Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes
Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-...
Saved in:
| Published in | PloS one Vol. 9; no. 1; p. e86703 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
24.01.2014
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0086703 |
Cover
| Abstract | Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins. |
|---|---|
| AbstractList | Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins. Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins.Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins. |
| Author | Chen, Fan Jiang, Bo Zhang, Hua Chen, Yixiao Lou, Wangchao Wang, Xiaoqing |
| AuthorAffiliation | School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, PR China University of South Florida College of Medicine, United States of America |
| AuthorAffiliation_xml | – name: School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, PR China – name: University of South Florida College of Medicine, United States of America |
| Author_xml | – sequence: 1 givenname: Wangchao surname: Lou fullname: Lou, Wangchao – sequence: 2 givenname: Xiaoqing surname: Wang fullname: Wang, Xiaoqing – sequence: 3 givenname: Fan surname: Chen fullname: Chen, Fan – sequence: 4 givenname: Yixiao surname: Chen fullname: Chen, Yixiao – sequence: 5 givenname: Bo surname: Jiang fullname: Jiang, Bo – sequence: 6 givenname: Hua surname: Zhang fullname: Zhang, Hua |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24475169$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUsluFDEQbaEgssAfIGiJC5cZvPRmDpGyMEmkKCBCzla1XT141GMPdnfQHPNFfAQ_hjvTiZIICU62q149v6pXu8mWdRaT5DUlU8pL-mHhem-hna5ieEpIVZSEP0t2qOBsUjDCtx7ct5PdEBaE5LwqihfJNsuyMqeF2EluLvFHj1ZheggBdfrFozaqM86mrkmPLw4mh8ZqY-cx4zo0NozACDhd197odIbQ9R7TS2xxU3kVhoKvYLVbpjPnMXRpfKQn0IdgwKYX8PvX9fDlGsPL5HkDbcBX47mXXM0-fTs6nZx_Pjk7OjifqFywbqJKnolGlw0tMBOqKHglWMWAqYYXKAC0VirPiRaiJsBq1uSCUp2BonUGWPG95O2Gd9W6IMfpBUkzQTMeoSwizjYI7WAhV94swa-lAyNvA87PJfjOqBZlVUBd1TSDUlcZrUpQBAtWcsKbnEGDkSvfcPV2Beuf0Lb3hJTIwcA7CXIwUI4Gxrr9UWVfL1ErtJ2H9pGYxxlrvsu5u5ZckGgojQTvRwLvorOhk0sTFLYtWHT9bb-spFHr0O-7J9C_T-XNQ0X3Uu52KAI-bgDKuxA8NlKZDoZFiAJN-69-syfF_zWmP7bX87E |
| CitedBy_id | crossref_primary_10_1186_s13104_015_1039_6 crossref_primary_10_1093_bioinformatics_btab603 crossref_primary_10_1002_prot_25763 crossref_primary_10_1186_s12859_016_1201_8 crossref_primary_10_1186_s12859_020_03875_x crossref_primary_10_1016_j_cmpb_2017_05_008 crossref_primary_10_1155_2020_1384749 crossref_primary_10_32604_cmc_2021_017769 crossref_primary_10_1016_j_buildenv_2022_108790 crossref_primary_10_1007_s10686_025_09982_y crossref_primary_10_1016_j_rser_2022_112703 crossref_primary_10_1016_j_irbm_2022_100749 crossref_primary_10_1038_srep15479 crossref_primary_10_1093_bib_bbae634 crossref_primary_10_1016_j_knosys_2023_111354 crossref_primary_10_1016_j_ejmech_2023_115500 crossref_primary_10_7717_peerj_11262 crossref_primary_10_1002_prot_26229 crossref_primary_10_1371_journal_pone_0106691 crossref_primary_10_3390_ijms18091856 crossref_primary_10_1007_s10822_019_00207_x crossref_primary_10_1016_j_carres_2025_109453 crossref_primary_10_1016_j_meegid_2020_104357 crossref_primary_10_1186_s12911_021_01480_3 crossref_primary_10_1155_2020_7297631 crossref_primary_10_1016_j_compbiomed_2022_105533 crossref_primary_10_1155_2022_5847242 crossref_primary_10_3934_bioeng_2016_4_552 crossref_primary_10_1155_2017_4590609 crossref_primary_10_1038_s41598_017_14945_1 crossref_primary_10_1016_j_biosystemseng_2021_11_021 crossref_primary_10_1016_j_jtbi_2018_10_027 crossref_primary_10_3390_ijgi10030187 crossref_primary_10_1016_j_jtbi_2016_06_002 crossref_primary_10_1007_s11004_021_09967_5 crossref_primary_10_1016_j_chemolab_2021_104233 crossref_primary_10_1109_TCBB_2022_3183191 crossref_primary_10_2174_1386207323999201124203531 crossref_primary_10_3390_ijms160921191 crossref_primary_10_1002_minf_202000006 crossref_primary_10_3389_fgene_2020_539227 crossref_primary_10_1049_iet_stg_2019_0272 crossref_primary_10_1016_j_chemolab_2018_08_013 crossref_primary_10_1016_j_neucom_2017_06_084 crossref_primary_10_1186_s12859_023_05263_7 crossref_primary_10_1007_s44196_024_00462_3 crossref_primary_10_1088_1757_899X_462_1_012024 crossref_primary_10_1016_j_imu_2021_100592 crossref_primary_10_1186_1471_2164_16_S3_S6 crossref_primary_10_2174_1574893615999200607173829 crossref_primary_10_3389_fcell_2022_845622 crossref_primary_10_1080_01431161_2020_1779375 crossref_primary_10_1016_j_ymeth_2024_09_004 crossref_primary_10_1155_2014_845479 crossref_primary_10_1093_bioinformatics_bty1061 crossref_primary_10_1002_bip_23419 crossref_primary_10_1186_s12859_024_05714_9 crossref_primary_10_1002_prot_25832 crossref_primary_10_1093_bioadv_vbaf008 crossref_primary_10_1142_S0219622021500644 crossref_primary_10_1007_s12145_021_00700_8 crossref_primary_10_1093_nar_gkv805 crossref_primary_10_1016_j_imu_2020_100318 crossref_primary_10_2174_1574893614666181212102030 crossref_primary_10_3389_fneur_2023_1106612 crossref_primary_10_1016_j_ab_2018_10_027 crossref_primary_10_1016_j_jtbi_2018_05_006 crossref_primary_10_1007_s10930_021_10011_y crossref_primary_10_3389_fphar_2022_1031759 crossref_primary_10_3934_mbe_2022362 crossref_primary_10_3390_biom12091187 crossref_primary_10_1109_TCBB_2019_2893634 crossref_primary_10_1016_j_compbiomed_2022_105395 crossref_primary_10_1016_j_ins_2016_06_026 crossref_primary_10_1007_s12539_021_00489_6 crossref_primary_10_1007_s10930_023_10096_7 crossref_primary_10_12677_HJCB_2021_111001 crossref_primary_10_1093_bib_bbae285 crossref_primary_10_2174_1574893616666210806091922 crossref_primary_10_3390_beverages7010003 crossref_primary_10_1021_acs_jcim_0c00735 crossref_primary_10_1371_journal_pone_0185587 crossref_primary_10_1016_j_jmb_2020_09_008 crossref_primary_10_1109_TEVC_2019_2962747 crossref_primary_10_1016_j_ab_2024_115603 crossref_primary_10_1155_2022_5483115 crossref_primary_10_1186_s13104_018_3383_9 crossref_primary_10_1021_acs_jproteome_9b00226 crossref_primary_10_12677_HJCB_2020_102003 crossref_primary_10_1142_S0218001421500221 crossref_primary_10_1007_s10586_023_04165_w crossref_primary_10_3390_ijms160921734 crossref_primary_10_1016_j_gaitpost_2022_03_007 crossref_primary_10_2174_0115748936264122231016094702 crossref_primary_10_1007_s11033_019_04763_1 crossref_primary_10_1016_j_chemolab_2018_09_007 crossref_primary_10_3390_ijms16035194 crossref_primary_10_1016_j_asoc_2020_106921 crossref_primary_10_1093_bioinformatics_bty912 crossref_primary_10_1016_j_eswa_2024_123525 crossref_primary_10_1109_ACCESS_2021_3070083 crossref_primary_10_1016_j_knosys_2022_109174 crossref_primary_10_1007_s12008_023_01642_9 crossref_primary_10_1016_j_compbiomed_2023_106849 crossref_primary_10_1016_j_csbj_2021_03_005 crossref_primary_10_1002_for_2856 crossref_primary_10_1016_j_compbiomed_2022_106268 crossref_primary_10_21015_vtcs_v10i1_1257 crossref_primary_10_1109_ACCESS_2022_3182498 crossref_primary_10_1186_1752_0509_9_S1_S10 crossref_primary_10_1186_s12864_021_08159_z crossref_primary_10_1021_acs_jcim_2c01465 crossref_primary_10_1038_s42003_024_06332_0 crossref_primary_10_1016_j_compbiomed_2024_108081 crossref_primary_10_1016_j_compbiomed_2023_107094 crossref_primary_10_1016_j_neucom_2016_03_025 crossref_primary_10_1016_j_aei_2021_101369 crossref_primary_10_3390_molecules22101602 crossref_primary_10_1016_j_chemolab_2022_104639 crossref_primary_10_1186_s12859_020_03683_3 crossref_primary_10_1021_acsbiomaterials_1c00869 crossref_primary_10_1021_acs_jcim_2c00943 crossref_primary_10_1371_journal_pone_0167345 crossref_primary_10_1016_j_jtv_2020_06_002 crossref_primary_10_1371_journal_pone_0225317 crossref_primary_10_1038_s41598_018_32443_w crossref_primary_10_3390_ijerph18052713 crossref_primary_10_1093_bioinformatics_bty653 crossref_primary_10_1109_TNSRE_2023_3237916 crossref_primary_10_32604_iasc_2022_026940 crossref_primary_10_1093_bioinformatics_btv665 crossref_primary_10_1109_TNB_2016_2555951 crossref_primary_10_1177_00139165221114894 crossref_primary_10_3390_ijms20174175 crossref_primary_10_1016_j_eswa_2022_118152 crossref_primary_10_1093_bib_bbaa253 crossref_primary_10_1109_ACCESS_2018_2876656 crossref_primary_10_1007_s00438_015_1108_5 crossref_primary_10_1016_j_compbiomed_2023_107317 crossref_primary_10_1093_bib_bbab336 crossref_primary_10_1145_3649442 crossref_primary_10_1093_nar_gkx1166 crossref_primary_10_3389_fgene_2021_821996 crossref_primary_10_3390_genes9080394 crossref_primary_10_1038_s41598_024_52653_9 crossref_primary_10_1093_bib_bbz037 crossref_primary_10_1109_TCBB_2019_2952338 |
| Cites_doi | 10.1093/nar/gkn159 10.1007/s00726-007-0016-3 10.2174/138920310794109193 10.1016/j.jmb.2006.02.053 10.1093/nar/28.1.235 10.1093/nar/gkp305 10.1093/bioinformatics/btq700 10.1093/bib/bbs034 10.1016/j.jmb.2004.05.058 10.1093/nar/gks405 10.1093/bioinformatics/19.2.234 10.1093/bioinformatics/btp500 10.1016/j.jmb.2009.02.023 10.1186/1471-2105-13-S10-S3 10.1186/1471-2105-8-463 10.1093/bioinformatics/btn433 10.1016/j.febslet.2007.01.086 10.1186/1471-2105-11-549 10.1371/journal.pone.0060559 10.1002/prot.21097 10.1016/j.ygeno.2003.11.004 10.4161/rna.8.6.17813 10.1042/bj2620977 10.1016/0005-2795(75)90109-9 10.1186/1471-2105-14-90 10.1016/j.jtbi.2009.01.024 10.1093/bioinformatics/btq295 10.1186/1471-2105-13-89 10.1080/07391102.2009.10507281 10.1093/genetics/141.4.1253 10.1128/JB.185.14.4066-4073.2003 10.1016/S1570-9639(03)00112-2 10.1371/journal.pone.0069566 10.1093/nar/gkq1266 10.1007/s00726-008-0044-7 10.1146/annurev.biophys.34.040204.144537 10.1093/bib/bbm064 10.1016/j.sbi.2012.06.002 10.1371/journal.pcbi.1000567 10.1093/bioinformatics/btq019 10.1186/1471-2105-12-S1-S47 10.1093/bioinformatics/btq302 10.1007/s00726-007-0568-2 10.1016/j.jtbi.2005.09.018 10.1093/nar/gki949 10.1186/1477-5956-9-S1-S1 10.1023/A:1010933404324 10.1016/S0022-2836(03)00031-7 10.1002/prot.10328 10.1093/nar/25.17.3389 10.1007/s00726-010-0805-y 10.1371/journal.pone.0024756 10.1093/nar/gkn332 10.1002/jcc.21968 10.1073/pnas.0402659101 10.1080/073911012010525022 10.1093/bib/bbr053 10.1093/bioinformatics/bts598 10.1093/nar/gkq061 10.1371/journal.pcbi.1000146 |
| ContentType | Journal Article |
| Copyright | 2014 Lou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2014 Lou et al 2014 Lou et al |
| Copyright_xml | – notice: 2014 Lou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2014 Lou et al 2014 Lou et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0086703 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Engineering Biology Mathematics Computer Science |
| DocumentTitleAlternate | Sequence Based Prediction of DNA-Binding Proteins |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1491439112 oai_doaj_org_article_86ab8b14a7d84187ac0e627303f52afe 10.1371/journal.pone.0086703 PMC3901691 3190377411 24475169 10_1371_journal_pone_0086703 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF IPNFZ NPM PV9 RIG RZL 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP BBORY KM |
| ID | FETCH-LOGICAL-c592t-c7349fd7f16e49c66389282a2cf36e9aaddcc550d99b0a2b2f5911d4ac1b4ae83 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Thu Nov 25 14:37:20 EST 2021 Fri Oct 03 12:51:00 EDT 2025 Sun Oct 26 04:04:17 EDT 2025 Tue Sep 30 16:42:47 EDT 2025 Sun Sep 28 12:34:00 EDT 2025 Tue Oct 07 07:08:36 EDT 2025 Mon Jul 21 06:05:27 EDT 2025 Wed Oct 01 04:58:48 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c592t-c7349fd7f16e49c66389282a2cf36e9aaddcc550d99b0a2b2f5911d4ac1b4ae83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: WL XW BJ HZ. Performed the experiments: WL. Analyzed the data: WL XW FC. Contributed reagents/materials/analysis tools: YC HZ. Wrote the paper: XW HZ. Competing Interests: The authors have declared that no competing interests exist. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0086703 |
| PMID | 24475169 |
| PQID | 1491439112 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_1491439112 doaj_primary_oai_doaj_org_article_86ab8b14a7d84187ac0e627303f52afe unpaywall_primary_10_1371_journal_pone_0086703 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3901691 proquest_miscellaneous_1492716272 proquest_journals_1491439112 pubmed_primary_24475169 crossref_citationtrail_10_1371_journal_pone_0086703 crossref_primary_10_1371_journal_pone_0086703 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-24 |
| PublicationDateYYYYMMDD | 2014-01-24 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2014 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | Y Guo (ref52) 2008; 36 RR Walia (ref44) 2012; 13 ref58 M Kumar (ref23) 2007; 8 MJ Buck (ref5) 2004; 83 X Shao (ref29) 2009; 258 G Nimrod (ref14) 2010; 26 S Shazman (ref35) 2008; 4 Y Cai (ref30) 2003; 1648 WZ Lin (ref8) 2011; 6 AN Tegge (ref46) 2009; 37 F Cajone (ref4) 1989; 262 T Zhang (ref41) 2008; 24 E Faraggi (ref37) 2012; 33 M Gao (ref11) 2008; 36 HL Huang (ref21) 2011; 12 KK Kumar (ref22) 2009; 26 T Zhang (ref47) 2012; 29 Q Dong (ref51) 2009; 25 HM Berman (ref31) 2000; 28 RDS Raizada (ref61) 2013; 8 L Nanni (ref27) 2009; 36 ref48 DN Ivankov (ref38) 2004; 101 H Zhao (ref12) 2010; 26 Y Murakami (ref60) 2010; 26 H Zhao (ref33) 2011; 39 F Pedregosa (ref57) 2011; 12 S Ahmad (ref10) 2004; 341 K Freeman (ref6) 1995; 141 L Han (ref36) 2010; 11 A Szabóová (ref16) 2012; 13 L Breiman (ref56) 2001; 45 H Zhang (ref39) 2012; 42 X Zhang (ref49) 2013; 8 Y Guo (ref50) 2006; 65 M Gao (ref19) 2009; 5 SF Altschul (ref32) 1997; 25 WG Touw (ref53) 2013; 14 N Bhardwaj (ref18) 2007; 581 L Nanni (ref26) 2008; 34 N Bhardwaj (ref17) 2005; 33 EW Stawiski (ref9) 2003; 326 W Zhou (ref15) 2011; 9 S Ahmad (ref42) 2003; 50 AL Boulesteix (ref55) 2012; 13 G Nimrod (ref13) 2009; 387 S Dey (ref43) 2012; 40 LA Liu (ref2) 2012; 22 H Zhao (ref34) 2011; 8 J Cao (ref59) 2003; 19 RE Langlois (ref3) 2010; 38 CC Chou (ref7) 2003; 185 A Sarai (ref1) 2005; 34 T Ebina (ref54) 2011; 27 P Sonego (ref63) 2008; 9 T Zhang (ref40) 2010; 11 J Eickholt (ref45) 2012; 28 C Zou (ref20) 2013; 14 A Szilágyi (ref24) 2006; 358 Y Fang (ref25) 2008; 34 BW Matthews (ref62) 1975; 405 X Yu (ref28) 2006; 240 18390576 - Nucleic Acids Res. 2008 May;36(9):3025-30 20525822 - Bioinformatics. 2010 Aug 1;26(15):1857-63 19706744 - Bioinformatics. 2009 Oct 15;25(20):2655-62 22786785 - Brief Bioinform. 2013 May;14(3):315-26 21183467 - Nucleic Acids Res. 2011 Apr;39(8):3017-25 22641851 - Nucleic Acids Res. 2012 Aug;40(15):7150-61 20089514 - Bioinformatics. 2010 Mar 1;26(5):692-3 1180967 - Biochim Biophys Acta. 1975 Oct 20;405(2):442-51 15184682 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8942-4 23047561 - Bioinformatics. 2012 Dec 1;28(23):3066-72 12589754 - J Mol Biol. 2003 Feb 28;326(4):1065-79 12538244 - Bioinformatics. 2003 Jan 22;19(2):234-40 22045506 - J Comput Chem. 2012 Jan 30;33(3):259-67 20156993 - Nucleic Acids Res. 2010 Jun;38(10):3149-58 22796087 - Curr Opin Struct Biol. 2012 Aug;22(4):397-405 21955494 - RNA Biol. 2011 Nov-Dec;8(6):988-96 18716674 - PLoS Comput Biol. 2008;4(8):e1000146 19233205 - J Mol Biol. 2009 Apr 10;387(4):1040-53 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 22166014 - Proteome Sci. 2011 Oct 14;9 Suppl 1:S1 21059237 - BMC Bioinformatics. 2010;11:549 17624492 - Amino Acids. 2008 Jan;34(1):103-9 22720092 - PLoS One. 2012;7(6):e39308 12577269 - Proteins. 2003 Mar 1;50(4):629-35 18192302 - Brief Bioinform. 2008 May;9(3):198-209 19420062 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W515-8 16274699 - J Theor Biol. 2006 May 21;240(2):175-84 23593247 - PLoS One. 2013;8(4):e60559 21169376 - Bioinformatics. 2011 Feb 15;27(4):487-94 16284202 - Nucleic Acids Res. 2005;33(20):6486-93 15312763 - J Mol Biol. 2004 Jul 30;341(1):65-71 21082205 - Amino Acids. 2012 Jan;42(1):271-83 19385697 - J Biomol Struct Dyn. 2009 Jun;26(6):679-86 17316627 - FEBS Lett. 2007 Mar 6;581(5):1058-66 12837780 - J Bacteriol. 2003 Jul;185(14):4066-73 22208280 - J Biomol Struct Dyn. 2012;29(4):799-813 18710875 - Bioinformatics. 2008 Oct 15;24(20):2329-38 21935457 - PLoS One. 2011;6(9):e24756 15869395 - Annu Rev Biophys Biomol Struct. 2005;34:379-98 20529890 - Bioinformatics. 2010 Aug 1;26(15):1841-8 19490865 - J Theor Biol. 2009 May 21;258(2):289-93 2590181 - Biochem J. 1989 Sep 15;262(3):977-9 18175049 - Amino Acids. 2008 May;34(4):635-41 19911048 - PLoS Comput Biol. 2009 Nov;5(11):e1000567 18515839 - Nucleic Acids Res. 2008 Jul;36(12):3978-92 21342579 - BMC Bioinformatics. 2011;12 Suppl 1:S47 23922740 - PLoS One. 2013;8(7):e69566 12758155 - Biochim Biophys Acta. 2003 May 30;1648(1-2):127-33 14986705 - Genomics. 2004 Mar;83(3):349-60 22759427 - BMC Bioinformatics. 2012;13 Suppl 10:S3 18042272 - BMC Bioinformatics. 2007;8:463 22574904 - BMC Bioinformatics. 2012;13:89 16865706 - Proteins. 2006 Oct 1;65(1):55-60 16551468 - J Mol Biol. 2006 May 5;358(3):922-33 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42 20887256 - Curr Protein Pept Sci. 2010 Nov;11(7):609-28 8601471 - Genetics. 1995 Dec;141(4):1253-62 23497329 - BMC Bioinformatics. 2013;14:90 21908865 - Brief Bioinform. 2012 May;13(3):292-304 18288459 - Amino Acids. 2009 Feb;36(2):167-75 |
| References_xml | – volume: 36 start-page: 3025 year: 2008 ident: ref52 article-title: Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn159 – volume: 34 start-page: 635 year: 2008 ident: ref26 article-title: Combing ontologies and dipeptide composition for predicting DNA-binding proteins publication-title: Amino Acids doi: 10.1007/s00726-007-0016-3 – volume: 11 start-page: 609 year: 2010 ident: ref40 article-title: Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility publication-title: Curr Protein Pept Sci doi: 10.2174/138920310794109193 – volume: 358 start-page: 922 year: 2006 ident: ref24 article-title: Efficient Prediction of Nucleic Acid Binding Function from Low-resolution Protein Structures publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.02.053 – volume: 28 start-page: 235 year: 2000 ident: ref31 article-title: The Protein Data Bank publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.235 – volume: 37 start-page: W515 year: 2009 ident: ref46 article-title: NNcon: improved protein contact map prediction using 2D-recursive neural networks publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp305 – volume: 27 start-page: 487 year: 2011 ident: ref54 article-title: DROP: an SVM domain linker predictor trained with optimal features selected by random forest publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btq700 – volume: 14 start-page: 315 year: 2013 ident: ref53 article-title: Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? publication-title: Brief Bioinform doi: 10.1093/bib/bbs034 – volume: 341 start-page: 65 year: 2004 ident: ref10 article-title: Moment-based prediction of DNA-binding proteins publication-title: J Mol Biol doi: 10.1016/j.jmb.2004.05.058 – volume: 40 start-page: 7150 year: 2012 ident: ref43 article-title: Characterization and prediction of the binding site in DNA-binding proteins: improvement of accuracy by combining residue composition, evolutionary conservation and structural parameters publication-title: Nucleic Acids Res doi: 10.1093/nar/gks405 – volume: 19 start-page: 234 year: 2003 ident: ref59 article-title: A naive Bayes model to predict coupling between seven transmembrane domain receptors and G-proteins publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/19.2.234 – volume: 25 start-page: 2655 year: 2009 ident: ref51 article-title: A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btp500 – volume: 387 start-page: 1040 year: 2009 ident: ref13 article-title: Identification of DNA-binding proteins using structural, electrostatic and evolutionary features publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.02.023 – volume: 13 start-page: S3 year: 2012 ident: ref16 article-title: Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S10-S3 – volume: 8 start-page: 463 year: 2007 ident: ref23 article-title: Identification of DNA-binding proteins using support vector machines and evolutionary profiles publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-463 – volume: 24 start-page: 2329 year: 2008 ident: ref41 article-title: Accurate sequence-based prediction of catalytic residues publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn433 – volume: 581 start-page: 1058 year: 2007 ident: ref18 article-title: Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions publication-title: FEBS Lett doi: 10.1016/j.febslet.2007.01.086 – volume: 11 start-page: 549 year: 2010 ident: ref36 article-title: The Text-mining based PubChem Bioassay neighboring analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-549 – volume: 8 start-page: e60559 year: 2013 ident: ref49 article-title: DomHR: Accurately Identifying Domain Boundaries in Proteins Using a Hinge Region Strategy publication-title: PLoS ONE doi: 10.1371/journal.pone.0060559 – volume: 65 start-page: 55 year: 2006 ident: ref50 article-title: Predicting G-protein coupled receptors-G-protein coupling specificity based on autocross-covariance transform publication-title: Proteins doi: 10.1002/prot.21097 – volume: 83 start-page: 349 year: 2004 ident: ref5 article-title: ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments publication-title: Genomics doi: 10.1016/j.ygeno.2003.11.004 – volume: 8 start-page: 988 year: 2011 ident: ref34 article-title: Highly accurate and high-resolution function prediction of RNA binding proteins by fold recognition and binding affinity prediction publication-title: RNA Biol doi: 10.4161/rna.8.6.17813 – volume: 262 start-page: 977 year: 1989 ident: ref4 article-title: 4-Hydroxynonenal induces a DNA-binding protein similar to the heat-shock factor publication-title: Biochem J doi: 10.1042/bj2620977 – volume: 405 start-page: 442 year: 1975 ident: ref62 article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme publication-title: Biochim Biophys Acta doi: 10.1016/0005-2795(75)90109-9 – volume: 14 start-page: 90 year: 2013 ident: ref20 article-title: An improved sequence based prediction protocol for DNA-binding proteins using SVM and comprehensive feature analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-90 – volume: 258 start-page: 289 year: 2009 ident: ref29 article-title: Predicting DNA- and RNA-binding proteins from sequences with kernel methods publication-title: J Theor Biol doi: 10.1016/j.jtbi.2009.01.024 – volume: 26 start-page: 1857 year: 2010 ident: ref12 article-title: Structure-based prediction of DNA-binding proteins by structural alignment and a volume-fraction corrected DFIRE-based energy function publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btq295 – volume: 13 start-page: 89 year: 2012 ident: ref44 article-title: Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-89 – volume: 26 start-page: 679 year: 2009 ident: ref22 article-title: DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.2009.10507281 – volume: 141 start-page: 1253 year: 1995 ident: ref6 article-title: Molecular and genetic analysis of the toxic effect of RAP1 overexpression in yeast publication-title: Genetics doi: 10.1093/genetics/141.4.1253 – ident: ref58 – volume: 185 start-page: 4066 year: 2003 ident: ref7 article-title: Crystal structure of the hyperthermophilic archaeal DNA-binding protein Sso10b2 at a resolution of 1.85 Angstroms publication-title: J Bacteriol doi: 10.1128/JB.185.14.4066-4073.2003 – volume: 1648 start-page: 127 year: 2003 ident: ref30 article-title: Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence publication-title: Biochim Biophys Acta doi: 10.1016/S1570-9639(03)00112-2 – volume: 8 start-page: e69566 year: 2013 ident: ref61 article-title: Smoothness without Smoothing: Why Gaussian Naive Bayes Is Not Naive for Multi-Subject Searchlight Studies publication-title: PLoS ONE doi: 10.1371/journal.pone.0069566 – volume: 39 start-page: 3017 year: 2011 ident: ref33 article-title: Structure-based prediction of RNA-binding domains and RNA-binding sites and application to structural genomics targets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1266 – volume: 36 start-page: 167 year: 2009 ident: ref27 article-title: An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins publication-title: Amino Acids doi: 10.1007/s00726-008-0044-7 – ident: ref48 – volume: 34 start-page: 379 year: 2005 ident: ref1 article-title: Protein-DNA recognition patterns and predictions publication-title: Annu Rev Biophys Biomol Struct doi: 10.1146/annurev.biophys.34.040204.144537 – volume: 12 start-page: 2825 year: 2011 ident: ref57 article-title: Scikit-learn: Machine Learning in Python publication-title: J Mach Learn Res – volume: 9 start-page: 198 year: 2008 ident: ref63 article-title: ROC analysis: applications to the classification of biological sequences and 3D structures publication-title: Brief Bioinform doi: 10.1093/bib/bbm064 – volume: 22 start-page: 397 year: 2012 ident: ref2 article-title: Atomistic modeling of protein-DNA interaction specificity: progress and applications publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2012.06.002 – volume: 5 start-page: e1000567 year: 2009 ident: ref19 article-title: A threading-based method for the prediction of DNA-binding proteins with application to the human genome publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000567 – volume: 26 start-page: 692 year: 2010 ident: ref14 article-title: iDBPs: a web server for the identification of DNA binding proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq019 – volume: 12 start-page: S47 year: 2011 ident: ref21 article-title: Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-S1-S47 – volume: 26 start-page: 1841 year: 2010 ident: ref60 article-title: Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btq302 – volume: 34 start-page: 103 year: 2008 ident: ref25 article-title: Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features publication-title: Amino Acids doi: 10.1007/s00726-007-0568-2 – volume: 240 start-page: 175 year: 2006 ident: ref28 article-title: Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines publication-title: J Theor Biol doi: 10.1016/j.jtbi.2005.09.018 – volume: 33 start-page: 6486 year: 2005 ident: ref17 article-title: Kernel-based machine learning protocol for predicting DNA-binding proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gki949 – volume: 9 start-page: S1 year: 2011 ident: ref15 article-title: Prediction of DNA-binding protein based on statistical and geometric features and support vector machines publication-title: Proteome Sci doi: 10.1186/1477-5956-9-S1-S1 – volume: 45 start-page: 5 year: 2001 ident: ref56 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 326 start-page: 1065 year: 2003 ident: ref9 article-title: Annotating nucleic acid-binding function based on protein structure publication-title: J Mol Biol doi: 10.1016/S0022-2836(03)00031-7 – volume: 50 start-page: 629 year: 2003 ident: ref42 article-title: Real value prediction of solvent accessibility from amino acid sequence publication-title: Proteins doi: 10.1002/prot.10328 – volume: 25 start-page: 3389 year: 1997 ident: ref32 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 42 start-page: 271 year: 2012 ident: ref39 article-title: Determination of protein folding kinetic types using sequence and predicted secondary structure and solvent accessibility publication-title: Amino Acids doi: 10.1007/s00726-010-0805-y – volume: 6 start-page: e24756 year: 2011 ident: ref8 article-title: iDNA-Prot: identification of DNA binding proteins using random forest with grey model publication-title: PloS One doi: 10.1371/journal.pone.0024756 – volume: 36 start-page: 3978 year: 2008 ident: ref11 article-title: DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn332 – volume: 33 start-page: 259 year: 2012 ident: ref37 article-title: SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles publication-title: J Comput Chem doi: 10.1002/jcc.21968 – volume: 101 start-page: 8942 year: 2004 ident: ref38 article-title: Prediction of protein folding rates from the amino acid sequence-predicted secondary structure publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0402659101 – volume: 29 start-page: 799 year: 2012 ident: ref47 article-title: SPINE-D: accurate prediction of short and long disordered regions by a single neural-network based method publication-title: J Biomol Struct Dyn doi: 10.1080/073911012010525022 – volume: 13 start-page: 292 year: 2012 ident: ref55 article-title: Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations publication-title: Brief Bioinform doi: 10.1093/bib/bbr053 – volume: 28 start-page: 3066 year: 2012 ident: ref45 article-title: Predicting protein residue-residue contacts using deep networks and boosting publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts598 – volume: 38 start-page: 3149 year: 2010 ident: ref3 article-title: Boosting the prediction and understanding of DNA-binding domains from sequence publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq061 – volume: 4 start-page: e1000146 year: 2008 ident: ref35 article-title: Classifying RNA-binding proteins based on electrostatic properties publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000146 – reference: 12758155 - Biochim Biophys Acta. 2003 May 30;1648(1-2):127-33 – reference: 21082205 - Amino Acids. 2012 Jan;42(1):271-83 – reference: 18716674 - PLoS Comput Biol. 2008;4(8):e1000146 – reference: 18710875 - Bioinformatics. 2008 Oct 15;24(20):2329-38 – reference: 23497329 - BMC Bioinformatics. 2013;14:90 – reference: 12577269 - Proteins. 2003 Mar 1;50(4):629-35 – reference: 22574904 - BMC Bioinformatics. 2012;13:89 – reference: 21908865 - Brief Bioinform. 2012 May;13(3):292-304 – reference: 23047561 - Bioinformatics. 2012 Dec 1;28(23):3066-72 – reference: 18192302 - Brief Bioinform. 2008 May;9(3):198-209 – reference: 15869395 - Annu Rev Biophys Biomol Struct. 2005;34:379-98 – reference: 20156993 - Nucleic Acids Res. 2010 Jun;38(10):3149-58 – reference: 17624492 - Amino Acids. 2008 Jan;34(1):103-9 – reference: 22796087 - Curr Opin Struct Biol. 2012 Aug;22(4):397-405 – reference: 12589754 - J Mol Biol. 2003 Feb 28;326(4):1065-79 – reference: 22759427 - BMC Bioinformatics. 2012;13 Suppl 10:S3 – reference: 22045506 - J Comput Chem. 2012 Jan 30;33(3):259-67 – reference: 21935457 - PLoS One. 2011;6(9):e24756 – reference: 16865706 - Proteins. 2006 Oct 1;65(1):55-60 – reference: 20525822 - Bioinformatics. 2010 Aug 1;26(15):1857-63 – reference: 19490865 - J Theor Biol. 2009 May 21;258(2):289-93 – reference: 16551468 - J Mol Biol. 2006 May 5;358(3):922-33 – reference: 16284202 - Nucleic Acids Res. 2005;33(20):6486-93 – reference: 17316627 - FEBS Lett. 2007 Mar 6;581(5):1058-66 – reference: 22720092 - PLoS One. 2012;7(6):e39308 – reference: 21059237 - BMC Bioinformatics. 2010;11:549 – reference: 20529890 - Bioinformatics. 2010 Aug 1;26(15):1841-8 – reference: 18175049 - Amino Acids. 2008 May;34(4):635-41 – reference: 22166014 - Proteome Sci. 2011 Oct 14;9 Suppl 1:S1 – reference: 12538244 - Bioinformatics. 2003 Jan 22;19(2):234-40 – reference: 19420062 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W515-8 – reference: 15312763 - J Mol Biol. 2004 Jul 30;341(1):65-71 – reference: 15184682 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8942-4 – reference: 19911048 - PLoS Comput Biol. 2009 Nov;5(11):e1000567 – reference: 19385697 - J Biomol Struct Dyn. 2009 Jun;26(6):679-86 – reference: 21955494 - RNA Biol. 2011 Nov-Dec;8(6):988-96 – reference: 2590181 - Biochem J. 1989 Sep 15;262(3):977-9 – reference: 16274699 - J Theor Biol. 2006 May 21;240(2):175-84 – reference: 20089514 - Bioinformatics. 2010 Mar 1;26(5):692-3 – reference: 23922740 - PLoS One. 2013;8(7):e69566 – reference: 19706744 - Bioinformatics. 2009 Oct 15;25(20):2655-62 – reference: 1180967 - Biochim Biophys Acta. 1975 Oct 20;405(2):442-51 – reference: 23593247 - PLoS One. 2013;8(4):e60559 – reference: 22208280 - J Biomol Struct Dyn. 2012;29(4):799-813 – reference: 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42 – reference: 20887256 - Curr Protein Pept Sci. 2010 Nov;11(7):609-28 – reference: 21169376 - Bioinformatics. 2011 Feb 15;27(4):487-94 – reference: 18515839 - Nucleic Acids Res. 2008 Jul;36(12):3978-92 – reference: 18288459 - Amino Acids. 2009 Feb;36(2):167-75 – reference: 18390576 - Nucleic Acids Res. 2008 May;36(9):3025-30 – reference: 22786785 - Brief Bioinform. 2013 May;14(3):315-26 – reference: 21342579 - BMC Bioinformatics. 2011;12 Suppl 1:S47 – reference: 18042272 - BMC Bioinformatics. 2007;8:463 – reference: 8601471 - Genetics. 1995 Dec;141(4):1253-62 – reference: 21183467 - Nucleic Acids Res. 2011 Apr;39(8):3017-25 – reference: 19233205 - J Mol Biol. 2009 Apr 10;387(4):1040-53 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 22641851 - Nucleic Acids Res. 2012 Aug;40(15):7150-61 – reference: 12837780 - J Bacteriol. 2003 Jul;185(14):4066-73 – reference: 14986705 - Genomics. 2004 Mar;83(3):349-60 |
| SSID | ssj0053866 |
| Score | 2.5022602 |
| Snippet | Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it... |
| SourceID | plos doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e86703 |
| SubjectTerms | Algorithms Amino acid sequence Amino acids Amino Acids - chemistry Amino Acids - metabolism Animals Artificial intelligence Basis functions Bayes Theorem Bayesian analysis Bioinformatics Biology Classifiers Computer Science Datasets Datasets as Topic Decision trees Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism DNA-binding protein DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Engineering Forest management Functions (mathematics) Gene expression Gene regulation Humans Mathematical analysis Mathematics Methods Neural networks Normal Distribution Nucleotide sequence Position-Specific Scoring Matrices Predictions Protein structure Protein Structure, Secondary Proteins Radial basis function Ribonucleic acid RNA RNA-binding protein RNA-Binding Proteins - chemistry RNA-Binding Proteins - metabolism ROC Curve Secondary structure Sequence Analysis, Protein - statistics & numerical data Solvents |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BBlL8GCjISBzikXf_Ejo8tUCokeoFKvUW2Y9NK22TV7IL2yBPxELwYM4kTdUWlcuCY9Xiznhl7ZtYz3xDy2pZKYgOcnNkaAhRjY-6C4nktIpg3573QWDv8-UQdn8pPZ8XZtVZfmBM2wAMPjNsvlXWlY9LqupSs1NbP4LtAL0UsuI0BT99ZacZgajiDYRcrlQrlhGb7SS57i7YJCGiq9NgkKxmiHq8f8U3nbXeTr_l3yuTdVbOw6x92Pr9mj44ekPvJkaQHwwK2yZ3QPCTbaat29E3Ck377iPz8ktKlKZqsmi6u8HIGBULbSN-fHGB0jCaM9qANF02XCIHgfI0VXTSGHv-Tdn3XHJyJ-fLfKBi6ur2k4PjCMig80I921WFdJm3s71_fAz2069A9JqdHH76-O85T54XcF4Yvc6-FNLHWkakgjVfo1kBsZrmPQgVj4VD0HmKb2hg3s9zxWMChWUvrmZM2lOIJ2WqA1zuEliKCAEsZeBFlsM6Bv-WUjNIyPQtRZESMYqh8giXH7hjzqr9r0xCeDAytUHhVEl5G8mnWYoDluIX-ECU80SKodv8BqFqVVK26TdUysoP6Mb6gg7DJMKxcZjwju6PO3Dz8ahqG7Yt3MrYJ7aqn4QjipYHm6aBi04_kCMbIlMmI3lC-jVVsjjQX5z1EOP6TpQzLyN6kpv_Ep2f_g0_PyT1wKzG5Kedyl2wtr1bhBbhuS_ey36V_AMx_R6Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Pb9MwFLdGdwAOiA3YAgMZiQMcstWOYycHhFbYqJCopo1Ju0W2Y8OkkpSmBfXIJ-JD8MV4L3XKKibg2PpFSfz--Dl-7_cj5JnOpEACnJjpEjYoufaxcZLHZeJheTPWJgp7h9-P5PBcvLtILzbIqOuFwbLKLia2gbqsLX4jP4BMnmGXKOOvJl9iZI3C09WOQkMHaoXyZQsxdoNsckTG6pHNwdHo5LSLzeDdUoYGukSxg6Cv_UldOQQ6laojzwoLVIvjj7in47q5Lgf9s5Ty5rya6MU3PR5fWaeO75I7IcGkh0uL2CIbrtomt6_ADm6TreDQDX0eUKdf3CPfz0JRNR3AwlbSkyke4aDaaO3pm9FhPLhsO2BgpEaKzCYIgsBwgX1fFNPJ-dTRs5ZbB69sCxLoqa7K-jNFFtBmRuEHfavnDXZv0pH--eMr3nLhmvvk_Pjow-thHPgZYpvmfBZblYjcl8oz6URuJSY_sIPT3PpEulxD6LQWdkBlnpu-5ob7FPRXCm2ZEdplyQPSq2DmdwnNEq9NlgnHUy-cNgayMiOFF5qpvvNJRJJOKYUN4OXIoTEu2hM5BZuY5fQWqMoiqDIi8eqqyRK84x_yA9T3Shaht9s_6unHInhykUl4UsOEVmUmWKa07YNxQ6BMfMq1dxHZRWvpbtAUvy03InudBV0__HQ1DE6OJze6cvW8leEI9aVAZmdpcKuH5AjZyGQeEbVmimtvsT5SXX5qgcTxe5fMWUT2V0b7X_P08O_v8YjcgrQSi5tiLvZIbzadu8eQus3Mk-CPvwAPckiO priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvwPizBQYyEkLwkK52HCd5bIFRIVFNjEnjAUWOY4uJklRNAioPSHwiPgRfjLvEqSgMAQ-8NfU5cS6X813u7neE3FexFNgAx2cqBwclUdbPjOR-HljY3jKtgwhrh1_M5PREPD8NT7fIm74WxnEQfMR5WbWRfPxRFubAcfIA8Yq66OmQBRHrZwwXQIRgpRJk-EGLOIRfxmosQLpAtmUIpvqAbJ_Mjsavu0gz9yUfBa6c7ndn2tiuWlR_REGFJZ1nkf6aWHmxKRZq9VHN5z_sWodXyOf-frtklXfDps6G-tNPUJD_jSFXyWVn79Jxd5YdsmWKa2THaZSKPnSw14-uky_HLqubTmBnzenREmNIKDe0tPTJbOxPztoSHBgpsUdn5QiBYLrCwjOK9myzNPS4be6DM9uMCPpSFXn5nmIb0qqmcECfqabC8lE6U9--fsBLrkx1g5wcPn31eOq7BhG-DhNe-zoKRGLzyDJpRKIlWl_gQiqubSBNokB3aw0uWJ4k2UjxjNsQdHsulGaZUCYObpJBAVzaIzQOrMriWBgeWmFUloFZmElhhWLRyNjAI0EvB6l26OnYxGOetiHBCLyojqEpsj11bPeIv5616NBD_kA_QRFb0yL2d_sHPPfUPe80lrDSjAkV5bFgcaT0CN4u0NSBDbmyxiN7KCL9BSrw7hKGBdaMe2S_F9rzh--th0HLYOhIFaZsWhqOWGMR0Ox2Mr5eJEfMSCYTj0Qb0r9xF5sjxdnbFskcP7jJhHlkuH5P_opPt_51wm1yCSxdzLfyudgng3rZmDtgTdbZXacTvgPy131H priority: 102 providerName: Unpaywall |
| Title | Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24475169 https://www.proquest.com/docview/1491439112 https://www.proquest.com/docview/1492716272 https://pubmed.ncbi.nlm.nih.gov/PMC3901691 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086703&type=printable https://doaj.org/article/86ab8b14a7d84187ac0e627303f52afe http://dx.doi.org/10.1371/journal.pone.0086703 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Journals Free customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbGJgQ8ACuDBUZlJB7gIVWduHbygFA71k1IraqNSuUpchIbJpWkNC3QR34RP4I_xl3qRK0oAvESKfFZduI7-y72fR8hz1UgOBLguEylEKCEyrixFp6b-gaWtzhJfIm5w4OhuBjzt5POZI9UnK32AxY7QzvkkxrPp61vn1evweBflawNklWVWrM80whXKiTCfx7AWhUimcOA1_sKYN1C2AS6P9VEeGBEwWN4BnpjrSoh_RECdZoXu9zR309V3lpmM7X6qqbTjSWrf5_ctb4m7a6V45Ds6axBbq7ZJ1cNcq9idKDWwBvkzgY8IdwNakzXokEOrVRBX1is6pcPyPcrexSb9mA5TOlojhs_ONg0N_TNsOv2rsu8GSjJkVizsIIgcLHCbDGKTuhyrulVyciDNctjDPRSZWn-iSJ3aLGgcEPP1bLAnE86VD9_fMEmV7o4IuP-2bvTC9eyOrhJJ_QWbiJ9HppUGiY0DxOBLhPEfcpLjC90qGDCTRKIm9IwjNvKiz3TgQk55SphMVc68B-S_QzG65jQwDcqDgKuvY7hWsUx-HKx4IYrJtva-A7xq_GLEgt5jswb06jcx5MQ-qxHIkIFiKwCOMSta83WkB9_ke-hatSyCNhdPsjnHyJr_1EgoKcx40qmAWeBVEkbTAKmV990PGW0Q45RsaoGCgjJQoZZ0cxzyEmlbLuLn9XFMDXgfo_KdL4sZTwECJMg82itm3UnKxV3iNzS2q232C7Jrj-W8OP4l0yEzCGtWr__6Ts9_u-mnpDb4KfiaSnX4ydkfzFf6qfgCy7iJrkhJxKuwSnDa_-8SQ56Z8PRZbP8u9IszR-ejYej7vtfOxxp3Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGeBg8IDb-LDDASCDBQ7bGce3kAaGVMTq2VYhtUt-C49gwqSSlaZn6yBeCD8EX4y5xwiom4GWPjS914vvju_jufoQ8UZHgCIDjByqDACVW1k-NYH4WWtjeUq1DibXDhwPRP-Fvh93hEvne1MJgWmVjEytDnRUav5FvgScfYJVowF6Ov_iIGoWnqw2ERi0W-2Z-BiFb-WJvB_j7lLHd18ev-r5DFfB1N2ZTX8uQxzaTNhCGx1rglg1xh2LahsLEChRea_DbszhOO4qlzHZh1owrHaRcmSiE_71CrvIQbAnojxy2AR7YDiFceV4ogy0nDZvjIjfYRlXIBprLbX8VSgB2VR0V5UUe7p-JmiuzfKzmZ2o0OrcL7t4kN5z7SrdreVslSyZfI9fPNTVcI6vOXJT0metp_fwW-XbkUrZpD7bNjL6b4AERCgUtLN0ZbPu906q-BkYKBOAsHSEQ9OdYVUbRWZ1NDD2qkHvwzirdgb5XeVZ8pogxWk4p_KBv1KzE2lA6UD9_fMUp56a8TU4uhU93yHIOK79OaBRalUYRN6xruVFpCj5fKrjlKpAdY0OPhA1TEu1aoyNCxyipzvskhEj18ibIysSx0iN-e9e4bg3yD_oe8rulxcbe1YVi8jFxdiKJBDxpGnAls4gHkVS6A6oDZji0Xaas8cg6SkszQZn81guPbDQSdPHw43YYTAieC6ncFLOKhmEjMQk0d2uBax-SYUPIQMQekQuiuPAWiyP56aeqTTl-TRNx4JHNVmj_a53u_f09HpGV_vHhQXKwN9i_T66BA4tpVD7jG2R5OpmZB-AkTtOHlWZS8uGyTcEvCMJ_2Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGkPg4IDY-FhhgJJDgkLWxXTs5ILRSSsegmhiTegtOYsOkkpSmZeqRv4g7V_4x3kudsIoJuOzY-KVx_J7fR_ze-xHySIdSIACOH-gMApRIWz8xkvkZt2DekjTlCmuH3w7l4Ei8HnVGa-RHXQuDaZW1TqwUdVak-I28BZ58gFWiAWtZlxZx0Os_n3zxEUEKT1prOI2liOybxQmEb-WzvR7w-jFj_ZfvXwx8hzDgp52IzfxUcRHZTNlAGhGlEs03xCCapZZLE2nY_GkKPnwWRUlbs4TZDswgEzoNEqFNyOF_L5CLivMI0wnVqAn2QI9I6Ur1uApaTjJ2JkVusKWqVDVMlzOFFWIAdlgdF-VZ3u6fSZuX5_lEL070eHzKIvavk2vOlaW7S9nbIGsm3yRXTzU43CQbTnWU9Inrb_30Bvl26NK3aRdMaEYPpnhYhAJCC0t7w12_e1zV2sBIgWCcpSMEgsECK8woOq7zqaGHFYoP3lmlPtB3Os-KzxTxRssZhR_0lZ6XWCdKh_rn96_4yIUpb5Kjc-HTLbKew8pvERpyq5MwFIZ1rDA6ScD_S6SwQgeqbSz3CK-ZEqeuTTqidYzj6uxPQbi0XN4YWRk7VnrEb-6aLNuE_IO-i_xuaLHJd3WhmH6Mnc6IQwkzTQKhVRaKIFQ6bcM2ApXMbYdpazyyhdJSP6CMf-8Rj2zXEnT28MNmGNQJnhHp3BTzioZhUzEFNLeXAtdMkmFzyEBGHlErorjyFqsj-fGnqmU5flmTUeCRnUZo_2ud7vz9PR6QS6AE4jd7w_275Ar4sphR5TOxTdZn07m5B_7iLLlfbUxKPpy3JvgF6O2EHA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvwPizBQYyEkLwkK52HCd5bIFRIVFNjEnjAUWOY4uJklRNAioPSHwiPgRfjLvEqSgMAQ-8NfU5cS6X813u7neE3FexFNgAx2cqBwclUdbPjOR-HljY3jKtgwhrh1_M5PREPD8NT7fIm74WxnEQfMR5WbWRfPxRFubAcfIA8Yq66OmQBRHrZwwXQIRgpRJk-EGLOIRfxmosQLpAtmUIpvqAbJ_Mjsavu0gz9yUfBa6c7ndn2tiuWlR_REGFJZ1nkf6aWHmxKRZq9VHN5z_sWodXyOf-frtklXfDps6G-tNPUJD_jSFXyWVn79Jxd5YdsmWKa2THaZSKPnSw14-uky_HLqubTmBnzenREmNIKDe0tPTJbOxPztoSHBgpsUdn5QiBYLrCwjOK9myzNPS4be6DM9uMCPpSFXn5nmIb0qqmcECfqabC8lE6U9--fsBLrkx1g5wcPn31eOq7BhG-DhNe-zoKRGLzyDJpRKIlWl_gQiqubSBNokB3aw0uWJ4k2UjxjNsQdHsulGaZUCYObpJBAVzaIzQOrMriWBgeWmFUloFZmElhhWLRyNjAI0EvB6l26OnYxGOetiHBCLyojqEpsj11bPeIv5616NBD_kA_QRFb0yL2d_sHPPfUPe80lrDSjAkV5bFgcaT0CN4u0NSBDbmyxiN7KCL9BSrw7hKGBdaMe2S_F9rzh--th0HLYOhIFaZsWhqOWGMR0Ox2Mr5eJEfMSCYTj0Qb0r9xF5sjxdnbFskcP7jJhHlkuH5P_opPt_51wm1yCSxdzLfyudgng3rZmDtgTdbZXacTvgPy131H |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+Based+Prediction+of+DNA-Binding+Proteins+Based+on+Hybrid+Feature+Selection+Using+Random+Forest+and+Gaussian+Na%C3%AFve+Bayes&rft.jtitle=PloS+one&rft.au=Lou%2C+Wangchao&rft.au=Wang%2C+Xiaoqing&rft.au=Chen%2C+Fan&rft.au=Chen%2C+Yixiao&rft.date=2014-01-24&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pone.0086703&rft_id=info%3Apmid%2F24475169&rft.externalDocID=PMC3901691 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |