黄淮海地区县域粮食单产的空间溢出效应及影响因素分析

该研究运用马尔科夫链和空间马尔科夫链方法探讨了1980-2010年黄淮海地区347个县域粮食单产的溢出效应;并借助空间滞后模型揭示1995和2010年粮食单产分异的影响因素,以期为粮食生产布局优化和粮食生产提升政策制定提供依据。结果表明:1)35 a间黄淮海地区县域粮食单产转移总体呈现渐进、平滑的特征,大规模跨越的几率较低。2)似然比统计量分析表明,在1980-1995年和1995-2010年2个时段,区域背景对县域粮食单产类型转移格局的影响显著,且在1995-2010年更显著。中低产或中高产类型县域的粮食单产类型以平稳转移为主,而高产和低产类型县域在区域背景的作用下逐渐向中产类型转变。3)在...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 9; pp. 299 - 307
Main Author 刘玉 唐秀美 潘瑜春 唐林楠
Format Journal Article
LanguageChinese
Published 北京农业信息技术研究中心,北京,100097%国家农业信息化工程技术研究中心,北京,100097%农业部农业信息技术重点实验室,北京,100097%北京市农业物联网工程技术研究中心,北京,100097 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.09.042

Cover

Abstract 该研究运用马尔科夫链和空间马尔科夫链方法探讨了1980-2010年黄淮海地区347个县域粮食单产的溢出效应;并借助空间滞后模型揭示1995和2010年粮食单产分异的影响因素,以期为粮食生产布局优化和粮食生产提升政策制定提供依据。结果表明:1)35 a间黄淮海地区县域粮食单产转移总体呈现渐进、平滑的特征,大规模跨越的几率较低。2)似然比统计量分析表明,在1980-1995年和1995-2010年2个时段,区域背景对县域粮食单产类型转移格局的影响显著,且在1995-2010年更显著。中低产或中高产类型县域的粮食单产类型以平稳转移为主,而高产和低产类型县域在区域背景的作用下逐渐向中产类型转变。3)在空间格局演进方面,平原地带上移概率增加,而市辖区和沿海一带下移趋势明显,江苏、河南和山东3省的县域粮食单产类型趋于稳定。4)空间滞后模型计算结果表明,1995年,上一期粮食单产、农民人均纯收入、有效灌溉面积比率、产业结构对粮食单产的正向促进作用显著,分别通过1%的显著性水平检验;2010年,上一期粮食单产、农民人均纯收入和种植结构分别通过1%、1%、5%水平的显著性检验,而且上一期粮食单产和农民人均纯收均对粮食单产的正面推动作用显著。
AbstractList F301.11%F304.5; 该研究运用马尔科夫链和空间马尔科夫链方法探讨了1980-2010年黄淮海地区347个县域粮食单产的溢出效应;并借助空间滞后模型揭示1995和2010年粮食单产分异的影响因素,以期为粮食生产布局优化和粮食生产提升政策制定提供依据。结果表明:1)35 a间黄淮海地区县域粮食单产转移总体呈现渐进、平滑的特征,大规模跨越的几率较低。2)似然比统计量分析表明,在1980-1995年和1995-2010年2个时段,区域背景对县域粮食单产类型转移格局的影响显著,且在1995-2010年更显著。中低产或中高产类型县域的粮食单产类型以平稳转移为主,而高产和低产类型县域在区域背景的作用下逐渐向中产类型转变。3)在空间格局演进方面,平原地带上移概率增加,而市辖区和沿海一带下移趋势明显,江苏、河南和山东3省的县域粮食单产类型趋于稳定。4)空间滞后模型计算结果表明,1995年,上一期粮食单产、农民人均纯收入、有效灌溉面积比率、产业结构对粮食单产的正向促进作用显著,分别通过1%的显著性水平检验;2010年,上一期粮食单产、农民人均纯收入和种植结构分别通过1%、1%、5%水平的显著性检验,而且上一期粮食单产和农民人均纯收均对粮食单产的正面推动作用显著。
该研究运用马尔科夫链和空间马尔科夫链方法探讨了1980-2010年黄淮海地区347个县域粮食单产的溢出效应;并借助空间滞后模型揭示1995和2010年粮食单产分异的影响因素,以期为粮食生产布局优化和粮食生产提升政策制定提供依据。结果表明:1)35 a间黄淮海地区县域粮食单产转移总体呈现渐进、平滑的特征,大规模跨越的几率较低。2)似然比统计量分析表明,在1980-1995年和1995-2010年2个时段,区域背景对县域粮食单产类型转移格局的影响显著,且在1995-2010年更显著。中低产或中高产类型县域的粮食单产类型以平稳转移为主,而高产和低产类型县域在区域背景的作用下逐渐向中产类型转变。3)在空间格局演进方面,平原地带上移概率增加,而市辖区和沿海一带下移趋势明显,江苏、河南和山东3省的县域粮食单产类型趋于稳定。4)空间滞后模型计算结果表明,1995年,上一期粮食单产、农民人均纯收入、有效灌溉面积比率、产业结构对粮食单产的正向促进作用显著,分别通过1%的显著性水平检验;2010年,上一期粮食单产、农民人均纯收入和种植结构分别通过1%、1%、5%水平的显著性检验,而且上一期粮食单产和农民人均纯收均对粮食单产的正面推动作用显著。
Abstract_FL As an important grain production base of China, Huang-Huai-Hai region is of great significance for the steady grain supply of the country. Under the strategic background of regional cooperative development, the spatial externality of grain yield per hectare has attracted increasing attention. In order to investigate the spillover effects of grain yield per hectare at county level, this study focuses on the 347 counties of Huang-Huai-Hai region by Markov Chain method and Spatial Markov Chain method, and reveals the spatial spillover effect of grain yield per hectare at county level during 1980-2010 as well as the influential factors of the differentiation of grain yield in 1995 and 2010. And the results show: 1) During 1980-2010, the type of grain yield per hectare at county level in Huang-Huai-Hai region transfers in a gradual and smooth way, with a low probability of large-scale crossing. 2) During 1980-1995, the likelihood ratio statistic is 52.198, passing the Chi-square test with the significance level of 0.01, and is 55.147, passing the Chi-square test with the significance level of 0.005 during 1995-2010. That is to say the regional background type exerts significant impact on the type shifting of grain yield per hectare, and it’s more significant in the second stage. The growth of grain yield per hectare of the counties at medium-low or medium-high level is similar, while the counties with high yield and low yield under the action of the regional context, gradually change toward middle type. Taking the counties adjacent to the high grain yield for example, their grain yield types per hectare will have a relative high possibility to increase, and vice versa. 3) In the aspect of spatial pattern of evolution, the type of grain yield per hectare tends to increase in the plain, and reduce obviously in the municipal districts and the coastal area. However, the type of grain yield per hectare in Jiangsu, Henan and Shandong Province gradually transfers to be stable. 4) Variations like grain yield per unit area in the last stage, average net income of peasant, industrial structure and ratio of effective irrigated areas have great impacts on the differentiation of grain yield per hectare at county level. And the influencing direction and degree of the factors in 1995 and 2010 are significantly different. In 1995, grain yield per hectare in the last stage, average net income of peasant, ratio of effective irrigated areas and industrial structure have passed the test of the significance level of 0.01, separately, and these indices are significantly positive to promote the grain yield; in 2010, the index of grain yield per hectare in the last stage, average net income of peasant and plant structure goes through the significant test, and the significance level is 0.01, 0.01 and 0.05, respectively. Except the average net income of peasant, the rest both play a positive role in promoting the overflow yield. These results can provide scientific ground for the optimization of grain production and policy-making to increase the grain yield per hectare in Huang-Huai-Hai region.
Author 刘玉 唐秀美 潘瑜春 唐林楠
AuthorAffiliation 北京农业信息技术研究中心,北京100097 国家农业信息化工程技术研究中心,北京100097 农业部农业信息技术重点实验室,北京100097 北京市农业物联网工程技术研究中心,北京100097
AuthorAffiliation_xml – name: 北京农业信息技术研究中心,北京,100097%国家农业信息化工程技术研究中心,北京,100097%农业部农业信息技术重点实验室,北京,100097%北京市农业物联网工程技术研究中心,北京,100097
Author_FL Tang Xiumei
Liu Yu
Pan Yuchun
Tang Linnan
Author_FL_xml – sequence: 1
  fullname: Liu Yu
– sequence: 2
  fullname: Tang Xiumei
– sequence: 3
  fullname: Pan Yuchun
– sequence: 4
  fullname: Tang Linnan
Author_xml – sequence: 1
  fullname: 刘玉 唐秀美 潘瑜春 唐林楠
BookMark eNo9j8tKw0AARWdRwVr7E4K4SpyZzCNZSvGFBTfdl0zSqSk61QbR7osWsSpoEVRs0YW4KSqVQkT8GSehf2Gk4urC5XAvZwZkVF1VAJhH0ETI4XSxZgZhqEwEITaYjRwTQ8RM6JiQ4AzI_vfTIB-GgYAUWRxCgrJgY_zRikeD-H2k7170aaTPvnSvl7wNxo893el-R0_JTSt5jsbXwzh60MdR3G3r6Eqfn-jPV33Z0bf9ZNjX7aP4_mIWTEl3O6zk_zIHSivLpcKaUdxcXS8sFQ2POtiwKtziiHsUEt_jkkmBkUcQJEISyXwhmWsJx5aCERtjj0gsKGfIpZb0BWHMyoGFyeyBq6SrquVafb-h0sOyala9Q_HrDp3UPCXnJqS3VVfVvSBldxvBjttolhmzOSWEYusH9p96Kg
ClassificationCodes F301.11%F304.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.09.042
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Analysis on spatial spillover effect and influence factors of grain yield per hectare at county level in Huang-Huai-Hai region
DocumentTitle_FL Analysis on spatial spillover effect and influence factors of grain yield per hectare at county level in Huang-Huai-Hai region
EndPage 307
ExternalDocumentID nygcxb201609042
668754452
GrantInformation_xml – fundername: 国家自然科学基金项目(41401193; 41471115)
  funderid: 国家自然科学基金项目(41401193; 41471115)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c592-3e73717c504dc7f6fb21c4104bf4f6dbf6a3b98fb64822c4f2b5761a53fdb4663
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:18:32 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 空间滞后模型
models
yield per hectare
spatial lag model
模型
spatial spillover effect
空间溢出效应
空间马尔科夫链
optimization
优化
单产
grain
Huang-Huai-Hai region
黄淮海地区
spatial Markov chain
粮食
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c592-3e73717c504dc7f6fb21c4104bf4f6dbf6a3b98fb64822c4f2b5761a53fdb4663
Notes 11-2047/S
As an important grain production base of China, Huang-Huai-Hai region is of great significance for the steady grain supply of the country. Under the strategic background of regional cooperative development, the spatial externality of grain yield per hectare has attracted increasing attention. In order to investigate the spillover effects of grain yield per hectare at county level, this study focuses on the 347 counties of Huang-Huai-Hai region by Markov Chain method and Spatial Markov Chain method, and reveals the spatial spillover effect of grain yield per hectare at county level during 1980-2010 as well as the influential factors of the differentiation of grain yield in 1995 and 2010. And the results show: 1) During 1980-2010, the type of grain yield per hectare at county level in Huang-Huai-Hai region transfers in a gradual and smooth way, with a low probability of large-scale crossing. 2) During 1980-1995, the likelihood ratio statistic is 52.198, passing the Chi-square test with the significance
PageCount 9
ParticipantIDs wanfang_journals_nygcxb201609042
chongqing_primary_668754452
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 北京农业信息技术研究中心,北京,100097%国家农业信息化工程技术研究中心,北京,100097%农业部农业信息技术重点实验室,北京,100097%北京市农业物联网工程技术研究中心,北京,100097
Publisher_xml – name: 北京农业信息技术研究中心,北京,100097%国家农业信息化工程技术研究中心,北京,100097%农业部农业信息技术重点实验室,北京,100097%北京市农业物联网工程技术研究中心,北京,100097
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.136056
Snippet 该研究运用马尔科夫链和空间马尔科夫链方法探讨了1980-2010年黄淮海地区347个县域粮食单产的溢出效应;并借助空间滞后模型揭示1995和2010年粮食单产分异的影响因素,以期为...
F301.11%F304.5; 该研究运用马尔科夫链和空间马尔科夫链方法探讨了1980-2010年黄淮海地区347个县域粮食单产的溢出效应;并借助空间滞后模型揭示1995和2010年粮食单产分异...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 299
SubjectTerms 优化
单产
模型
空间溢出效应
空间滞后模型
空间马尔科夫链
粮食
黄淮海地区
Title 黄淮海地区县域粮食单产的空间溢出效应及影响因素分析
URI http://lib.cqvip.com/qk/90712X/201609/668754452.html
https://d.wanfangdata.com.cn/periodical/nygcxb201609042
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNNQWxB7ET6xV6cGcytb5SDLJMdOdpSh6qtDbspnd2Z62WlvQnosWsSpoEVRs0YN4KSqVwor4Z5xd-i98L5P9QKWosIQ3Sd5H8maTl0zyHiGXazCFwERTL7GGl0EivJLhPkBh4BuZsXpkvfNfvyHmbrKrC3xh5Mj40Kml1RUzk6798V7J_2gV8kCveEv2HzTbJwoZAIN-IQUNQ_pXOqaJonFMJaOJoHFEdWIBjnDCqZqlsYeABEBbIKFxxRZV8JdENA4slqI6tDlQp0wVpwlDFB1hHaUtC6CvLB1FFSAWTKFOYLEiWyQQV0rMgUfFbFGFSss9LtPYt9xD5IJATLVnxWAWsLhSWDoJLSJ89kxnWyqwUSibRKkS21LNrWyAGGOOLlNtKQBTzXsvlKOtJNaFbpBq2grAgItFj_DMB0oCZcm0bVvZVVe-5SrwUfNhvELMCAGQQnvDeyjF5U434OOMIKQbtt2MMNhxXe2deXfDexHMyVkKYRGv9_dJSEXczkLIYabPAc8RCutUt_An9oufbyEkOiPkYE-MBbi5NErGdFyOKwPr1scFfH_49TH0gT-49hygUwMxWD1yP8TYBf0TT_i9n9uP_06go4T2xL1ymLDodmRxqdW8DcaUvdvWymqt5pAZNn-CHHfrpyld_BlOkpG1xVNkXDeXnQ-Zxmly7eDremd_t_NlP3_9MX_Uzh9_z7e3u593D95t55tbP9rvuy_Xux_aBy_2Ou23-YN2Z2sjbz_PnzzMv33Kn23mr3a6ezv5xv3Om6dnyHwlmZ-dK7mYIaWUq6AUNqIw8qOUe6yeRpnITOCnzPeYyVgm6iYTtdAomRnBwDJOWRYYWHD7NR5mdcPA-j5LRltLrcY5MoV-o4Iak8KABQy9WWPCkyYwDMOchoxNkMl-r1RvFa5hqn0lTpAp109VN2DcqbbuNdO7BjvWU9Ct5w8lMEmOYc1it-8CGV1ZXm1cBPt3xVxy78VPCoKLJw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%BB%84%E6%B7%AE%E6%B5%B7%E5%9C%B0%E5%8C%BA%E5%8E%BF%E5%9F%9F%E7%B2%AE%E9%A3%9F%E5%8D%95%E4%BA%A7%E7%9A%84%E7%A9%BA%E9%97%B4%E6%BA%A2%E5%87%BA%E6%95%88%E5%BA%94%E5%8F%8A%E5%BD%B1%E5%93%8D%E5%9B%A0%E7%B4%A0%E5%88%86%E6%9E%90&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E7%8E%89+%E5%94%90%E7%A7%80%E7%BE%8E+%E6%BD%98%E7%91%9C%E6%98%A5+%E5%94%90%E6%9E%97%E6%A5%A0&rft.date=2016&rft.issn=1002-6819&rft.volume=32&rft.issue=9&rft.spage=299&rft.epage=307&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.09.042&rft.externalDocID=668754452
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg