Automatic Prediction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analysis

There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an autom...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 3; p. e0118504
Main Authors Melillo, Paolo, Izzo, Raffaele, Orrico, Ada, Scala, Paolo, Attanasio, Marcella, Mirra, Marco, De Luca, Nicola, Pecchia, Leandro
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 20.03.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0118504

Cover

Abstract There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients. A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events. The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors. Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events.
AbstractList BACKGROUNDThere is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients.METHODSA database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events.RESULTSThe best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors.CONCLUSIONSCombination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events.
Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients. Methods A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events. Results The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors. Conclusions Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events.
There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients.A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events.The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors.Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events.
There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients. A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events. The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors. Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events.
Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular events is not completely clear. The aim of this study is to develop novel predictive models based on data-mining algorithms to provide an automatic risk stratification tool for hypertensive patients. Methods A database of 139 Holter recordings with clinical data of hypertensive patients followed up for at least 12 months were collected ad hoc. Subjects who experienced a vascular event (i.e., myocardial infarction, stroke, syncopal event) were considered as high-risk subjects. Several data-mining algorithms (such as support vector machine, tree-based classifier, artificial neural network) were used to develop automatic classifiers and their accuracy was tested by assessing the receiver-operator characteristics curve. Moreover, we tested the echographic parameters, which have been showed as powerful predictors of future vascular events. Results The best predictive model was based on random forest and enabled to identify high-risk hypertensive patients with sensitivity and specificity rates of 71.4% and 87.8%, respectively. The Heart Rate Variability based classifier showed higher predictive values than the conventional echographic parameters, which are considered as significant cardiovascular risk factors. Conclusions Combination of Heart Rate Variability measures, analyzed with data-mining algorithm, could be a reliable tool for identifying hypertensive patients at high risk to develop future vascular events.
Author Izzo, Raffaele
Mirra, Marco
Pecchia, Leandro
Melillo, Paolo
Attanasio, Marcella
Scala, Paolo
De Luca, Nicola
Orrico, Ada
AuthorAffiliation 2 SHARE Project, Italian Ministry of Education, Scientific Research and University, Rome, Italy
1 Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples, Italy
4 School of Engineering, University of Warwick, Coventry, United Kingdom
3 Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
Université de Montréal, CANADA
AuthorAffiliation_xml – name: 1 Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples, Italy
– name: Université de Montréal, CANADA
– name: 3 Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
– name: 2 SHARE Project, Italian Ministry of Education, Scientific Research and University, Rome, Italy
– name: 4 School of Engineering, University of Warwick, Coventry, United Kingdom
Author_xml – sequence: 1
  givenname: Paolo
  surname: Melillo
  fullname: Melillo, Paolo
– sequence: 2
  givenname: Raffaele
  surname: Izzo
  fullname: Izzo, Raffaele
– sequence: 3
  givenname: Ada
  surname: Orrico
  fullname: Orrico, Ada
– sequence: 4
  givenname: Paolo
  surname: Scala
  fullname: Scala, Paolo
– sequence: 5
  givenname: Marcella
  surname: Attanasio
  fullname: Attanasio, Marcella
– sequence: 6
  givenname: Marco
  surname: Mirra
  fullname: Mirra, Marco
– sequence: 7
  givenname: Nicola
  surname: De Luca
  fullname: De Luca, Nicola
– sequence: 8
  givenname: Leandro
  surname: Pecchia
  fullname: Pecchia, Leandro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25793605$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2LEzEUHWTF_dB_IDrgiy-tySSTTHwQSlndhQVFXF_DncxNTUknNZmp9N-bbrvr7iIogSTcnHty7rn3tDjqQ49F8ZKSKWWSvluGMfbgp-scnhJKm5rwJ8UJVayaiIqwo3v34-I0pSUhNWuEeFYcV7VUTJD6pFjMxiGsYHCm_BKxc2ZwoS-DLecQOxc2kMzoIZbQd-UcI7bxT-x8g_2Qyuvk-kV5gRCH8isMWH6H6KB13g3bcpYlbpNLz4unFnzCF4fzrLj-eP5tfjG5-vzpcj67mphaVcOkIkJxQZFawygzRFiJSgnkslbcQI1gkSiJkndW5Z2blpq2IhVvW4QG2Fnxes-79iHpg0dJUyG4YpSoKiMu94guwFKvo1tB3OoATt8EQlzoXIkzHnXdcksrS7kUlCspFYG6sUxyy1rBZZO56j3X2K9h-wu8vyOkRO_adCtB79qkD23KeR8OKsd2hZ3JPkbwD8Q8fOndD70IG82ZaPLKBG8PBDH8HDENeuWSQe-hxzDe1CsqxSnf_fXmEfTvrry6r-hOyu2kZMD7PcDEkFJEq40bYDctWaDz_6qXP0r-L5t-A-E66lU
CitedBy_id crossref_primary_10_1186_1472_6947_15_S3_S2
crossref_primary_10_7180_kmj_22_020
crossref_primary_10_1111_anec_12919
crossref_primary_10_1016_j_ins_2022_11_126
crossref_primary_10_1155_2021_6663996
crossref_primary_10_1016_j_compbiomed_2020_103924
crossref_primary_10_1186_1472_6947_15_S3_S6
crossref_primary_10_3389_fpubh_2022_972177
crossref_primary_10_3390_ijerph19074014
crossref_primary_10_1590_1414_431x2021e11720
crossref_primary_10_1016_j_clinph_2019_11_013
crossref_primary_10_1111_jcpt_12852
crossref_primary_10_1080_00051144_2023_2269515
crossref_primary_10_1109_ACCESS_2020_3033004
crossref_primary_10_1021_acssensors_2c02311
crossref_primary_10_3389_fcvm_2022_754609
crossref_primary_10_1016_j_future_2019_02_021
crossref_primary_10_1007_s10916_015_0294_3
crossref_primary_10_1371_journal_pone_0174083
crossref_primary_10_3389_fpsyt_2023_1093106
crossref_primary_10_1016_j_compbiomed_2020_103999
crossref_primary_10_1007_s40747_017_0048_6
crossref_primary_10_1016_j_compbiomed_2020_103630
crossref_primary_10_1371_journal_pone_0279305
crossref_primary_10_1038_s41598_019_43602_y
crossref_primary_10_1016_j_bspc_2022_103629
crossref_primary_10_1016_j_jbi_2020_103648
crossref_primary_10_23736_S2724_5683_24_06466_4
crossref_primary_10_4015_S101623722050009X
crossref_primary_10_1007_s00521_020_05542_x
crossref_primary_10_1038_nrcardio_2016_42
crossref_primary_10_1016_j_bspc_2024_106039
crossref_primary_10_1038_s41598_022_15496_w
crossref_primary_10_1016_j_bspc_2018_05_019
crossref_primary_10_1016_j_compbiomed_2024_108207
crossref_primary_10_1515_bmt_2019_0184
crossref_primary_10_1111_acer_13327
crossref_primary_10_1016_j_compbiomed_2017_12_002
crossref_primary_10_1007_s12028_022_01491_6
crossref_primary_10_1007_s12652_017_0471_y
crossref_primary_10_1161_JAHA_116_004305
crossref_primary_10_1016_j_compbiomed_2019_103381
crossref_primary_10_1371_journal_pone_0311719
crossref_primary_10_31202_ecjse_1009456
crossref_primary_10_1007_s41666_018_0021_1
crossref_primary_10_1111_dmcn_14095
crossref_primary_10_3390_s19071489
crossref_primary_10_3390_jcm8050723
crossref_primary_10_1016_j_psychres_2021_114241
crossref_primary_10_1016_j_cmpbup_2023_100097
crossref_primary_10_1038_s41598_020_72183_4
crossref_primary_10_3390_bioengineering10010027
crossref_primary_10_1109_ACCESS_2021_3084063
crossref_primary_10_1109_JBHI_2016_2543960
crossref_primary_10_1155_2019_5930379
crossref_primary_10_3390_bioengineering10060683
crossref_primary_10_3390_ijms22052357
crossref_primary_10_1038_s41598_020_63566_8
crossref_primary_10_3389_fneur_2019_01411
crossref_primary_10_3390_s22030756
crossref_primary_10_2139_ssrn_4132904
crossref_primary_10_1038_s41598_020_64083_4
crossref_primary_10_1016_j_jns_2022_120522
crossref_primary_10_1186_s12938_023_01100_3
crossref_primary_10_1109_TAFFC_2022_3232483
crossref_primary_10_1016_j_cca_2024_119766
crossref_primary_10_3390_s23218697
crossref_primary_10_3390_ijerph18115838
crossref_primary_10_1177_13272314241296866
crossref_primary_10_1111_jep_12767
crossref_primary_10_1016_j_bbe_2022_06_001
crossref_primary_10_3390_e21121206
crossref_primary_10_1109_JBHI_2020_3002336
crossref_primary_10_1177_1178221819862283
crossref_primary_10_3390_app15031178
crossref_primary_10_1007_s11517_016_1607_5
crossref_primary_10_1016_j_procs_2022_09_413
crossref_primary_10_1109_ACCESS_2021_3074967
crossref_primary_10_2174_1875036202013010025
crossref_primary_10_1016_j_procs_2022_07_030
crossref_primary_10_7717_peerj_cs_2711
crossref_primary_10_1017_S1047951120001493
crossref_primary_10_1038_s41390_021_01829_4
crossref_primary_10_3390_s22197472
crossref_primary_10_1002_clc_23818
crossref_primary_10_5649_jjphcs_43_552
crossref_primary_10_1016_j_abrep_2017_08_004
crossref_primary_10_1007_s10916_016_0536_z
crossref_primary_10_1016_j_compbiomed_2022_105407
crossref_primary_10_1016_j_future_2022_06_006
crossref_primary_10_3390_jsan12060078
crossref_primary_10_1016_j_eswa_2021_116109
crossref_primary_10_1111_jep_13039
crossref_primary_10_1248_bpb_b22_00823
crossref_primary_10_1177_1099800419881210
crossref_primary_10_3390_jcm10225330
crossref_primary_10_3390_app13148082
crossref_primary_10_1097_JAN_0000000000000565
crossref_primary_10_3390_ijerph16214068
crossref_primary_10_2196_38454
crossref_primary_10_1016_j_future_2019_12_002
crossref_primary_10_1016_j_compbiomed_2019_04_036
crossref_primary_10_1016_j_imu_2020_100479
crossref_primary_10_1016_j_compbiomed_2021_104765
crossref_primary_10_1016_j_jiac_2023_03_007
crossref_primary_10_2196_14784
crossref_primary_10_1016_j_compbiomed_2016_01_020
crossref_primary_10_3389_fphys_2019_01193
crossref_primary_10_3390_e20020094
crossref_primary_10_1371_journal_pone_0210216
crossref_primary_10_3109_03091902_2016_1139201
crossref_primary_10_1109_JBHI_2022_3162894
crossref_primary_10_1007_s10916_018_0942_5
crossref_primary_10_1016_S2589_7500_24_00170_5
crossref_primary_10_1016_j_artmed_2021_102032
crossref_primary_10_3389_fneur_2021_772674
Cites_doi 10.1007/978-3-642-29305-4_126
10.1186/1471-2261-12-105
10.1016/j.artmed.2010.09.005
10.1109/IEMBS.2011.6089901
10.1161/01.HYP.35.2.580
10.1016/S0002-9149(03)00548-4
10.1109/10.959330
10.1016/j.cmpb.2005.01.004
10.1016/j.ehj.2003.12.003
10.1016/S1350-4533(01)00112-6
10.1161/HYPERTENSIONAHA.110.150128
10.1161/01.CIR.102.11.1239
10.1109/TBME.2005.844028
10.1152/jappl.1994.76.2.965
10.1093/eurheartj/eht281
10.1152/ajpregu.00069.2002
10.1016/0002-9149(86)90771-X
10.1063/1.166141
10.1161/01.CIR.101.23.e215
10.1016/j.compbiomed.2007.01.012
10.1016/S0140-6736(05)67702-1
10.1016/j.echo.2005.10.005
10.1023/A:1010933404324
10.1109/TITB.2010.2091647
10.1109/TBME.2003.817636
10.1371/journal.pone.0017060
10.1186/1475-925X-10-96
10.1016/j.ins.2010.08.047
10.1109/JBHI.2013.2244902
10.1016/S0140-6736(96)07493-4
10.1161/CIRCULATIONAHA.106.628875
10.1371/journal.pone.0081896
10.1093/oxfordjournals.eurheartj.a014868
10.1016/S0375-9601(96)00741-4
10.1093/europace/eus341
10.1109/TBME.2010.2092776
10.1161/STROKEAHA.110.607697
10.1186/1471-2261-14-59
10.1161/01.CIR.99.9.1132
10.1007/s11517-010-0728-5
10.1097/01.hjh.0000173526.65555.55
10.1016/j.atherosclerosis.2013.09.028
10.1152/ajpheart.2000.278.6.H2039
ContentType Journal Article
Copyright 2015 Melillo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2015 Melillo et al 2015 Melillo et al
Copyright_xml – notice: 2015 Melillo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2015 Melillo et al 2015 Melillo et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0118504
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Education
DocumentTitleAlternate Automatic Prediction of Vascular Events by HRV
EISSN 1932-6203
EndPage e0118504
ExternalDocumentID 1664931092
oai_doaj_org_article_5b4f12f14761497790a58f374f3b6478
10.1371/journal.pone.0118504
PMC4368686
3631008001
25793605
10_1371_journal_pone_0118504
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ACCTH
ADTOC
AFFHD
BBTPI
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c592t-2069461e1fc313c06f7e996e47594ca5eafe097e74df9e744cb1cb2024bbea8a3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:57 EST 2021
Fri Oct 03 12:53:16 EDT 2025
Wed Oct 29 12:06:05 EDT 2025
Tue Sep 30 16:28:18 EDT 2025
Fri Sep 05 06:02:42 EDT 2025
Tue Oct 07 07:32:39 EDT 2025
Thu Apr 03 06:52:51 EDT 2025
Thu Apr 24 23:00:42 EDT 2025
Wed Oct 01 04:16:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-2069461e1fc313c06f7e996e47594ca5eafe097e74df9e744cb1cb2024bbea8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: PM AO LP. Performed the experiments: RI MM NDL. Analyzed the data: PM AO LP. Contributed reagents/materials/analysis tools: PS. Wrote the paper: PM AO PS LP. Obtained funding: PM AO MA.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0118504
PMID 25793605
PQID 1664931092
PQPubID 1436336
ParticipantIDs plos_journals_1664931092
doaj_primary_oai_doaj_org_article_5b4f12f14761497790a58f374f3b6478
unpaywall_primary_10_1371_journal_pone_0118504
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4368686
proquest_miscellaneous_1666294144
proquest_journals_1664931092
pubmed_primary_25793605
crossref_citationtrail_10_1371_journal_pone_0118504
crossref_primary_10_1371_journal_pone_0118504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-20
PublicationDateYYYYMMDD 2015-03-20
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Melillo (ref11) 2011; 49
RB Devereux (ref25) 1986; 57
ref17
Z Binici (ref10) 2011; 42
N De Luca (ref23) 2005; 23
L Pecchia (ref13) 2011; 15
JF Ramirez-Villegas (ref19) 2011; 6
P Melillo (ref51) 2014
A Jovic (ref16) 2011; 51
M Malik (ref31) 1996; 17
L Breiman (ref46) 2001; 45
CL Webber (ref40) 1994; 76
PM Rothwell (ref3) 2005; 366
M Brennan (ref33) 2001; 48
ref45
LL Trulla (ref39) 1996; 223
ref48
ref44
ref43
CJ Murray (ref2) 1997; 349
R Carvajal (ref36) 2005; 78
A Sajadieh (ref47) 2004; 25
MW Lorenz (ref4) 2007; 115
Y Isler (ref15) 2007; 37
R Izzo (ref24) 2013; 34
W Zong (ref29) 2003
T Penzel (ref37) 2003; 50
K Nagai (ref5) 2013; 231
JM Dekker (ref9) 2000; 102
CK Peng (ref38) 1995; 5
JP Zbilut (ref41) 2002; 24
DE Lake (ref35) 2002; 283
ref30
Y Saeys (ref49) 2008
AL Goldberger (ref28) 2000; 101
E Ebrahimzadeh (ref22) 2014; 9
V Fuster (ref1) 1999; 99
GD Clifford (ref32) 2005; 52
T Song (ref21) 2014; 14
A Sajadieh (ref8) 2003; 92
JS Richman (ref34) 2000; 278
G Schillaci (ref6) 2000; 35
P Melillo (ref27) 2012; 12
ref20
P Melillo (ref18) 2011; 10
RM Lang (ref26) 2005; 18
L Pecchia (ref12) 2011; 58
P Melillo (ref14) 2013; 17
G de Simone (ref7) 2010; 56
S Maldonado (ref50) 2011; 181
P Melillo (ref42) 2013
15848268 - Comput Methods Programs Biomed. 2005 May;78(2):133-40
10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49
2936235 - Am J Cardiol. 1986 Feb 15;57(6):450-8
8737210 - Eur Heart J. 1996 Mar;17(3):354-81
23153340 - BMC Cardiovasc Disord. 2012;12:105
10069778 - Circulation. 1999 Mar 9;99(9):1132-7
17242284 - Circulation. 2007 Jan 30;115(4):459-67
24267253 - Atherosclerosis. 2013 Dec;231(2):365-70
16298214 - Lancet. 2005 Nov 19;366(9499):1773-83
9142060 - Lancet. 1997 May 3;349(9061):1269-76
14560767 - IEEE Trans Biomed Eng. 2003 Oct;50(10):1143-51
20980134 - Artif Intell Med. 2011 Mar;51(3):175-86
11891140 - Med Eng Phys. 2002 Jan;24(1):53-60
21921280 - Stroke. 2011 Nov;42(11):3196-201
16376782 - J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63
20497990 - Hypertension. 2010 Jul;56(1):99-104
23882068 - Eur Heart J. 2013 Nov;34(44):3419-26
11538314 - Chaos. 1995;5(1):82-7
12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97
15942466 - J Hypertens. 2005 Jul;23(7):1417-23
21386966 - PLoS One. 2011;6(2):e17060
21203855 - Med Biol Eng Comput. 2011 Jan;49(1):67-74
22059697 - Biomed Eng Online. 2011;10:96
10851218 - Circulation. 2000 Jun 13;101(23):E215-20
21075731 - IEEE Trans Inf Technol Biomed. 2011 Jan;15(1):40-6
23370966 - Europace. 2013 May;15(5):742-9
10679501 - Hypertension. 2000 Feb;35(2):580-6
11686633 - IEEE Trans Biomed Eng. 2001 Nov;48(11):1342-7
24592473 - IEEE J Biomed Health Inform. 2013 May;17(3):727-33
24886422 - BMC Cardiovasc Disord. 2014;14:59
22254255 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:79-82
10982537 - Circulation. 2000 Sep 12;102(11):1239-44
12860234 - Am J Cardiol. 2003 Jul 15;92(2):234-6
21078568 - IEEE Trans Biomed Eng. 2011 Mar;58(3):800-4
24504331 - PLoS One. 2014;9(2):e81896
8175612 - J Appl Physiol (1985). 1994 Feb;76(2):965-73
15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8
17359959 - Comput Biol Med. 2007 Oct;37(10):1502-10
15033247 - Eur Heart J. 2004 Mar;25(5):363-70
References_xml – ident: ref17
  doi: 10.1007/978-3-642-29305-4_126
– volume: 12
  start-page: 105
  issue: 1
  year: 2012
  ident: ref27
  article-title: Heart rate variability and target organ damage in hypertensive patients
  publication-title: BMC Cardiovasc Disord
  doi: 10.1186/1471-2261-12-105
– volume: 51
  start-page: 175
  issue: 3
  year: 2011
  ident: ref16
  article-title: Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2010.09.005
– ident: ref20
  doi: 10.1109/IEMBS.2011.6089901
– volume: 35
  start-page: 580
  issue: 2
  year: 2000
  ident: ref6
  article-title: Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension
  publication-title: Hypertension
  doi: 10.1161/01.HYP.35.2.580
– volume: 92
  start-page: 234
  issue: 2
  year: 2003
  ident: ref8
  article-title: Familial predisposition to premature heart attack and reduced heart rate variability
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(03)00548-4
– year: 2003
  ident: ref29
  article-title: Computers in Cardiology
– volume: 48
  start-page: 1342
  issue: 11
  year: 2001
  ident: ref33
  article-title: Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability?
  publication-title: IEEE Trans Bio Med Eng
  doi: 10.1109/10.959330
– volume: 78
  start-page: 133
  issue: 2
  year: 2005
  ident: ref36
  article-title: Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2005.01.004
– ident: ref43
– volume: 25
  start-page: 363
  issue: 5
  year: 2004
  ident: ref47
  article-title: Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease
  publication-title: Eur Heart J
  doi: 10.1016/j.ehj.2003.12.003
– volume: 24
  start-page: 53
  issue: 1
  year: 2002
  ident: ref41
  article-title: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals
  publication-title: Medical Engineering & Physics
  doi: 10.1016/S1350-4533(01)00112-6
– volume: 56
  start-page: 99
  issue: 1
  year: 2010
  ident: ref7
  article-title: Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension?
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.110.150128
– volume: 102
  start-page: 1239
  issue: 11
  year: 2000
  ident: ref9
  article-title: Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.11.1239
– volume: 52
  start-page: 630
  issue: 4
  year: 2005
  ident: ref32
  article-title: Quantifying errors in spectral estimates of HRV due to beat, replacement and resampling
  publication-title: IEEE Trans Bio Med Eng
  doi: 10.1109/TBME.2005.844028
– start-page: 155
  year: 2014
  ident: ref51
  article-title: Ambient Assisted Living and Daily Activities
– ident: ref30
– volume: 76
  start-page: 965
  issue: 2
  year: 1994
  ident: ref40
  article-title: Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1994.76.2.965
– volume: 34
  start-page: 3419
  issue: 44
  year: 2013
  ident: ref24
  article-title: Hypertensive target organ damage predicts incident diabetes mellitus
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht281
– volume: 283
  start-page: R789
  issue: 3
  year: 2002
  ident: ref35
  article-title: Sample entropy analysis of neonatal heart rate variability
  publication-title: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
  doi: 10.1152/ajpregu.00069.2002
– ident: ref44
– volume: 57
  start-page: 450
  issue: 6
  year: 1986
  ident: ref25
  article-title: Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(86)90771-X
– volume: 5
  start-page: 82
  issue: 1
  year: 1995
  ident: ref38
  article-title: Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time-Series
  publication-title: Chaos
  doi: 10.1063/1.166141
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: ref28
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 37
  start-page: 1502
  issue: 10
  year: 2007
  ident: ref15
  article-title: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2007.01.012
– volume: 366
  start-page: 1773
  issue: 9499
  year: 2005
  ident: ref3
  article-title: Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study)
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67702-1
– volume: 18
  start-page: 1440
  issue: 12
  year: 2005
  ident: ref26
  article-title: Recommendations for chamber quantification: A report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology
  publication-title: J Am Soc Echocardiog
  doi: 10.1016/j.echo.2005.10.005
– start-page: 313
  year: 2008
  ident: ref49
  article-title: Machine learning and knowledge discovery in databases
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref46
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 15
  start-page: 40
  issue: 1
  year: 2011
  ident: ref13
  article-title: Discrimination power of short-term heart rate variability measures for CHF assessment
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2010.2091647
– volume: 50
  start-page: 1143
  issue: 10
  year: 2003
  ident: ref37
  article-title: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea
  publication-title: IEEE Trans Bio Med Eng
  doi: 10.1109/TBME.2003.817636
– volume: 6
  start-page: e17060
  issue: 2
  year: 2011
  ident: ref19
  article-title: Heart rate variability dynamics for the prognosis of cardiovascular risk
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017060
– volume: 10
  start-page: 96
  issue: 1
  year: 2011
  ident: ref18
  article-title: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-10-96
– volume: 181
  start-page: 115
  issue: 1
  year: 2011
  ident: ref50
  article-title: Simultaneous feature selection and classification using kernel-penalized support vector machines
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.08.047
– volume: 17
  start-page: 727
  issue: 3
  year: 2013
  ident: ref14
  article-title: Classification Tree for Risk Assessment in Patients Suffering From Congestive Heart Failure via Long-Term Heart Rate Variability
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2244902
– volume: 349
  start-page: 1269
  issue: 9061
  year: 1997
  ident: ref2
  article-title: Mortality by cause for eight regions of the world: Global Burden of Disease Study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)07493-4
– ident: ref45
– volume: 115
  start-page: 459
  issue: 4
  year: 2007
  ident: ref4
  article-title: Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.628875
– volume: 9
  start-page: e81896
  issue: 2
  year: 2014
  ident: ref22
  article-title: A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081896
– volume: 17
  start-page: 354
  issue: 3
  year: 1996
  ident: ref31
  article-title: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use
  publication-title: Eur Heart J
  doi: 10.1093/oxfordjournals.eurheartj.a014868
– volume: 223
  start-page: 255
  issue: 4
  year: 1996
  ident: ref39
  article-title: Recurrence quantification analysis of the logistic equation with transients
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(96)00741-4
– year: 2013
  ident: ref42
  article-title: Focus on Nonlinear Analysis Research
– ident: ref48
  doi: 10.1093/europace/eus341
– volume: 58
  start-page: 800
  issue: 3
  year: 2011
  ident: ref12
  article-title: Remote health monitoring of heart failure with data mining via CART method on HRV features
  publication-title: IEEE Trans Bio Med Eng
  doi: 10.1109/TBME.2010.2092776
– volume: 42
  start-page: 3196
  issue: 11
  year: 2011
  ident: ref10
  article-title: Decreased Nighttime Heart Rate Variability Is Associated With Increased Stroke Risk
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.607697
– volume: 14
  start-page: 59
  issue: 1
  year: 2014
  ident: ref21
  article-title: Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction
  publication-title: BMC Cardiovasc Disord
  doi: 10.1186/1471-2261-14-59
– volume: 99
  start-page: 1132
  issue: 9
  year: 1999
  ident: ref1
  article-title: Epidemic of cardiovascular disease and stroke: the three main challenges. Presented at the 71st scientific sessions of the American Heart Association. Dallas, Texas
  publication-title: Circulation
  doi: 10.1161/01.CIR.99.9.1132
– volume: 49
  start-page: 67
  issue: 1
  year: 2011
  ident: ref11
  article-title: Discrimination power of long-term heart rate variability measures for chronic heart failure detection
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-010-0728-5
– volume: 23
  start-page: 1417
  issue: 7
  year: 2005
  ident: ref23
  article-title: The use of a telematic connection for the follow-up of hypertensive patients improves the cardiovascular prognosis
  publication-title: Journal of hypertension
  doi: 10.1097/01.hjh.0000173526.65555.55
– volume: 231
  start-page: 365
  issue: 2
  year: 2013
  ident: ref5
  article-title: Efficacy of combined use of three non-invasive atherosclerosis tests to predict vascular events in the elderly; carotid intima-media thickness, flow-mediated dilation of brachial artery and pulse wave velocity
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2013.09.028
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  ident: ref34
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: American Journal of Physiology-Heart and Circulatory Physiology
  doi: 10.1152/ajpheart.2000.278.6.H2039
– reference: 23882068 - Eur Heart J. 2013 Nov;34(44):3419-26
– reference: 20497990 - Hypertension. 2010 Jul;56(1):99-104
– reference: 21386966 - PLoS One. 2011;6(2):e17060
– reference: 15848268 - Comput Methods Programs Biomed. 2005 May;78(2):133-40
– reference: 16376782 - J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63
– reference: 24886422 - BMC Cardiovasc Disord. 2014;14:59
– reference: 22059697 - Biomed Eng Online. 2011;10:96
– reference: 8737210 - Eur Heart J. 1996 Mar;17(3):354-81
– reference: 12860234 - Am J Cardiol. 2003 Jul 15;92(2):234-6
– reference: 11891140 - Med Eng Phys. 2002 Jan;24(1):53-60
– reference: 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97
– reference: 23153340 - BMC Cardiovasc Disord. 2012;12:105
– reference: 11538314 - Chaos. 1995;5(1):82-7
– reference: 16298214 - Lancet. 2005 Nov 19;366(9499):1773-83
– reference: 21921280 - Stroke. 2011 Nov;42(11):3196-201
– reference: 14560767 - IEEE Trans Biomed Eng. 2003 Oct;50(10):1143-51
– reference: 24504331 - PLoS One. 2014;9(2):e81896
– reference: 11686633 - IEEE Trans Biomed Eng. 2001 Nov;48(11):1342-7
– reference: 23370966 - Europace. 2013 May;15(5):742-9
– reference: 20980134 - Artif Intell Med. 2011 Mar;51(3):175-86
– reference: 21203855 - Med Biol Eng Comput. 2011 Jan;49(1):67-74
– reference: 24592473 - IEEE J Biomed Health Inform. 2013 May;17(3):727-33
– reference: 22254255 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:79-82
– reference: 21075731 - IEEE Trans Inf Technol Biomed. 2011 Jan;15(1):40-6
– reference: 17359959 - Comput Biol Med. 2007 Oct;37(10):1502-10
– reference: 17242284 - Circulation. 2007 Jan 30;115(4):459-67
– reference: 10851218 - Circulation. 2000 Jun 13;101(23):E215-20
– reference: 21078568 - IEEE Trans Biomed Eng. 2011 Mar;58(3):800-4
– reference: 24267253 - Atherosclerosis. 2013 Dec;231(2):365-70
– reference: 9142060 - Lancet. 1997 May 3;349(9061):1269-76
– reference: 15033247 - Eur Heart J. 2004 Mar;25(5):363-70
– reference: 10982537 - Circulation. 2000 Sep 12;102(11):1239-44
– reference: 10679501 - Hypertension. 2000 Feb;35(2):580-6
– reference: 2936235 - Am J Cardiol. 1986 Feb 15;57(6):450-8
– reference: 8175612 - J Appl Physiol (1985). 1994 Feb;76(2):965-73
– reference: 10069778 - Circulation. 1999 Mar 9;99(9):1132-7
– reference: 15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8
– reference: 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49
– reference: 15942466 - J Hypertens. 2005 Jul;23(7):1417-23
SSID ssj0053866
Score 2.5383866
Snippet There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for vascular...
Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for...
BACKGROUNDThere is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for...
Background There is consensus that Heart Rate Variability is associated with the risk of vascular events. However, Heart Rate Variability predictive value for...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0118504
SubjectTerms Acute coronary syndromes
Aged
Algorithms
Artificial neural networks
Automation
Cardiovascular disease
Cardiovascular diseases
Cardiovascular Diseases - diagnostic imaging
Cardiovascular Diseases - physiopathology
Cerebral infarction
Cerebrovascular Disorders - physiopathology
Cerebrovascular system
Classifiers
Clinical medicine
Data mining
Data processing
Decision Trees
Education
Electrocardiography
Entropy
Female
Health risks
Heart attacks
Heart Rate
Humans
Hypertension
Male
Mathematical models
Myocardial infarction
Neural networks
Patients
Pattern recognition
Physiology
Prediction models
Risk analysis
Risk factors
ROC Curve
Stroke
Studies
Ultrasonic imaging
Ultrasonography
Variability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlAINFGQkDnDINo4fiY8FUVWV4ESl3iLbsQvSKlntZkH998zETuiKSu2hipRD7CjxPOz55PE3hHyQgQdpa5cH1ha5YJbnNhibW2trBeCNe4unkb99V2cX4vxSXt4o9YU5YZEeOAruWFoRWBmYALwtNLLjGVkHXonALZ6TxNm3qPUEpuIcDF6sVDooxyt2nPSyWPWdX-BZS5kKs00L0cjXj_ymy35zW6z5f8rk4223Mtd_zHJ5Yz06fUaepkCSnsQB7JNHvntO9pOrbujHxCf96YBcnWyHfmRmpas17sugLmgfqNvJRaWma6nzawDJ_56N_E4bitnxVxSLXw8UuSXob4DYkeH7Gt6LvCYvyMXp1x9fzvJUXyF3UpcDOIjSQjHPguOMu0KFygP88UgBKJyR3gRf6MpXog0a7sJZ5mwJq7q13tSGvyR7HUj0kFAfdGCm5Fpa6K1q29a69a2tMR6DID4jfBJ24xL5ONbAWDbjjloFICSKrUEVNUlFGcnnt1aRfOOO_p9Rj3NfpM4eH4BBNcmgmrsMKiOHaAXTBzYNU0poJFCFURxNlnF78_u5GZwUd15M5_vt2EeVWgB4zciraEjzT8KcqTmAyoxUOya2M4rdlu7Xz5EIHKsHwJWRxWyM95LT64eQ0xvyBIJHifl4ZXFE9ob11r-FAG2w70Zf_Av5tD0K
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-69GF7GWv3UXfd0GAP24PTyJJl62GMNqSEwUIp6-ibkWypHQQ7zQej__3uHDldWNmGwQ_SGVvSnXTnu_sdwPvUC5_avIw9rwax5FbE1hsbW2tzhcabcJaykb9O1PhSfrlKr3Zg0uXCUFhltye2G3XVlPSP_JgrJTXBWCafZ7cxVY0i72pXQsOE0grVpxZi7BHsJoSM1YPd09Hk_KLbm1G6lQoJdCLjx2G9-rOmdn3KwUxDwbbugGpx_An3dNosHtJB_wylfLyqZ-bup5lOfzunzp7B06BgspM1R-zBjqv3qTZziOPYh70gzgv2IWBOf3wO1yerZdOit7LzOfluiJY1ng234lWZqSs2dHM0pO_bRhQyuWBt8AEbo-Qs2QVqsOw7muFrFPA71mGfvIDLs9G34TgONRjiMtXJEoVIaam4474UXJQD5TOHJpIjmEBZmtQZ7wY6c5msvMa7LC0vbYInv7XO5Ea8hF6Ns3sAzHntuUmETi1Sq9xWua5cZXPS2VDRj0B0E1-UAaCc6mRMi9brlqGhsp7CgparCMsVQbx5arYG6PgH_Smt6YaW4LXbhmZ-XQRpLVIrPU88lxlqL5ogGU2ae5FJLywl50ZwQBzRvWBR3HNnBEcdlzzc_W7TjYJM3hlTu2bV0qhESzRwI3i1ZqrNR-K-qgUanhFkW-y2NYrtnvrHTQsWThUG8Iqgv2HM_5qnw7-P4zU8QdUxpWi8ZHAEveV85d6gera0b4PM_QKK_z8_
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaxkBG4gEektXxR-LHUm2qkJgmRNF4QJGd2ICo0qpNNY0H_nbuEqdQGAIeUKQqis9JfL5z7np3PxPyVHrupc3L2LNqGAtmeWy9sbG1NlfgvHFnsRr51amaTMXLc3m-Q973tTCBg-AjzuarNpKPJ_PaHQVOHiFeURc9TRjPWN8jWQBRgnWUEqa9RRzCf8YaLEC6RnaVBFN9QHanp2ejd12kOY1VOuShnO53d9r6XLWo_oiCCq90lUX6a2Ll9XW9MJcXZjb74at1cot87cfbJat8TtaNTcovP0FB_jeG3CY3g71LR91d9siOq--QvbCirOizAHv9_C75MFo38xZAlp4tMXyEIkPnno63UmapqSs6dkvw5b9fO8aszRVt8x_oBJS3oa_BiKZvDehXm_57SXv4lXtkenL8ZjyJwzYQcSl12oAeKy0Uc8yXnPFyqHzmwEtziFQoSiOd8W6oM5eJymv4FaVlpU3B-LDWmdzw-2RQAy_2CXVee2ZSrqUFapXbKteVq2yOZiP4GhHh_WwXZcBIx606ZkUb-MvAV-rYViBzi8DciMSbXosOI-QP9C9QkDa0iPDdXoDZLcKsFtIKz1LPRAYGlEZUSCNzzzPhucX64IjsoyD0D1gVTCmhEecVRnHYi-bVzU82zbCWYIDI1G6-bmlUqgX42BF50Eny5iVhadccfN-IZFsyvjWK7Zb608cWrxw3OYAjIslGG_6KTwf_2uEhuQH2rMQUwXR4SAbNcu0egc3Y2MdB878BeHN0rg
  priority: 102
  providerName: Unpaywall
Title Automatic Prediction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/25793605
https://www.proquest.com/docview/1664931092
https://www.proquest.com/docview/1666294144
https://pubmed.ncbi.nlm.nih.gov/PMC4368686
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118504&type=printable
https://doaj.org/article/5b4f12f14761497790a58f374f3b6478
http://dx.doi.org/10.1371/journal.pone.0118504
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYALYpfHBpbKSBzgkKqOHSc-INStWiqkraoVReUUxYm9IFVJt00F_ffMpE6gojwUyQd7ksbjmXimM_6GkFeh5TbUceZblvd8wTT3tU21r7WOJThv3Gg8jXw9keOZ-DAP50ekCbQ7Bq4PunZYT2q2WnS_323fgcK_ras2RKy5qbssC9PFk5QhLPzyzsfSUhiCdXU2jskpbF8K6ztcizbUAAovpTtT96eH7e1ZNbQ_QqEuyvUhs_T37Mp7m2KZbr-li8UvW9foIXngbE7a3wnJGTkyxTmWa3apHefkzGn4mr52MNRvHpHb_qYqa0BXOl1hOAdpaWnpYC-FlaZFTgdmBb71z74hZlGuaZ2PQMegTBW9AaOWfgLPfAcMvqUNHMpjMhsNPw7GvivL4GehCirQK6mEZIbZjDOe9aSNDHhNBpEDRZaGJrWmpyITidwqaEWmWaYDMAa0Nmmc8ifkpADuXhBqrLIsDbgKNVDLWOexyk2uYzTjwPb3CG8Yn2QOsxxLZyySOhAXge-yY2GCy5W45fKI39613GF2_IP-Cte0pUXE7bqjXN0mToGTUAvLAstEBAaNQpTGNIwtj4TlGs_reuQCJaL5gXXCpBQKcVdhFpeNlBweftkOg25jwCYtTLmpaWSgBPi8Hnm6E6r2JeFTqzj4oh6J9sRtbxb7I8XXLzV-OBYdgMsj3VYw_4tPz_4-j-fkPliTISboBb1LclKtNuYFWGyV7pDjaB5BGw8YtqP3HXJ6NZxMbzr1fyCdWiOhbzaZ9j__AJwkTOc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBgviI2PBQYYCSR4SFfHjhM_IDTKpo59CKEN9S3YiT2QqqT0Q1P_Kf5G7hIno2ICXqZKfYivTeP7-XxX3_2OkJex4y42aR46VvRDwQwPjdMmNMakEoI3bg1WI5-cyuG5-DiKR2vkZ1sLg2mVrU2sDXVR5fgf-S6TUiiksYzeTX6E2DUKT1fbFhoNLI7s8hJCttnbww-g31dRdLB_NhiGvqtAmMcqmgMspBKSWeZyznjely6x4PRbJL4TuY6tdravEpuIwil4F7lhuYlgLzPG6lRz-N5b5LbgYEtg_SSjLsAD2yGlL8_jCdv1aOhNqtL2sMIz9u3g2u2v7hKArKrjanadh_tnoubGopzo5aUej3_bBQ_ukbvefaV7Dd42yZott7Dzs88S2SKb3ljM6GvPaP3mPrnYW8yrmhuWfpriyRDK0srRwUo2LNVlQQd2CmH61bV9TMic0Tq1gQ5BAXP6Gfxj-gWC_IZjfElbZpUH5PxGdPGQrJcwu9uEWqcc0xFXsQFpmZoiVYUtTIoeIYQRAeHtxGe5pz_HLhzjrD7TSyAMaqYwQ3VlXl0BCbtPTRr6j3_Iv0eddrJI3l1fqKYXmbcFWWyEY5FjIgHfSCHho45TxxPhuMHS34BsIyLaG8yyK-wHZKdFyfXDL7phMBN49qNLWy1qGRkpAeFzQB41oOp-JFhtxSGsDUiyAreVp1gdKb9_q6nIsX8BvALS64D5X_P0-O_P8ZxsDM9OjrPjw9OjJ-QOOKkx5v1F_R2yPp8u7FNwBOfmWb36KPl608v9FykXdi4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxMbHAgOMBBI8pK1j58MPCI1uVcdgmhBDfcvsxB5IVVLaVFP_Nf467hIno2ICXqZKfYivTeM7n-9X3_2OkJeh5TbUSeZblg98wTT3tVXa11onEYA3bjRWI386jsan4sMknGyQn20tDKZVtj6xdtR5meF_5H0WRUIijWXQty4t4mR_9G72w8cOUnjS2rbTaEzkyKwuAL4t3h7ug65fBcHo4Mtw7LsOA34WyqACE4mkiJhhNuOMZ4PIxgYAgEESPJGp0ChrBjI2scithHeRaZbpAPY1rY1KFIfvvUFuxpxLTCeMJx3YAz8SRa5Uj8es7yyjNysL08Nqz9C1hmu3wrpjADKsTsvFVdHun0mbt5fFTK0u1HT62444ukfuulCW7jW2t0U2TLGNXaBdxsg22XKOY0FfO3brN_fJ-d6yKmueWHoyx1MilKWlpcO1zFiqipwOzRwg--W1A0zOXNA6zYGOQQEV_QyxMv0KgL_hG1_RlmXlATm9Fl08JJsFzO4OocZKy1QAStEgHSU6T2Rucp1gdAiQwiO8nfg0c1To2JFjmtbnezFAomYKU1RX6tTlEb_71KyhAvmH_HvUaSeLRN71hXJ-njq_kIZaWBZYJmKIkySSP6owsTwWlmssA_bIDlpEe4NFerkOPLLbWsnVwy-6YXAZeA6kClMua5kokAKgtEceNUbV_Ujw4JIDxPVIvGZua0-xPlJ8_1bTkmMvA3h5pNcZ5n_N0-O_P8dzcgsWevrx8PjoCbkD8WqIKYDBYJdsVvOleQoxYaWf1YuPkrPrXu2_AJ62enE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaxkBG4gEektXxR-LHUm2qkJgmRNF4QJGd2ICo0qpNNY0H_nbuEqdQGAIeUKQqis9JfL5z7np3PxPyVHrupc3L2LNqGAtmeWy9sbG1NlfgvHFnsRr51amaTMXLc3m-Q973tTCBg-AjzuarNpKPJ_PaHQVOHiFeURc9TRjPWN8jWQBRgnWUEqa9RRzCf8YaLEC6RnaVBFN9QHanp2ejd12kOY1VOuShnO53d9r6XLWo_oiCCq90lUX6a2Ll9XW9MJcXZjb74at1cot87cfbJat8TtaNTcovP0FB_jeG3CY3g71LR91d9siOq--QvbCirOizAHv9_C75MFo38xZAlp4tMXyEIkPnno63UmapqSs6dkvw5b9fO8aszRVt8x_oBJS3oa_BiKZvDehXm_57SXv4lXtkenL8ZjyJwzYQcSl12oAeKy0Uc8yXnPFyqHzmwEtziFQoSiOd8W6oM5eJymv4FaVlpU3B-LDWmdzw-2RQAy_2CXVee2ZSrqUFapXbKteVq2yOZiP4GhHh_WwXZcBIx606ZkUb-MvAV-rYViBzi8DciMSbXosOI-QP9C9QkDa0iPDdXoDZLcKsFtIKz1LPRAYGlEZUSCNzzzPhucX64IjsoyD0D1gVTCmhEecVRnHYi-bVzU82zbCWYIDI1G6-bmlUqgX42BF50Eny5iVhadccfN-IZFsyvjWK7Zb608cWrxw3OYAjIslGG_6KTwf_2uEhuQH2rMQUwXR4SAbNcu0egc3Y2MdB878BeHN0rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Prediction+of+Cardiovascular+and+Cerebrovascular+Events+Using+Heart+Rate+Variability+Analysis&rft.jtitle=PloS+one&rft.au=Melillo%2C+Paolo&rft.au=Izzo%2C+Raffaele&rft.au=Orrico%2C+Ada&rft.au=Scala%2C+Paolo&rft.date=2015-03-20&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=10&rft.issue=3&rft.spage=e0118504&rft_id=info:doi/10.1371%2Fjournal.pone.0118504&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3631008001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon