ueQW-zLs1zJI2b2QBuDH_QAfRHr96MJ4PGavwEYLBw8Q |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9tAEB7RIDVFVdWml3vQfeirGx-79rpvKAKFQvJSkHjqarMHUBEnimNV_PvO-oKotCBV8pO9s9YcO_PtNQPwmdlYG5tlvpzFsU-zmPp8xqWvWaC5VGpGq1v8k2kyPqXfztjZFozauzDuWGXj-2ufXnnr5s2wkeZweXk5_B7GDPFIXK1Q48QlewTblKFP7sH23uHReHpzPZJWBdVce98RbBzzwphj8nNkqTnmlX0JQvq3IPV0KQsUna1rXtwFSnegX-ZLef1LXl3dClQHz-FZgzDJXs3EC9gy-QD6o7aw2wB2buUgHMDjSbO7_hJ-7Hepv8nCEoSG5LzOSo1QnchcExRruZLq2n2WBBE5mZvigswXqC3sjVThUJcrQxALVx1UNQCJNfNy9QpOD_ZPRmO_qb_gK5ZFa99yFlhEBFZZHXPFI4nYT0UZT3UYJjOeBJZHhoVaO1hCqQ5Ngj7AWlSxiZSKX0MvX-TmLRAEctYYmoUGJ3AZeg3K0lQzo7R0-X-MB0krcKGa5OSuRsaVaE-h_RSdpoTTlAgygZryIOgIl3V-jvtJeKtR0V4_RYcpMIbcT5reRWqKZuAXIhRFJALxh3F68LWj3LDvh_12d8PwOk6jOGUpAnAPSGuJAo3J7fnI3CzKQnC3UYxTUv6PJjx2edZo4MGb2ohv-g8R4CSMeRB2Vv1QMb_7H44_QX98MjkWx4fTo_fwpF7Id88H6K1XpfmISHA9221G-m8JZFua |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5VW4lSIY7lCkflB16zihM7cXirqlYVUisQrFResBwfbWE3u9pshMqvZ5yLFhVakPK2GXud-TLzOTOeAXjDXWKsy_NQFUkSsjxhoSiECg2PjFBaF6w5xX90nB5O2bsTfrIBUX8WxqdV-r5RqmkX6L-bV-c-2jw5X_dN0mKaCjS6m6kPKY1gc3r8fvdzs6_iUch40z2eigxnRgBfSelC_2LLU_z7XUpXPoko-5NDurdUFT4m1_a3uI6AbsNWXS7VxXc1m11ySgcP4EO_nDYX5dukXhcT_eO3So__st6HcL9jqGS3hdQj2LDlGLb2-sZwY9i-VMNwDHeOuuj8Y_iyP5QOJwtHkFqS07aqNVJ9okpDcP56pfSF_1kRZPRkbqszMl-gtnE00rhTU68sQS7dDND0ECTOzuvVE5ge7H_aOwy7_g2h5nm8Dp3gkUNG4bQzidAiVsgddZyLzFCaFiKNnIgtp8Z4WsOYoTZFG-IcQsTGWidPYVQuSvscCBJBZy3LqcUNYI5Wh_EsM9xqo3z9IBtA2itR6q64ue-xMZN9FttXOWhfeu3LKJeo_QCiQXDZ1ve4WUT0KJH98VU0uBJ90M2i2XWituoMRyWprGIZyY8ezB7LPvyCu_I8gLeDZMeNWs5zu2l3roB5WGmcZDxDAh8A6dEtEUw-ZqRKu6grKXygGbe04i-3iMTXaWNRAM_aF-PX-BQJUsp5AHR4U277mF_8h8xLuNt-8_fXKxitV7V9jaRxXex0duInSnNuZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+generality+and+accuracy+of+a+new+mesh+morphing+procedure+for+the+human+femur&rft.jtitle=Medical+engineering+%26+physics&rft.au=Grassi%2C+Lorenzo&rft.au=Hraiech%2C+Najah&rft.au=Schileo%2C+Enrico&rft.au=Ansaloni%2C+Mauro&rft.date=2011-01-01&rft.eissn=1873-4030&rft.volume=33&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1016%2Fj.medengphy.2010.09.014&rft_id=info%3Apmid%2F21036655&rft.externalDocID=21036655 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453310X0011X%2Fcov150h.gif |