盐渍化土壤光谱特征的区域异质性及盐分反演

该文通过分析中国新疆、浙江、吉林3个不同地区盐渍化土壤的高光谱特征,研究了盐渍化土壤高光谱特征的区域异质性,并对构建高精度的跨区域土壤盐分高光谱定量反演模型,应用25种数据处理方式来提高全局建模的精度,旨在提高具有光谱异质性土壤的盐分反演精度。结果表明:不同地区的盐渍化土壤,无论是反射率还是光谱曲线形态方面,均存在较明显的差异,但经过一阶微分处理后,光谱差异有所降低;对3个地区土壤盐分含量局部建模与全局建模的精度进行比较,在所选用的直线回归、主成分回归、多元线性回归、偏最小二乘回归4种建模方法中,全局建模精度均低于局部建模精度;不同地区盐渍化土壤的盐分敏感波段不一致,在所采用的25种数据处理方...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 17; pp. 167 - 174
Main Author 彭杰 刘焕军 史舟 向红英 迟春明
Format Journal Article
LanguageChinese
Published 塔里木大学植物科学学院,阿拉尔,843300%东北农业大学资源与环境学院,哈尔滨,150030%浙江大学农业遥感与信息技术应用研究所,杭州,310058 2014
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.17.022

Cover

Abstract 该文通过分析中国新疆、浙江、吉林3个不同地区盐渍化土壤的高光谱特征,研究了盐渍化土壤高光谱特征的区域异质性,并对构建高精度的跨区域土壤盐分高光谱定量反演模型,应用25种数据处理方式来提高全局建模的精度,旨在提高具有光谱异质性土壤的盐分反演精度。结果表明:不同地区的盐渍化土壤,无论是反射率还是光谱曲线形态方面,均存在较明显的差异,但经过一阶微分处理后,光谱差异有所降低;对3个地区土壤盐分含量局部建模与全局建模的精度进行比较,在所选用的直线回归、主成分回归、多元线性回归、偏最小二乘回归4种建模方法中,全局建模精度均低于局部建模精度;不同地区盐渍化土壤的盐分敏感波段不一致,在所采用的25种数据处理方式中,SG3点一阶微分(savitzky golay)、SG5点一阶微分、SG7点一阶微分、线性基线校正+SG3点一阶微分、SG平滑+SG3点一阶微分、SG平滑+线性基线校正+SG3点一阶微分这6种数据处理方式对全局建模的建模精度有明显改善作用,模型的相对分析误差均达到2.0以上,其中以SG平滑+SG3点一阶微分为最佳,其决定系数、均方根误差、相对分析误差分别为0.80、0.43、2.23。研究结果为跨区域土壤盐渍化的航天高光谱遥感监测提供了一定的参考依据。
AbstractList TP79%S127; 该文通过分析中国新疆、浙江、吉林3个不同地区盐渍化土壤的高光谱特征,研究了盐渍化土壤高光谱特征的区域异质性,并对构建高精度的跨区域土壤盐分高光谱定量反演模型,应用25种数据处理方式来提高全局建模的精度,旨在提高具有光谱异质性土壤的盐分反演精度。结果表明:不同地区的盐渍化土壤,无论是反射率还是光谱曲线形态方面,均存在较明显的差异,但经过一阶微分处理后,光谱差异有所降低;对3个地区土壤盐分含量局部建模与全局建模的精度进行比较,在所选用的直线回归、主成分回归、多元线性回归、偏最小二乘回归4种建模方法中,全局建模精度均低于局部建模精度;不同地区盐渍化土壤的盐分敏感波段不一致,在所采用的25种数据处理方式中,SG3点一阶微分(savitzky golay)、SG5点一阶微分、SG7点一阶微分、线性基线校正+SG3点一阶微分、SG平滑+SG3点一阶微分、SG平滑+线性基线校正+SG3点一阶微分这6种数据处理方式对全局建模的建模精度有明显改善作用,模型的相对分析误差均达到2.0以上,其中以SG平滑+SG3点一阶微分为最佳,其决定系数、均方根误差、相对分析误差分别为0.80、0.43、2.23。研究结果为跨区域土壤盐渍化的航天高光谱遥感监测提供了一定的参考依据。
该文通过分析中国新疆、浙江、吉林3个不同地区盐渍化土壤的高光谱特征,研究了盐渍化土壤高光谱特征的区域异质性,并对构建高精度的跨区域土壤盐分高光谱定量反演模型,应用25种数据处理方式来提高全局建模的精度,旨在提高具有光谱异质性土壤的盐分反演精度。结果表明:不同地区的盐渍化土壤,无论是反射率还是光谱曲线形态方面,均存在较明显的差异,但经过一阶微分处理后,光谱差异有所降低;对3个地区土壤盐分含量局部建模与全局建模的精度进行比较,在所选用的直线回归、主成分回归、多元线性回归、偏最小二乘回归4种建模方法中,全局建模精度均低于局部建模精度;不同地区盐渍化土壤的盐分敏感波段不一致,在所采用的25种数据处理方式中,SG3点一阶微分(savitzky golay)、SG5点一阶微分、SG7点一阶微分、线性基线校正+SG3点一阶微分、SG平滑+SG3点一阶微分、SG平滑+线性基线校正+SG3点一阶微分这6种数据处理方式对全局建模的建模精度有明显改善作用,模型的相对分析误差均达到2.0以上,其中以SG平滑+SG3点一阶微分为最佳,其决定系数、均方根误差、相对分析误差分别为0.80、0.43、2.23。研究结果为跨区域土壤盐渍化的航天高光谱遥感监测提供了一定的参考依据。
Abstract_FL The objectives of this study were to analyze regional heterogeneity of hyperspectral characteristics of salt-affected soils from Xinjiang Uygur Autonomous Region, Zhejiang and Jilin provinces and to establish hyperspectral inversion model of salinity for cross-regional salt-affected soils with high precision. One hundred and fifty-nine soil samples at 0-20 cm depth were taken from Xinjiang Uygur Autonomous Region (58 soil samples), Zhejiang (68 soil samples) and Jilin (33 soil samples) provinces, respectively. Electrical conductivity(1:5 soil to water, EC1:5) and spectral reflectance (SR) of all the 159 soil samples were determined. Regression models between EC1:5 and SR were fitted using principal component regression (PCR), multiple linear regression (MLR), and partial least squares regression (PLSR) based on local and global models, respectively. The prediction accuracies of these models were assessed by comparing determination coefficients (R2), relative percent deviation (RPD) and root mean squared error (RMSE) between predicted and measured EC1:5. Results showed that there were obvious differences not only in spectral reflectances but also in spectral curve shapes among the salt-affected soils from different regions. After a first derivative data processing, however, these differences were decreased. Values of R2, RMSE and RPD between the predicted and measured EC1:5 for the global model were 0.06, 0.93 and 1.03 for PCR equation, 0.10, 0.91 and 1.04 for MLR equation, 0.71, 0.51 and 1.85 for PCR equation, and 0.71, 0.51, 1.86 for PLSR equation, respectively. Values of R2, RMSE and RPD between the predicted and measured EC1:5 for the local model were 0.45, 0.73 and 1.30 for LR equation, 0.50, 0.69 and 1.38 for MLR equation, 0.76, 0.46 and 2.05 for PCR equation, and 0.78, 0.44, 2.15 for PLSR equation, respectively. The values of R2 and RPD between the predicted and measured EC1:5 were higher for local models than those of global models, but the values of RMSE of local models between the predicted and measured EC1:5 were lower than that of global models. This indicated that the local models were more accurate than the global models in predicting EC1:5 from soil spectral reflectances. In order to improve the prediction accuracy of global model, 25 data processing methods were carried out for soil spectral reflectances. It was shown that the sensitive bands of EC1:5 varied with study regions. Among all of the 25 data processing methods, the prediction accuracy of global model based on Savitzky Golay Second Derivative (SGSD) method decreased drastically compared with that based on the spectral reflectance method. Prediction accuracies of inversion models decreased slightly based on area normalization (AN), mean normalization (MN), unite vector normalization(UVN), maximum normalization (MAN), range normalization(RN), linear baseline correction(LBC), Savitzky Golay Smoothing (SCS) and multiplicative scatter correction (MSC). Six data processing methods including three-point savitzky golay first derivative (SGFD3), five-point cavitzky golay first derivative (SGFD5), seven-point savitzky golay first derivative (SGFD7), LBC+SGFD3, SGS+ SGFD3 and SGS+LBC+SGFD3 improved inversion accuracies of global models. The values of PRD were greater than 2.0 for inversion equations based on these 6 data processing methods. The inversion accuracy based on SGS+SGFD3 data processing method was best with the R2, RMSE and RPD of 0.80, 0.43, and 2.23, respectively. The study can provide valuble information for aerospace hyperspectral remote sensing of cross-regional soil salinization.
Author 彭杰 刘焕军 史舟 向红英 迟春明
AuthorAffiliation 塔里木大学植物科学学院,阿拉尔843300 东北农业大学资源与环境学院,哈尔滨150030 浙江大学农业遥感与信息技术应用研究所,杭州310058
AuthorAffiliation_xml – name: 塔里木大学植物科学学院,阿拉尔,843300%东北农业大学资源与环境学院,哈尔滨,150030%浙江大学农业遥感与信息技术应用研究所,杭州,310058
Author_FL Liu Huanjun
Shi Zhou
Xiang Hongying
Chi Chunming
Peng Jie
Author_FL_xml – sequence: 1
  fullname: Peng Jie
– sequence: 2
  fullname: Liu Huanjun
– sequence: 3
  fullname: Shi Zhou
– sequence: 4
  fullname: Xiang Hongying
– sequence: 5
  fullname: Chi Chunming
Author_xml – sequence: 1
  fullname: 彭杰 刘焕军 史舟 向红英 迟春明
BookMark eNo9j81Kw0AcxPdQwVr7EiJ4SvzvbprNghcpfkHBS-9hs93GFN1ogmhvKlastNSDeFChBwU9KnhQKb7NNn0MIxWZw8DwY4aZQwUda4XQIgabcpcvt-woTbWNAYjlepjbBLBjY2YDIQVU_M9nUTlNowAqmDIABxfRSnZ_Pf7om96teRiaxyfT6U5e37Lup_k-ze7OTe_LDIdmdDZ5fxmfPJvBVc6bywsz6I9HN_Nopil2U1X-8xKqr6_Vq5tWbXtjq7pas2SFE4srkavSpEwIz5FK8UAKEARTyRklwAIPFGHY5aA44RIaRLEGB6oIpY4QtISWprVHQjeFDv1WfJjofNDX7VAeB79nMcuv5uTClJQ7sQ4PopzdT6I9kbR91yUO9bgL9AdPgW4Q
ClassificationCodes TP79%S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2014.17.022
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Regional heterogeneity of hyperspectral characteristics of salt-affected soil and salinity inversion
DocumentTitle_FL Regional heterogeneity of hyperspectral characteristics of salt-affected soil and salinity inversion
EndPage 174
ExternalDocumentID nygcxb201417022
662438960
GrantInformation_xml – fundername: 国家自然科学基金项目; 黑龙江省普通高等学校青年学术骨干支持计划
  funderid: (41061031、41261083、41271234、41361048); (1251G010)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c592-9eaeae5f37aa84cee9bca0a213c973207b80e271690e929c0d2e7d903e2334aa3
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:35:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 17
Keywords 反演精度
hyperspectral
remote sensing
遥感
土壤
高光谱
salinization
1∶5浸提液电导率
盐渍化
inversion accuracy
盐分
electrical conductivity of 1:5 soil/water extract
soils
salts
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c592-9eaeae5f37aa84cee9bca0a213c973207b80e271690e929c0d2e7d903e2334aa3
Notes The objectives of this study were to analyze regional heterogeneity of hyperspectral characteristics of salt-affected soils from Xinjiang Uygur Autonomous Region, Zhejiang and Jilin provinces and to establish hyperspectral inversion model of salinity for cross-regional salt-affected soils with high precision. One hundred and fifty-nine soil samples at 0-20 cm depth were taken from Xinjiang Uygur Autonomous Region (58 soil samples), Zhejiang (68 soil samples) and Jilin (33 soil samples) provinces, respectively. Electrical conductivity(1:5 soil to water, EC1:5) and spectral reflectance (SR) of all the 159 soil samples were determined. Regression models between EC1:5 and SR were fitted using principal component regression (PCR), multiple linear regression (MLR), and partial least squares regression (PLSR) based on local and global models, respectively. The prediction accuracies of these models were assessed by comparing determination coefficients (R2), relative percent deviation (RPD) and root mean squared error
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201417022
chongqing_primary_662438960
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2014
Publisher 塔里木大学植物科学学院,阿拉尔,843300%东北农业大学资源与环境学院,哈尔滨,150030%浙江大学农业遥感与信息技术应用研究所,杭州,310058
Publisher_xml – name: 塔里木大学植物科学学院,阿拉尔,843300%东北农业大学资源与环境学院,哈尔滨,150030%浙江大学农业遥感与信息技术应用研究所,杭州,310058
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.053905
Snippet 该文通过分析中国新疆、浙江、吉林3个不同地区盐渍化土壤的高光谱特征,研究了盐渍化土壤高光谱特征的区域异质性,并对构建高精度的跨区域土壤盐分高光谱定量反演模型,应用25...
TP79%S127; 该文通过分析中国新疆、浙江、吉林3个不同地区盐渍化土壤的高光谱特征,研究了盐渍化土壤高光谱特征的区域异质性,并对构建高精度的跨区域土壤盐分高光谱定量反...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 167
SubjectTerms 1∶5浸提液电导率
反演精度
土壤
盐分
盐渍化
遥感
高光谱
Title 盐渍化土壤光谱特征的区域异质性及盐分反演
URI http://lib.cqvip.com/qk/90712X/201417/662438960.html
https://d.wanfangdata.com.cn/periodical/nygcxb201417022
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA9rC6IH8RNrVXpoTmXWyUwmk4CXpDtL8eBphd6W-drtaVtrC9qTioqVlnoQDyr0oKBHBQ8qxf9m2l79D3wvk26XIkVllyWbl3nv9_LCm5eZ5IWQ6SjOZR5HkVf0mPR4WTIvA9N7QcZLBTMuxQu72uK2mLvDb81H843Gr5FVS6srWTNf--O-kv-xKtSBXXGX7D9YdsgUKqAM9oVfsDD8_pWNaRJTZajyaSKokVS2aBJROUuVwIKCQhsLOqSaWxJ8FU0kNT41DC-Hv0YhySQQVFqGmkru-Bht-bQdHzNLZWAv51RLFCp9qmPbuE2lHsEDNYBHHJBaFiHg4aPRsKUKxJlwxK-sOBNTHSErECGNxd-iWlhxGkgHY8S2bSERKKoFOs04uUpa1ThV0YEIM-OgGKsANmrbKgCrrN6gq65pBvpmxqpZKy6QIUKyBZmMPimp96Y6t45-X0jnnJ3fd--D3PiOR7w4q08IcQEBq48ROnqvCZVQ9l6DEppDCbhakDdZ3PTr_dZHsnkLEeB588I_QcYDfIQ0Rsa1aZn2YQzLcJo-dLIMDzhgh5ubA0xdIA7niBEL8YSC4bomfKsf2Vf8DtBJMu3Q3jgOK-YWWVgc9O9CxGQ3sA166aA_Emt1zpIzbpI0pesRf4401hbOk9O6v-wSxZQXyM29ty93v21WG6-rd9vV-w_V0_X9z1_21r9XPx_tvXlSbfyotrerncf7Xz_tPvxYbb2A9tXzZ9XW5u7Oq4uk0046s3OeOwnEyyMVeKpM4RP1wjhNJYewTmV56qcBC3NMNuXHmfTLAPM--SWE-7lfBGVcKD8sgzDkaRpeImODxUF5mUz1ioyrXsigl6AAwW6mZMFFUOQSQvFMTZDJYTd0l-qEL92h0SbIlOuYrnMD97qDB_38foY9yWLoxyvHMpgkp7Bl_QzvKhlbWV4tr0FUu5Jdd-PgNwLSe1g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%9B%90%E6%B8%8D%E5%8C%96%E5%9C%9F%E5%A3%A4%E5%85%89%E8%B0%B1%E7%89%B9%E5%BE%81%E7%9A%84%E5%8C%BA%E5%9F%9F%E5%BC%82%E8%B4%A8%E6%80%A7%E5%8F%8A%E7%9B%90%E5%88%86%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BD%AD%E6%9D%B0+%E5%88%98%E7%84%95%E5%86%9B+%E5%8F%B2%E8%88%9F+%E5%90%91%E7%BA%A2%E8%8B%B1+%E8%BF%9F%E6%98%A5%E6%98%8E&rft.date=2014&rft.issn=1002-6819&rft.volume=30&rft.issue=17&rft.spage=167&rft.epage=174&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2014.17.022&rft.externalDocID=662438960
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg