Automatic Prediction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analysis
There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an autom...
Saved in:
| Published in | PloS one Vol. 10; no. 3; p. e0118504 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
20.03.2015
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0118504 |
Cover
| Abstract | There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients.
A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events.
The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors.
Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events. |
|---|---|
| AbstractList | BACKGROUNDThere is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients.METHODSA database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events.RESULTSThe best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors.CONCLUSIONSCombination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events. Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients. Methods A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events. Results The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors. Conclusions Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events. There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients.A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events.The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors.Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events. There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients. A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events. The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors. Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events. Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients. Methods A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events. Results The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors. Conclusions Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events. |
| Author | Izzo, Raffaele Mirra, Marco Pecchia, Leandro Melillo, Paolo Attanasio, Marcella Scala, Paolo De Luca, Nicola Orrico, Ada |
| AuthorAffiliation | 2 SHARE Project, Italian Ministry of Education, Scientific Research and University, Rome, Italy 1 Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples, Italy 4 School of Engineering, University of Warwick, Coventry, United Kingdom 3 Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy Université de Montréal, CANADA |
| AuthorAffiliation_xml | – name: 1 Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples, Italy – name: Université de Montréal, CANADA – name: 3 Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy – name: 2 SHARE Project, Italian Ministry of Education, Scientific Research and University, Rome, Italy – name: 4 School of Engineering, University of Warwick, Coventry, United Kingdom |
| Author_xml | – sequence: 1 givenname: Paolo surname: Melillo fullname: Melillo, Paolo – sequence: 2 givenname: Raffaele surname: Izzo fullname: Izzo, Raffaele – sequence: 3 givenname: Ada surname: Orrico fullname: Orrico, Ada – sequence: 4 givenname: Paolo surname: Scala fullname: Scala, Paolo – sequence: 5 givenname: Marcella surname: Attanasio fullname: Attanasio, Marcella – sequence: 6 givenname: Marco surname: Mirra fullname: Mirra, Marco – sequence: 7 givenname: Nicola surname: De Luca fullname: De Luca, Nicola – sequence: 8 givenname: Leandro surname: Pecchia fullname: Pecchia, Leandro |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25793605$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUl2LEzEUHWTF_dB_IDrgiy-tySSTTHwQSlndhQVFXF_DncxNTUknNZmp9N-bbrvr7iIogSTcnHty7rn3tDjqQ49F8ZKSKWWSvluGMfbgp-scnhJKm5rwJ8UJVayaiIqwo3v34-I0pSUhNWuEeFYcV7VUTJD6pFjMxiGsYHCm_BKxc2ZwoS-DLecQOxc2kMzoIZbQd-UcI7bxT-x8g_2Qyuvk-kV5gRCH8isMWH6H6KB13g3bcpYlbpNLz4unFnzCF4fzrLj-eP5tfjG5-vzpcj67mphaVcOkIkJxQZFawygzRFiJSgnkslbcQI1gkSiJkndW5Z2blpq2IhVvW4QG2Fnxes-79iHpg0dJUyG4YpSoKiMu94guwFKvo1tB3OoATt8EQlzoXIkzHnXdcksrS7kUlCspFYG6sUxyy1rBZZO56j3X2K9h-wu8vyOkRO_adCtB79qkD23KeR8OKsd2hZ3JPkbwD8Q8fOndD70IG82ZaPLKBG8PBDH8HDENeuWSQe-hxzDe1CsqxSnf_fXmEfTvrry6r-hOyu2kZMD7PcDEkFJEq40bYDctWaDz_6qXP0r-L5t-A-E66lU |
| CitedBy_id | crossref_primary_10_1186_1472_6947_15_S3_S2 crossref_primary_10_7180_kmj_22_020 crossref_primary_10_1111_anec_12919 crossref_primary_10_1016_j_ins_2022_11_126 crossref_primary_10_1155_2021_6663996 crossref_primary_10_1016_j_compbiomed_2020_103924 crossref_primary_10_1186_1472_6947_15_S3_S6 crossref_primary_10_3389_fpubh_2022_972177 crossref_primary_10_3390_ijerph19074014 crossref_primary_10_1590_1414_431x2021e11720 crossref_primary_10_1016_j_clinph_2019_11_013 crossref_primary_10_1111_jcpt_12852 crossref_primary_10_1080_00051144_2023_2269515 crossref_primary_10_1109_ACCESS_2020_3033004 crossref_primary_10_1021_acssensors_2c02311 crossref_primary_10_3389_fcvm_2022_754609 crossref_primary_10_1016_j_future_2019_02_021 crossref_primary_10_1007_s10916_015_0294_3 crossref_primary_10_1371_journal_pone_0174083 crossref_primary_10_3389_fpsyt_2023_1093106 crossref_primary_10_1016_j_compbiomed_2020_103999 crossref_primary_10_1007_s40747_017_0048_6 crossref_primary_10_1016_j_compbiomed_2020_103630 crossref_primary_10_1371_journal_pone_0279305 crossref_primary_10_1038_s41598_019_43602_y crossref_primary_10_1016_j_bspc_2022_103629 crossref_primary_10_1016_j_jbi_2020_103648 crossref_primary_10_23736_S2724_5683_24_06466_4 crossref_primary_10_4015_S101623722050009X crossref_primary_10_1007_s00521_020_05542_x crossref_primary_10_1038_nrcardio_2016_42 crossref_primary_10_1016_j_bspc_2024_106039 crossref_primary_10_1038_s41598_022_15496_w crossref_primary_10_1016_j_bspc_2018_05_019 crossref_primary_10_1016_j_compbiomed_2024_108207 crossref_primary_10_1515_bmt_2019_0184 crossref_primary_10_1111_acer_13327 crossref_primary_10_1016_j_compbiomed_2017_12_002 crossref_primary_10_1007_s12028_022_01491_6 crossref_primary_10_1007_s12652_017_0471_y crossref_primary_10_1161_JAHA_116_004305 crossref_primary_10_1016_j_compbiomed_2019_103381 crossref_primary_10_1371_journal_pone_0311719 crossref_primary_10_31202_ecjse_1009456 crossref_primary_10_1007_s41666_018_0021_1 crossref_primary_10_1111_dmcn_14095 crossref_primary_10_3390_s19071489 crossref_primary_10_3390_jcm8050723 crossref_primary_10_1016_j_psychres_2021_114241 crossref_primary_10_1016_j_cmpbup_2023_100097 crossref_primary_10_1038_s41598_020_72183_4 crossref_primary_10_3390_bioengineering10010027 crossref_primary_10_1109_ACCESS_2021_3084063 crossref_primary_10_1109_JBHI_2016_2543960 crossref_primary_10_1155_2019_5930379 crossref_primary_10_3390_bioengineering10060683 crossref_primary_10_3390_ijms22052357 crossref_primary_10_1038_s41598_020_63566_8 crossref_primary_10_3389_fneur_2019_01411 crossref_primary_10_3390_s22030756 crossref_primary_10_2139_ssrn_4132904 crossref_primary_10_1038_s41598_020_64083_4 crossref_primary_10_1016_j_jns_2022_120522 crossref_primary_10_1186_s12938_023_01100_3 crossref_primary_10_1109_TAFFC_2022_3232483 crossref_primary_10_1016_j_cca_2024_119766 crossref_primary_10_3390_s23218697 crossref_primary_10_3390_ijerph18115838 crossref_primary_10_1177_13272314241296866 crossref_primary_10_1111_jep_12767 crossref_primary_10_1016_j_bbe_2022_06_001 crossref_primary_10_3390_e21121206 crossref_primary_10_1109_JBHI_2020_3002336 crossref_primary_10_1177_1178221819862283 crossref_primary_10_3390_app15031178 crossref_primary_10_1007_s11517_016_1607_5 crossref_primary_10_1016_j_procs_2022_09_413 crossref_primary_10_1109_ACCESS_2021_3074967 crossref_primary_10_2174_1875036202013010025 crossref_primary_10_1016_j_procs_2022_07_030 crossref_primary_10_7717_peerj_cs_2711 crossref_primary_10_1017_S1047951120001493 crossref_primary_10_1038_s41390_021_01829_4 crossref_primary_10_3390_s22197472 crossref_primary_10_1002_clc_23818 crossref_primary_10_5649_jjphcs_43_552 crossref_primary_10_1016_j_abrep_2017_08_004 crossref_primary_10_1007_s10916_016_0536_z crossref_primary_10_1016_j_compbiomed_2022_105407 crossref_primary_10_1016_j_future_2022_06_006 crossref_primary_10_3390_jsan12060078 crossref_primary_10_1016_j_eswa_2021_116109 crossref_primary_10_1111_jep_13039 crossref_primary_10_1248_bpb_b22_00823 crossref_primary_10_1177_1099800419881210 crossref_primary_10_3390_jcm10225330 crossref_primary_10_3390_app13148082 crossref_primary_10_1097_JAN_0000000000000565 crossref_primary_10_3390_ijerph16214068 crossref_primary_10_2196_38454 crossref_primary_10_1016_j_future_2019_12_002 crossref_primary_10_1016_j_compbiomed_2019_04_036 crossref_primary_10_1016_j_imu_2020_100479 crossref_primary_10_1016_j_compbiomed_2021_104765 crossref_primary_10_1016_j_jiac_2023_03_007 crossref_primary_10_2196_14784 crossref_primary_10_1016_j_compbiomed_2016_01_020 crossref_primary_10_3389_fphys_2019_01193 crossref_primary_10_3390_e20020094 crossref_primary_10_1371_journal_pone_0210216 crossref_primary_10_3109_03091902_2016_1139201 crossref_primary_10_1109_JBHI_2022_3162894 crossref_primary_10_1007_s10916_018_0942_5 crossref_primary_10_1016_S2589_7500_24_00170_5 crossref_primary_10_1016_j_artmed_2021_102032 crossref_primary_10_3389_fneur_2021_772674 |
| Cites_doi | 10.1007/978-3-642-29305-4_126 10.1186/1471-2261-12-105 10.1016/j.artmed.2010.09.005 10.1109/IEMBS.2011.6089901 10.1161/01.HYP.35.2.580 10.1016/S0002-9149(03)00548-4 10.1109/10.959330 10.1016/j.cmpb.2005.01.004 10.1016/j.ehj.2003.12.003 10.1016/S1350-4533(01)00112-6 10.1161/HYPERTENSIONAHA.110.150128 10.1161/01.CIR.102.11.1239 10.1109/TBME.2005.844028 10.1152/jappl.1994.76.2.965 10.1093/eurheartj/eht281 10.1152/ajpregu.00069.2002 10.1016/0002-9149(86)90771-X 10.1063/1.166141 10.1161/01.CIR.101.23.e215 10.1016/j.compbiomed.2007.01.012 10.1016/S0140-6736(05)67702-1 10.1016/j.echo.2005.10.005 10.1023/A:1010933404324 10.1109/TITB.2010.2091647 10.1109/TBME.2003.817636 10.1371/journal.pone.0017060 10.1186/1475-925X-10-96 10.1016/j.ins.2010.08.047 10.1109/JBHI.2013.2244902 10.1016/S0140-6736(96)07493-4 10.1161/CIRCULATIONAHA.106.628875 10.1371/journal.pone.0081896 10.1093/oxfordjournals.eurheartj.a014868 10.1016/S0375-9601(96)00741-4 10.1093/europace/eus341 10.1109/TBME.2010.2092776 10.1161/STROKEAHA.110.607697 10.1186/1471-2261-14-59 10.1161/01.CIR.99.9.1132 10.1007/s11517-010-0728-5 10.1097/01.hjh.0000173526.65555.55 10.1016/j.atherosclerosis.2013.09.028 10.1152/ajpheart.2000.278.6.H2039 |
| ContentType | Journal Article |
| Copyright | 2015 Melillo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2015 Melillo et al 2015 Melillo et al |
| Copyright_xml | – notice: 2015 Melillo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2015 Melillo et al 2015 Melillo et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0118504 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Education |
| DocumentTitleAlternate | Automatic Prediction of Vascular Events by HRV |
| EISSN | 1932-6203 |
| EndPage | e0118504 |
| ExternalDocumentID | 1664931092 oai_doaj_org_article_5b4f12f14761497790a58f374f3b6478 10.1371/journal.pone.0118504 PMC4368686 3631008001 25793605 10_1371_journal_pone_0118504 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ACCTH ADTOC AFFHD BBTPI UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c592t-2069461e1fc313c06f7e996e47594ca5eafe097e74df9e744cb1cb2024bbea8a3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:12:57 EST 2021 Fri Oct 03 12:53:16 EDT 2025 Wed Oct 29 12:06:05 EDT 2025 Tue Sep 30 16:28:18 EDT 2025 Fri Sep 05 06:02:42 EDT 2025 Tue Oct 07 07:32:39 EDT 2025 Thu Apr 03 06:52:51 EDT 2025 Thu Apr 24 23:00:42 EDT 2025 Wed Oct 01 04:16:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c592t-2069461e1fc313c06f7e996e47594ca5eafe097e74df9e744cb1cb2024bbea8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: PM AO LP. Performed the experiments: RI MM NDL. Analyzed the data: PM AO LP. Contributed reagents/materials/analysis tools: PS. Wrote the paper: PM AO PS LP. Obtained funding: PM AO MA. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0118504 |
| PMID | 25793605 |
| PQID | 1664931092 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_1664931092 doaj_primary_oai_doaj_org_article_5b4f12f14761497790a58f374f3b6478 unpaywall_primary_10_1371_journal_pone_0118504 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4368686 proquest_miscellaneous_1666294144 proquest_journals_1664931092 pubmed_primary_25793605 crossref_citationtrail_10_1371_journal_pone_0118504 crossref_primary_10_1371_journal_pone_0118504 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-20 |
| PublicationDateYYYYMMDD | 2015-03-20 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2015 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | P Melillo (ref11) 2011; 49 RB Devereux (ref25) 1986; 57 ref17 Z Binici (ref10) 2011; 42 N De Luca (ref23) 2005; 23 L Pecchia (ref13) 2011; 15 JF Ramirez-Villegas (ref19) 2011; 6 P Melillo (ref51) 2014 A Jovic (ref16) 2011; 51 M Malik (ref31) 1996; 17 L Breiman (ref46) 2001; 45 CL Webber (ref40) 1994; 76 PM Rothwell (ref3) 2005; 366 M Brennan (ref33) 2001; 48 ref45 LL Trulla (ref39) 1996; 223 ref48 ref44 ref43 CJ Murray (ref2) 1997; 349 R Carvajal (ref36) 2005; 78 A Sajadieh (ref47) 2004; 25 MW Lorenz (ref4) 2007; 115 Y Isler (ref15) 2007; 37 R Izzo (ref24) 2013; 34 W Zong (ref29) 2003 T Penzel (ref37) 2003; 50 K Nagai (ref5) 2013; 231 JM Dekker (ref9) 2000; 102 CK Peng (ref38) 1995; 5 JP Zbilut (ref41) 2002; 24 DE Lake (ref35) 2002; 283 ref30 Y Saeys (ref49) 2008 AL Goldberger (ref28) 2000; 101 E Ebrahimzadeh (ref22) 2014; 9 V Fuster (ref1) 1999; 99 GD Clifford (ref32) 2005; 52 T Song (ref21) 2014; 14 A Sajadieh (ref8) 2003; 92 JS Richman (ref34) 2000; 278 G Schillaci (ref6) 2000; 35 P Melillo (ref27) 2012; 12 ref20 P Melillo (ref18) 2011; 10 RM Lang (ref26) 2005; 18 L Pecchia (ref12) 2011; 58 P Melillo (ref14) 2013; 17 G de Simone (ref7) 2010; 56 S Maldonado (ref50) 2011; 181 P Melillo (ref42) 2013 15848268 - Comput Methods Programs Biomed. 2005 May;78(2):133-40 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 2936235 - Am J Cardiol. 1986 Feb 15;57(6):450-8 8737210 - Eur Heart J. 1996 Mar;17(3):354-81 23153340 - BMC Cardiovasc Disord. 2012;12:105 10069778 - Circulation. 1999 Mar 9;99(9):1132-7 17242284 - Circulation. 2007 Jan 30;115(4):459-67 24267253 - Atherosclerosis. 2013 Dec;231(2):365-70 16298214 - Lancet. 2005 Nov 19;366(9499):1773-83 9142060 - Lancet. 1997 May 3;349(9061):1269-76 14560767 - IEEE Trans Biomed Eng. 2003 Oct;50(10):1143-51 20980134 - Artif Intell Med. 2011 Mar;51(3):175-86 11891140 - Med Eng Phys. 2002 Jan;24(1):53-60 21921280 - Stroke. 2011 Nov;42(11):3196-201 16376782 - J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63 20497990 - Hypertension. 2010 Jul;56(1):99-104 23882068 - Eur Heart J. 2013 Nov;34(44):3419-26 11538314 - Chaos. 1995;5(1):82-7 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97 15942466 - J Hypertens. 2005 Jul;23(7):1417-23 21386966 - PLoS One. 2011;6(2):e17060 21203855 - Med Biol Eng Comput. 2011 Jan;49(1):67-74 22059697 - Biomed Eng Online. 2011;10:96 10851218 - Circulation. 2000 Jun 13;101(23):E215-20 21075731 - IEEE Trans Inf Technol Biomed. 2011 Jan;15(1):40-6 23370966 - Europace. 2013 May;15(5):742-9 10679501 - Hypertension. 2000 Feb;35(2):580-6 11686633 - IEEE Trans Biomed Eng. 2001 Nov;48(11):1342-7 24592473 - IEEE J Biomed Health Inform. 2013 May;17(3):727-33 24886422 - BMC Cardiovasc Disord. 2014;14:59 22254255 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:79-82 10982537 - Circulation. 2000 Sep 12;102(11):1239-44 12860234 - Am J Cardiol. 2003 Jul 15;92(2):234-6 21078568 - IEEE Trans Biomed Eng. 2011 Mar;58(3):800-4 24504331 - PLoS One. 2014;9(2):e81896 8175612 - J Appl Physiol (1985). 1994 Feb;76(2):965-73 15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8 17359959 - Comput Biol Med. 2007 Oct;37(10):1502-10 15033247 - Eur Heart J. 2004 Mar;25(5):363-70 |
| References_xml | – ident: ref17 doi: 10.1007/978-3-642-29305-4_126 – volume: 12 start-page: 105 issue: 1 year: 2012 ident: ref27 article-title: Heart rate variability and target organ damage in hypertensive patients publication-title: BMC Cardiovasc Disord doi: 10.1186/1471-2261-12-105 – volume: 51 start-page: 175 issue: 3 year: 2011 ident: ref16 article-title: Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2010.09.005 – ident: ref20 doi: 10.1109/IEMBS.2011.6089901 – volume: 35 start-page: 580 issue: 2 year: 2000 ident: ref6 article-title: Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension publication-title: Hypertension doi: 10.1161/01.HYP.35.2.580 – volume: 92 start-page: 234 issue: 2 year: 2003 ident: ref8 article-title: Familial predisposition to premature heart attack and reduced heart rate variability publication-title: Am J Cardiol doi: 10.1016/S0002-9149(03)00548-4 – year: 2003 ident: ref29 article-title: Computers in Cardiology – volume: 48 start-page: 1342 issue: 11 year: 2001 ident: ref33 article-title: Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? publication-title: IEEE Trans Bio Med Eng doi: 10.1109/10.959330 – volume: 78 start-page: 133 issue: 2 year: 2005 ident: ref36 article-title: Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2005.01.004 – ident: ref43 – volume: 25 start-page: 363 issue: 5 year: 2004 ident: ref47 article-title: Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease publication-title: Eur Heart J doi: 10.1016/j.ehj.2003.12.003 – volume: 24 start-page: 53 issue: 1 year: 2002 ident: ref41 article-title: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals publication-title: Medical Engineering & Physics doi: 10.1016/S1350-4533(01)00112-6 – volume: 56 start-page: 99 issue: 1 year: 2010 ident: ref7 article-title: Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.150128 – volume: 102 start-page: 1239 issue: 11 year: 2000 ident: ref9 article-title: Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities publication-title: Circulation doi: 10.1161/01.CIR.102.11.1239 – volume: 52 start-page: 630 issue: 4 year: 2005 ident: ref32 article-title: Quantifying errors in spectral estimates of HRV due to beat, replacement and resampling publication-title: IEEE Trans Bio Med Eng doi: 10.1109/TBME.2005.844028 – start-page: 155 year: 2014 ident: ref51 article-title: Ambient Assisted Living and Daily Activities – ident: ref30 – volume: 76 start-page: 965 issue: 2 year: 1994 ident: ref40 article-title: Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1994.76.2.965 – volume: 34 start-page: 3419 issue: 44 year: 2013 ident: ref24 article-title: Hypertensive target organ damage predicts incident diabetes mellitus publication-title: Eur Heart J doi: 10.1093/eurheartj/eht281 – volume: 283 start-page: R789 issue: 3 year: 2002 ident: ref35 article-title: Sample entropy analysis of neonatal heart rate variability publication-title: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology doi: 10.1152/ajpregu.00069.2002 – ident: ref44 – volume: 57 start-page: 450 issue: 6 year: 1986 ident: ref25 article-title: Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings publication-title: Am J Cardiol doi: 10.1016/0002-9149(86)90771-X – volume: 5 start-page: 82 issue: 1 year: 1995 ident: ref38 article-title: Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time-Series publication-title: Chaos doi: 10.1063/1.166141 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: ref28 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 37 start-page: 1502 issue: 10 year: 2007 ident: ref15 article-title: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2007.01.012 – volume: 366 start-page: 1773 issue: 9499 year: 2005 ident: ref3 article-title: Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study) publication-title: Lancet doi: 10.1016/S0140-6736(05)67702-1 – volume: 18 start-page: 1440 issue: 12 year: 2005 ident: ref26 article-title: Recommendations for chamber quantification: A report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology publication-title: J Am Soc Echocardiog doi: 10.1016/j.echo.2005.10.005 – start-page: 313 year: 2008 ident: ref49 article-title: Machine learning and knowledge discovery in databases – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref46 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 15 start-page: 40 issue: 1 year: 2011 ident: ref13 article-title: Discrimination power of short-term heart rate variability measures for CHF assessment publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2010.2091647 – volume: 50 start-page: 1143 issue: 10 year: 2003 ident: ref37 article-title: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea publication-title: IEEE Trans Bio Med Eng doi: 10.1109/TBME.2003.817636 – volume: 6 start-page: e17060 issue: 2 year: 2011 ident: ref19 article-title: Heart rate variability dynamics for the prognosis of cardiovascular risk publication-title: PLoS One doi: 10.1371/journal.pone.0017060 – volume: 10 start-page: 96 issue: 1 year: 2011 ident: ref18 article-title: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination publication-title: Biomed Eng Online doi: 10.1186/1475-925X-10-96 – volume: 181 start-page: 115 issue: 1 year: 2011 ident: ref50 article-title: Simultaneous feature selection and classification using kernel-penalized support vector machines publication-title: Information Sciences doi: 10.1016/j.ins.2010.08.047 – volume: 17 start-page: 727 issue: 3 year: 2013 ident: ref14 article-title: Classification Tree for Risk Assessment in Patients Suffering From Congestive Heart Failure via Long-Term Heart Rate Variability publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2244902 – volume: 349 start-page: 1269 issue: 9061 year: 1997 ident: ref2 article-title: Mortality by cause for eight regions of the world: Global Burden of Disease Study publication-title: Lancet doi: 10.1016/S0140-6736(96)07493-4 – ident: ref45 – volume: 115 start-page: 459 issue: 4 year: 2007 ident: ref4 article-title: Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.628875 – volume: 9 start-page: e81896 issue: 2 year: 2014 ident: ref22 article-title: A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals publication-title: PLoS One doi: 10.1371/journal.pone.0081896 – volume: 17 start-page: 354 issue: 3 year: 1996 ident: ref31 article-title: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use publication-title: Eur Heart J doi: 10.1093/oxfordjournals.eurheartj.a014868 – volume: 223 start-page: 255 issue: 4 year: 1996 ident: ref39 article-title: Recurrence quantification analysis of the logistic equation with transients publication-title: Phys Lett A doi: 10.1016/S0375-9601(96)00741-4 – year: 2013 ident: ref42 article-title: Focus on Nonlinear Analysis Research – ident: ref48 doi: 10.1093/europace/eus341 – volume: 58 start-page: 800 issue: 3 year: 2011 ident: ref12 article-title: Remote health monitoring of heart failure with data mining via CART method on HRV features publication-title: IEEE Trans Bio Med Eng doi: 10.1109/TBME.2010.2092776 – volume: 42 start-page: 3196 issue: 11 year: 2011 ident: ref10 article-title: Decreased Nighttime Heart Rate Variability Is Associated With Increased Stroke Risk publication-title: Stroke doi: 10.1161/STROKEAHA.110.607697 – volume: 14 start-page: 59 issue: 1 year: 2014 ident: ref21 article-title: Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction publication-title: BMC Cardiovasc Disord doi: 10.1186/1471-2261-14-59 – volume: 99 start-page: 1132 issue: 9 year: 1999 ident: ref1 article-title: Epidemic of cardiovascular disease and stroke: the three main challenges. Presented at the 71st scientific sessions of the American Heart Association. Dallas, Texas publication-title: Circulation doi: 10.1161/01.CIR.99.9.1132 – volume: 49 start-page: 67 issue: 1 year: 2011 ident: ref11 article-title: Discrimination power of long-term heart rate variability measures for chronic heart failure detection publication-title: Med Biol Eng Comput doi: 10.1007/s11517-010-0728-5 – volume: 23 start-page: 1417 issue: 7 year: 2005 ident: ref23 article-title: The use of a telematic connection for the follow-up of hypertensive patients improves the cardiovascular prognosis publication-title: Journal of hypertension doi: 10.1097/01.hjh.0000173526.65555.55 – volume: 231 start-page: 365 issue: 2 year: 2013 ident: ref5 article-title: Efficacy of combined use of three non-invasive atherosclerosis tests to predict vascular events in the elderly; carotid intima-media thickness, flow-mediated dilation of brachial artery and pulse wave velocity publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2013.09.028 – volume: 278 start-page: H2039 issue: 6 year: 2000 ident: ref34 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: American Journal of Physiology-Heart and Circulatory Physiology doi: 10.1152/ajpheart.2000.278.6.H2039 – reference: 23882068 - Eur Heart J. 2013 Nov;34(44):3419-26 – reference: 20497990 - Hypertension. 2010 Jul;56(1):99-104 – reference: 21386966 - PLoS One. 2011;6(2):e17060 – reference: 15848268 - Comput Methods Programs Biomed. 2005 May;78(2):133-40 – reference: 16376782 - J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63 – reference: 24886422 - BMC Cardiovasc Disord. 2014;14:59 – reference: 22059697 - Biomed Eng Online. 2011;10:96 – reference: 8737210 - Eur Heart J. 1996 Mar;17(3):354-81 – reference: 12860234 - Am J Cardiol. 2003 Jul 15;92(2):234-6 – reference: 11891140 - Med Eng Phys. 2002 Jan;24(1):53-60 – reference: 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97 – reference: 23153340 - BMC Cardiovasc Disord. 2012;12:105 – reference: 11538314 - Chaos. 1995;5(1):82-7 – reference: 16298214 - Lancet. 2005 Nov 19;366(9499):1773-83 – reference: 21921280 - Stroke. 2011 Nov;42(11):3196-201 – reference: 14560767 - IEEE Trans Biomed Eng. 2003 Oct;50(10):1143-51 – reference: 24504331 - PLoS One. 2014;9(2):e81896 – reference: 11686633 - IEEE Trans Biomed Eng. 2001 Nov;48(11):1342-7 – reference: 23370966 - Europace. 2013 May;15(5):742-9 – reference: 20980134 - Artif Intell Med. 2011 Mar;51(3):175-86 – reference: 21203855 - Med Biol Eng Comput. 2011 Jan;49(1):67-74 – reference: 24592473 - IEEE J Biomed Health Inform. 2013 May;17(3):727-33 – reference: 22254255 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:79-82 – reference: 21075731 - IEEE Trans Inf Technol Biomed. 2011 Jan;15(1):40-6 – reference: 17359959 - Comput Biol Med. 2007 Oct;37(10):1502-10 – reference: 17242284 - Circulation. 2007 Jan 30;115(4):459-67 – reference: 10851218 - Circulation. 2000 Jun 13;101(23):E215-20 – reference: 21078568 - IEEE Trans Biomed Eng. 2011 Mar;58(3):800-4 – reference: 24267253 - Atherosclerosis. 2013 Dec;231(2):365-70 – reference: 9142060 - Lancet. 1997 May 3;349(9061):1269-76 – reference: 15033247 - Eur Heart J. 2004 Mar;25(5):363-70 – reference: 10982537 - Circulation. 2000 Sep 12;102(11):1239-44 – reference: 10679501 - Hypertension. 2000 Feb;35(2):580-6 – reference: 2936235 - Am J Cardiol. 1986 Feb 15;57(6):450-8 – reference: 8175612 - J Appl Physiol (1985). 1994 Feb;76(2):965-73 – reference: 10069778 - Circulation. 1999 Mar 9;99(9):1132-7 – reference: 15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8 – reference: 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 – reference: 15942466 - J Hypertens. 2005 Jul;23(7):1417-23 |
| SSID | ssj0053866 |
| Score | 2.5383866 |
| Snippet | There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular... Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for... BACKGROUNDThere is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for... Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for... |
| SourceID | plos doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0118504 |
| SubjectTerms | Acute coronary syndromes Aged Algorithms Artificial neural networks Automation Cardiovascular disease Cardiovascular diseases Cardiovascular Diseases - diagnostic imaging Cardiovascular Diseases - physiopathology Cerebral infarction Cerebrovascular Disorders - physiopathology Cerebrovascular system Classifiers Clinical medicine Data mining Data processing Decision Trees Education Electrocardiography Entropy Female Health risks Heart attacks Heart Rate Humans Hypertension Male Mathematical models Myocardial infarction Neural networks Patients Pattern recognition Physiology Prediction models Risk analysis Risk factors ROC Curve Stroke Studies Ultrasonic imaging Ultrasonography Variability |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlAINFGQkDnDINo4fiY8FUVWV4ESl3iLbsQvSKlntZkH998zETuiKSu2hipRD7CjxPOz55PE3hHyQgQdpa5cH1ha5YJbnNhibW2trBeCNe4unkb99V2cX4vxSXt4o9YU5YZEeOAruWFoRWBmYALwtNLLjGVkHXonALZ6TxNm3qPUEpuIcDF6sVDooxyt2nPSyWPWdX-BZS5kKs00L0cjXj_ymy35zW6z5f8rk4223Mtd_zHJ5Yz06fUaepkCSnsQB7JNHvntO9pOrbujHxCf96YBcnWyHfmRmpas17sugLmgfqNvJRaWma6nzawDJ_56N_E4bitnxVxSLXw8UuSXob4DYkeH7Gt6LvCYvyMXp1x9fzvJUXyF3UpcDOIjSQjHPguOMu0KFygP88UgBKJyR3gRf6MpXog0a7sJZ5mwJq7q13tSGvyR7HUj0kFAfdGCm5Fpa6K1q29a69a2tMR6DID4jfBJ24xL5ONbAWDbjjloFICSKrUEVNUlFGcnnt1aRfOOO_p9Rj3NfpM4eH4BBNcmgmrsMKiOHaAXTBzYNU0poJFCFURxNlnF78_u5GZwUd15M5_vt2EeVWgB4zciraEjzT8KcqTmAyoxUOya2M4rdlu7Xz5EIHKsHwJWRxWyM95LT64eQ0xvyBIJHifl4ZXFE9ob11r-FAG2w70Zf_Av5tD0K priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-69GF7GWv3UXfd0GAP24PTyJJl62GMNqSEwUIp6-ibkWypHQQ7zQej__3uHDldWNmGwQ_SGVvSnXTnu_sdwPvUC5_avIw9rwax5FbE1hsbW2tzhcabcJaykb9O1PhSfrlKr3Zg0uXCUFhltye2G3XVlPSP_JgrJTXBWCafZ7cxVY0i72pXQsOE0grVpxZi7BHsJoSM1YPd09Hk_KLbm1G6lQoJdCLjx2G9-rOmdn3KwUxDwbbugGpx_An3dNosHtJB_wylfLyqZ-bup5lOfzunzp7B06BgspM1R-zBjqv3qTZziOPYh70gzgv2IWBOf3wO1yerZdOit7LzOfluiJY1ng234lWZqSs2dHM0pO_bRhQyuWBt8AEbo-Qs2QVqsOw7muFrFPA71mGfvIDLs9G34TgONRjiMtXJEoVIaam4474UXJQD5TOHJpIjmEBZmtQZ7wY6c5msvMa7LC0vbYInv7XO5Ea8hF6Ns3sAzHntuUmETi1Sq9xWua5cZXPS2VDRj0B0E1-UAaCc6mRMi9brlqGhsp7CgparCMsVQbx5arYG6PgH_Smt6YaW4LXbhmZ-XQRpLVIrPU88lxlqL5ogGU2ae5FJLywl50ZwQBzRvWBR3HNnBEcdlzzc_W7TjYJM3hlTu2bV0qhESzRwI3i1ZqrNR-K-qgUanhFkW-y2NYrtnvrHTQsWThUG8Iqgv2HM_5qnw7-P4zU8QdUxpWi8ZHAEveV85d6gera0b4PM_QKK_z8_ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaxkBG4gEektXxR-LHUm2qkJgmRNF4QJGd2ICo0qpNNY0H_nbuEqdQGAIeUKQqis9JfL5z7np3PxPyVHrupc3L2LNqGAtmeWy9sbG1NlfgvHFnsRr51amaTMXLc3m-Q973tTCBg-AjzuarNpKPJ_PaHQVOHiFeURc9TRjPWN8jWQBRgnWUEqa9RRzCf8YaLEC6RnaVBFN9QHanp2ejd12kOY1VOuShnO53d9r6XLWo_oiCCq90lUX6a2Ll9XW9MJcXZjb74at1cot87cfbJat8TtaNTcovP0FB_jeG3CY3g71LR91d9siOq--QvbCirOizAHv9_C75MFo38xZAlp4tMXyEIkPnno63UmapqSs6dkvw5b9fO8aszRVt8x_oBJS3oa_BiKZvDehXm_57SXv4lXtkenL8ZjyJwzYQcSl12oAeKy0Uc8yXnPFyqHzmwEtziFQoSiOd8W6oM5eJymv4FaVlpU3B-LDWmdzw-2RQAy_2CXVee2ZSrqUFapXbKteVq2yOZiP4GhHh_WwXZcBIx606ZkUb-MvAV-rYViBzi8DciMSbXosOI-QP9C9QkDa0iPDdXoDZLcKsFtIKz1LPRAYGlEZUSCNzzzPhucX64IjsoyD0D1gVTCmhEecVRnHYi-bVzU82zbCWYIDI1G6-bmlUqgX42BF50Eny5iVhadccfN-IZFsyvjWK7Zb608cWrxw3OYAjIslGG_6KTwf_2uEhuQH2rMQUwXR4SAbNcu0egc3Y2MdB878BeHN0rg priority: 102 providerName: Unpaywall |
| Title | Automatic Prediction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25793605 https://www.proquest.com/docview/1664931092 https://www.proquest.com/docview/1666294144 https://pubmed.ncbi.nlm.nih.gov/PMC4368686 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118504&type=printable https://doaj.org/article/5b4f12f14761497790a58f374f3b6478 http://dx.doi.org/10.1371/journal.pone.0118504 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYALYpfHBpbKSBzgkKqOHSc-INStWiqkraoVReUUxYm9IFVJt00F_ffMpE6gojwUyQd7ksbjmXimM_6GkFeh5TbUceZblvd8wTT3tU21r7WOJThv3Gg8jXw9keOZ-DAP50ekCbQ7Bq4PunZYT2q2WnS_323fgcK_ras2RKy5qbssC9PFk5QhLPzyzsfSUhiCdXU2jskpbF8K6ztcizbUAAovpTtT96eH7e1ZNbQ_QqEuyvUhs_T37Mp7m2KZbr-li8UvW9foIXngbE7a3wnJGTkyxTmWa3apHefkzGn4mr52MNRvHpHb_qYqa0BXOl1hOAdpaWnpYC-FlaZFTgdmBb71z74hZlGuaZ2PQMegTBW9AaOWfgLPfAcMvqUNHMpjMhsNPw7GvivL4GehCirQK6mEZIbZjDOe9aSNDHhNBpEDRZaGJrWmpyITidwqaEWmWaYDMAa0Nmmc8ifkpADuXhBqrLIsDbgKNVDLWOexyk2uYzTjwPb3CG8Yn2QOsxxLZyySOhAXge-yY2GCy5W45fKI39613GF2_IP-Cte0pUXE7bqjXN0mToGTUAvLAstEBAaNQpTGNIwtj4TlGs_reuQCJaL5gXXCpBQKcVdhFpeNlBweftkOg25jwCYtTLmpaWSgBPi8Hnm6E6r2JeFTqzj4oh6J9sRtbxb7I8XXLzV-OBYdgMsj3VYw_4tPz_4-j-fkPliTISboBb1LclKtNuYFWGyV7pDjaB5BGw8YtqP3HXJ6NZxMbzr1fyCdWiOhbzaZ9j__AJwkTOc |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBgviI2PBQYYCSR4SFfHjhM_IDTKpo59CKEN9S3YiT2QqqT0Q1P_Kf5G7hIno2ICXqZKfYivTeP7-XxX3_2OkJex4y42aR46VvRDwQwPjdMmNMakEoI3bg1WI5-cyuG5-DiKR2vkZ1sLg2mVrU2sDXVR5fgf-S6TUiiksYzeTX6E2DUKT1fbFhoNLI7s8hJCttnbww-g31dRdLB_NhiGvqtAmMcqmgMspBKSWeZyznjely6x4PRbJL4TuY6tdravEpuIwil4F7lhuYlgLzPG6lRz-N5b5LbgYEtg_SSjLsAD2yGlL8_jCdv1aOhNqtL2sMIz9u3g2u2v7hKArKrjanadh_tnoubGopzo5aUej3_bBQ_ukbvefaV7Dd42yZott7Dzs88S2SKb3ljM6GvPaP3mPrnYW8yrmhuWfpriyRDK0srRwUo2LNVlQQd2CmH61bV9TMic0Tq1gQ5BAXP6Gfxj-gWC_IZjfElbZpUH5PxGdPGQrJcwu9uEWqcc0xFXsQFpmZoiVYUtTIoeIYQRAeHtxGe5pz_HLhzjrD7TSyAMaqYwQ3VlXl0BCbtPTRr6j3_Iv0eddrJI3l1fqKYXmbcFWWyEY5FjIgHfSCHho45TxxPhuMHS34BsIyLaG8yyK-wHZKdFyfXDL7phMBN49qNLWy1qGRkpAeFzQB41oOp-JFhtxSGsDUiyAreVp1gdKb9_q6nIsX8BvALS64D5X_P0-O_P8ZxsDM9OjrPjw9OjJ-QOOKkx5v1F_R2yPp8u7FNwBOfmWb36KPl608v9FykXdi4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxMbHAgOMBBI8pK1j58MPCI1uVcdgmhBDfcvsxB5IVVLaVFP_Nf467hIno2ICXqZKfYivTeM7n-9X3_2OkJeh5TbUSeZblg98wTT3tVXa11onEYA3bjRWI386jsan4sMknGyQn20tDKZVtj6xdtR5meF_5H0WRUIijWXQty4t4mR_9G72w8cOUnjS2rbTaEzkyKwuAL4t3h7ug65fBcHo4Mtw7LsOA34WyqACE4mkiJhhNuOMZ4PIxgYAgEESPJGp0ChrBjI2scithHeRaZbpAPY1rY1KFIfvvUFuxpxLTCeMJx3YAz8SRa5Uj8es7yyjNysL08Nqz9C1hmu3wrpjADKsTsvFVdHun0mbt5fFTK0u1HT62444ukfuulCW7jW2t0U2TLGNXaBdxsg22XKOY0FfO3brN_fJ-d6yKmueWHoyx1MilKWlpcO1zFiqipwOzRwg--W1A0zOXNA6zYGOQQEV_QyxMv0KgL_hG1_RlmXlATm9Fl08JJsFzO4OocZKy1QAStEgHSU6T2Rucp1gdAiQwiO8nfg0c1To2JFjmtbnezFAomYKU1RX6tTlEb_71KyhAvmH_HvUaSeLRN71hXJ-njq_kIZaWBZYJmKIkySSP6owsTwWlmssA_bIDlpEe4NFerkOPLLbWsnVwy-6YXAZeA6kClMua5kokAKgtEceNUbV_Ujw4JIDxPVIvGZua0-xPlJ8_1bTkmMvA3h5pNcZ5n_N0-O_P8dzcgsWevrx8PjoCbkD8WqIKYDBYJdsVvOleQoxYaWf1YuPkrPrXu2_AJ62enE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaxkBG4gEektXxR-LHUm2qkJgmRNF4QJGd2ICo0qpNNY0H_nbuEqdQGAIeUKQqis9JfL5z7np3PxPyVHrupc3L2LNqGAtmeWy9sbG1NlfgvHFnsRr51amaTMXLc3m-Q973tTCBg-AjzuarNpKPJ_PaHQVOHiFeURc9TRjPWN8jWQBRgnWUEqa9RRzCf8YaLEC6RnaVBFN9QHanp2ejd12kOY1VOuShnO53d9r6XLWo_oiCCq90lUX6a2Ll9XW9MJcXZjb74at1cot87cfbJat8TtaNTcovP0FB_jeG3CY3g71LR91d9siOq--QvbCirOizAHv9_C75MFo38xZAlp4tMXyEIkPnno63UmapqSs6dkvw5b9fO8aszRVt8x_oBJS3oa_BiKZvDehXm_57SXv4lXtkenL8ZjyJwzYQcSl12oAeKy0Uc8yXnPFyqHzmwEtziFQoSiOd8W6oM5eJymv4FaVlpU3B-LDWmdzw-2RQAy_2CXVee2ZSrqUFapXbKteVq2yOZiP4GhHh_WwXZcBIx606ZkUb-MvAV-rYViBzi8DciMSbXosOI-QP9C9QkDa0iPDdXoDZLcKsFtIKz1LPRAYGlEZUSCNzzzPhucX64IjsoyD0D1gVTCmhEecVRnHYi-bVzU82zbCWYIDI1G6-bmlUqgX42BF50Eny5iVhadccfN-IZFsyvjWK7Zb608cWrxw3OYAjIslGG_6KTwf_2uEhuQH2rMQUwXR4SAbNcu0egc3Y2MdB878BeHN0rg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Prediction+of+Cardiovascular+and+Cerebrovascular+Events+Using+Heart+Rate+Variability+Analysis&rft.jtitle=PloS+one&rft.au=Melillo%2C+Paolo&rft.au=Izzo%2C+Raffaele&rft.au=Orrico%2C+Ada&rft.au=Scala%2C+Paolo&rft.date=2015-03-20&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=10&rft.issue=3&rft.spage=e0118504&rft_id=info:doi/10.1371%2Fjournal.pone.0118504&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3631008001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |