Gene selection for classification of microarray data based on the Bayes error

BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their indi...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 8; no. 1; p. 370
Main Authors Zhang, Ji-Gang, Deng, Hong-Wen
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 03.10.2007
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-8-370

Cover

Abstract BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. RESULTS: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. CONCLUSION: The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.
AbstractList Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. Results In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. Conclusion The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.
Abstract Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. Results In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. Conclusion The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.
BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. RESULTS: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. CONCLUSION: The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.ABSTRACT: BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. RESULTS: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. CONCLUSION: The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.
ArticleNumber 370
Audience Academic
Author Deng, Hong-Wen
Zhang, Ji-Gang
AuthorAffiliation 1 Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
2 The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
3 Departments of Orthopedic Surgery and Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
AuthorAffiliation_xml – name: 1 Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
– name: 2 The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
– name: 3 Departments of Orthopedic Surgery and Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
Author_xml – sequence: 1
  givenname: Ji-Gang
  surname: Zhang
  fullname: Zhang, Ji-Gang
– sequence: 2
  givenname: Hong-Wen
  surname: Deng
  fullname: Deng, Hong-Wen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17915022$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxSNURD_gzA1FQkJwSOtJnMS-IJUKykpFSHycrYk93rrKxls7C-x_j3ezKl0ECOXgaPx7z-PnOc4OBj9Qlj0FdgogmjPgLRQlsLoQRdWyB9nRXeXg3v9hdhzjDWPQClY_yg6hlVCzsjzKPlzSQHmknvTo_JBbH3LdY4zOOo3bkrf5wungMQRc5wZHzDuMZPK0N15T_gbXFHMKwYfH2UOLfaQnu_Uk-_ru7ZeL98XVx8vZxflVoWsJY2Eb3lgjiKFsDbSm1oimqTveNkyUhnOGBmzJDe-gqq1lNa-BkYQGhGFE1Uk2m3yNxxu1DG6BYa08OrUt-DBXGEane1IkKyuZ5CmLjldd24GwnDhjtrOIrU1ebPJaDUtcf8e-vzMEpjYpq02OapOjEiqlnCSvJ8ly1S3IaBrGgP1eH_s7g7tWc_9NlUxIKKtk8GJnEPztiuKoFi5q6nscyK9i4ipeSSkS-PKfIIiq5g3Iqkzo8wmdY7q2G6xPR-sNrs6hhYYz3mxaP_0DlT5D6ZHTcFmX6nuCV3uCxIz0Y5zjKkY1-_xpn312P5dfOe7GLQFnE5DGKcZA9j-irn9TaDdu5zL17fq_6n4CSMvzuw
CitedBy_id crossref_primary_10_3390_ijms19113398
crossref_primary_10_4018_jitr_2015040102
crossref_primary_10_1155_2014_769159
crossref_primary_10_3390_antiox11112286
crossref_primary_10_1016_j_mehy_2020_109577
crossref_primary_10_1186_1471_2105_9_380
crossref_primary_10_1186_s12920_016_0204_7
crossref_primary_10_1371_journal_pcbi_1004614
crossref_primary_10_1016_j_ins_2014_09_064
crossref_primary_10_1016_j_neucom_2010_02_025
crossref_primary_10_3390_s18092869
crossref_primary_10_1109_TCBB_2012_33
crossref_primary_10_1016_j_jbi_2015_11_003
crossref_primary_10_1155_2014_195470
crossref_primary_10_1515_jib_2019_0110
crossref_primary_10_1007_s00500_022_07515_9
crossref_primary_10_3233_JIFS_181665
crossref_primary_10_1007_s11426_011_4263_5
crossref_primary_10_1007_s40009_015_0390_4
crossref_primary_10_1186_1471_2105_9_S9_S9
crossref_primary_10_1016_j_genrep_2016_04_007
crossref_primary_10_1007_s40012_016_0131_y
crossref_primary_10_3390_sym14101955
crossref_primary_10_1371_journal_pone_0097530
crossref_primary_10_4018_IJEHMC_2017040103
crossref_primary_10_1089_omi_2008_0083
crossref_primary_10_1109_TNB_2009_2035284
crossref_primary_10_1007_s12539_016_0183_6
crossref_primary_10_1016_j_patcog_2016_09_007
crossref_primary_10_4316_AECE_2014_01019
crossref_primary_10_1155_2019_9864213
crossref_primary_10_1186_1752_0509_2_72
crossref_primary_10_1371_journal_pone_0014579
crossref_primary_10_1016_j_patcog_2010_02_008
crossref_primary_10_1007_s43674_022_00047_7
crossref_primary_10_1186_1471_2105_15_70
crossref_primary_10_1186_s12859_015_0565_5
crossref_primary_10_1002_cnm_3372
crossref_primary_10_1166_jmihi_2021_3318
crossref_primary_10_1186_1471_2105_13_298
crossref_primary_10_4018_IJSIR_2019040102
Cites_doi 10.1080/10255810305042
10.1186/gb-2002-3-12-research0069
10.1186/1471-2105-6-148
10.1109/ICPR.2006.557
10.1093/bioinformatics/bth469
10.1093/bioinformatics/bti171
10.1152/physiolgenomics.2001.5.2.99
10.1186/1471-2105-5-126
10.1038/35000501
10.1093/bioinformatics/bti319
10.1109/CRV.2005.53
10.1093/bioinformatics/bth267
10.1186/1471-2105-7-320
10.1093/bioinformatics/17.6.509
10.1364/JOSAA.21.001231
10.1016/j.csda.2004.03.017
10.1109/TPAMI.2005.159
10.1126/science.286.5439.531
10.1073/pnas.96.12.6745
10.1093/bioinformatics/btf867
10.1002/0470854774
10.1093/bioinformatics/btg102
10.1245/s10434-006-9090-0
10.1002/0470094419.ch12
10.1101/gr.190001
10.1016/S1535-6108(02)00030-2
10.1016/S0004-3702(03)00079-1
10.1109/36.843045
10.1007/978-1-4612-0711-5
10.1186/1471-2105-7-235
10.1186/1471-2105-7-3
10.1038/89044
10.1145/332306.332328
10.1093/bioinformatics/18.10.1332
10.1093/bioinformatics/bti033
10.1142/S0219720005001004
10.1073/pnas.102102699
10.1198/016214502753479248
10.1186/1471-2105-6-76
10.1145/1014052.1014149
10.1038/nm0102-68
10.1142/S0218001404003800
10.1186/1471-2105-7-228
10.1186/1471-2105-7-95
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Zhang and Deng; licensee BioMed Central Ltd. 2007 Zhang and Deng; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Zhang and Deng; licensee BioMed Central Ltd. 2007 Zhang and Deng; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
NPM
ISR
7X8
7QO
8FD
FR3
P64
RC3
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-8-370
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 370
ExternalDocumentID oai_doaj_org_article_e93f9094147b43b7b18f4e400fbfaa7f
10.1186/1471-2105-8-370
PMC2089123
A171640460
17915022
10_1186_1471_2105_8_370
Genre Journal Article
GeographicLocations United States
China
GeographicLocations_xml – name: China
– name: United States
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR050496
– fundername: NIA NIH HHS
  grantid: R21 AG027110
– fundername: NIAMS NIH HHS
  grantid: K01 AR002170
– fundername: NIA NIH HHS
  grantid: R01 AG026564
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
ALIPV
NPM
7X8
7QO
8FD
FR3
P64
RC3
5PM
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
LK8
M1P
M7P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c591t-f646fd8e0a97d17d5caad65b476082d440ad1f24d4b135ff054510e91618d0ee3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:42:22 EDT 2025
Sun Oct 26 03:44:48 EDT 2025
Thu Aug 21 13:34:56 EDT 2025
Tue Oct 07 09:23:56 EDT 2025
Thu Sep 04 19:15:18 EDT 2025
Mon Oct 20 23:07:34 EDT 2025
Mon Oct 20 17:17:59 EDT 2025
Thu Oct 16 16:19:47 EDT 2025
Thu Apr 03 06:56:55 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Wed Oct 01 01:46:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-f646fd8e0a97d17d5caad65b476082d440ad1f24d4b135ff054510e91618d0ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/e93f9094147b43b7b18f4e400fbfaa7f
PMID 17915022
PQID 1835461932
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e93f9094147b43b7b18f4e400fbfaa7f
unpaywall_primary_10_1186_1471_2105_8_370
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2089123
proquest_miscellaneous_20343998
proquest_miscellaneous_1835461932
gale_infotracmisc_A171640460
gale_infotracacademiconefile_A171640460
gale_incontextgauss_ISR_A171640460
pubmed_primary_17915022
crossref_primary_10_1186_1471_2105_8_370
crossref_citationtrail_10_1186_1471_2105_8_370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-03
PublicationDateYYYYMMDD 2007-10-03
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-03
  day: 03
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References EK Tang (1742_CR18) 2006; 7
1742_CR44
F Goudail (1742_CR39) 2004; 21
R Diaz-Uriarte (1742_CR7) 2005
1742_CR48
1742_CR46
A Statnikov (1742_CR17) 2005; 21
1742_CR41
K Tumer (1742_CR58) 2003; 5
Y Lee (1742_CR3) 2003; 19
A Ben-Dor (1742_CR13) 2000
Y Li (1742_CR5) 2002; 18
JW Lee (1742_CR10) 2005; 48
R Blanco (1742_CR14) 2004; 18
L Devroye (1742_CR61) 1996
R Schalkhoff (1742_CR64) 1992
C Ding (1742_CR26) 2005; 3
P Baldi (1742_CR4) 2001; 17
J Khan (1742_CR2) 2001; 7
M Chow (1742_CR15) 2001; 5
T Golub (1742_CR43) 1999; 286
M Dash (1742_CR25) 2003; 151
RO Duda (1742_CR56) 2001
M Dettling (1742_CR51) 2003; 19
C Gentile (1742_CR53) 2003
G Kohavi (1742_CR21) 1997
PA Devijver (1742_CR63) 1982
U Alon (1742_CR40) 1999; 96
I Tssamardinos (1742_CR33) 2003
S Varma (1742_CR6) 2004; 5
AL Blum (1742_CR20) 1997; 97
ZY Wang (1742_CR54) 2006
KY Yeung (1742_CR12) 2005; 21
K Yang (1742_CR30) 2006; 7
C Lee (1742_CR36) 2000; 38
J Weston (1742_CR52) 2000
HC Peng (1742_CR35) 2005; 27
S Mukherjee (1742_CR11) 2004
G Carneiro (1742_CR38) 2005
CH Ooi (1742_CR24) 2006; 7
S Singh (1742_CR57) 2006
S Dudoit (1742_CR1) 2002; 97
M Wang (1742_CR59) 2003; 1
T Li (1742_CR29) 2004; 20
1742_CR16
M Xiong (1742_CR31) 2001; 11
GR Xuan (1742_CR37) 2006; 4
E Xing (1742_CR32) 2001
AR Webb (1742_CR34) 2002
J Hua (1742_CR8) 2005; 21
X Liu (1742_CR23) 2005; 6
C Lai (1742_CR28) 2006; 7
K Fukunaga (1742_CR62) 1990
D Singh (1742_CR45) 2002; 1
TH Bo (1742_CR50) 2002
AA Alizadeh (1742_CR47) 2000; 403
R Diaz-Uriarte (1742_CR55) 2006; 7
MA Shipp (1742_CR42) 2002; 8
T Jirapech-Umpai (1742_CR9) 2005; 6
1742_CR19
M Dettling (1742_CR22) 2002; 3
L Yu (1742_CR27) 2004
CF Aliferis (1742_CR60) 2003
C Ambroise (1742_CR49) 2002; 99
References_xml – volume: 5
  start-page: 95
  year: 2003
  ident: 1742_CR58
  publication-title: International Journal of Smart Engineering System Design
  doi: 10.1080/10255810305042
– volume: 3
  start-page: RESEARCH0069
  issue: 12
  year: 2002
  ident: 1742_CR22
  publication-title: Genome Biol
  doi: 10.1186/gb-2002-3-12-research0069
– volume: 6
  start-page: 148
  year: 2005
  ident: 1742_CR9
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-148
– volume: 4
  start-page: 957
  year: 2006
  ident: 1742_CR37
  publication-title: 18th International Conference on Pattern Recognition
  doi: 10.1109/ICPR.2006.557
– ident: 1742_CR16
  doi: 10.1093/bioinformatics/bth469
– ident: 1742_CR41
– volume: 21
  start-page: 1509
  year: 2005
  ident: 1742_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti171
– volume-title: Pattern Classification
  year: 2001
  ident: 1742_CR56
– volume: 5
  start-page: 99
  year: 2001
  ident: 1742_CR15
  publication-title: Physiol Genomics
  doi: 10.1152/physiolgenomics.2001.5.2.99
– volume: 5
  start-page: 126
  year: 2004
  ident: 1742_CR6
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-126
– volume: 403
  start-page: 503
  year: 2000
  ident: 1742_CR47
  publication-title: Nature
  doi: 10.1038/35000501
– volume-title: Pattern Recognition, statistical, structural and neural approaches
  year: 1992
  ident: 1742_CR64
– start-page: 250
  volume-title: Proceedings of the 24th IASTED International Multi-Conference
  year: 2006
  ident: 1742_CR57
– start-page: 273
  volume-title: Artificial Intelligence
  year: 1997
  ident: 1742_CR21
– ident: 1742_CR46
– volume: 21
  start-page: 2394
  year: 2005
  ident: 1742_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti319
– start-page: 131
  volume-title: Proceedings of IEEE Computer Society Bioinformatics Conference (CSB 2004)
  year: 2004
  ident: 1742_CR11
– volume-title: Ninth International Workshop on Artificial Intelligence and Statistics
  year: 2003
  ident: 1742_CR33
– start-page: 253
  volume-title: Proceedings of the Second Canadian Conference on Computer and Robot Vision
  year: 2005
  ident: 1742_CR38
  doi: 10.1109/CRV.2005.53
– volume-title: Pattern Recognition, a Statistical Approach
  year: 1982
  ident: 1742_CR63
– start-page: 601
  volume-title: International Conference on Machine Learning
  year: 2001
  ident: 1742_CR32
– volume: 1
  start-page: 45
  year: 2003
  ident: 1742_CR59
  publication-title: Proceedings of Networks and Signal Processing
– volume: 20
  start-page: 2429
  year: 2004
  ident: 1742_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth267
– volume: 7
  start-page: 320
  year: 2006
  ident: 1742_CR24
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-320
– volume: 17
  start-page: 509
  year: 2001
  ident: 1742_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.509
– volume: 21
  start-page: 1231
  issue: 7
  year: 2004
  ident: 1742_CR39
  publication-title: J Opt Soc Am A Opt Image Sci Vis
  doi: 10.1364/JOSAA.21.001231
– volume: 48
  start-page: 869
  year: 2005
  ident: 1742_CR10
  publication-title: Computation Statistics and Data Analysis
  doi: 10.1016/j.csda.2004.03.017
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 1742_CR35
  publication-title: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
  doi: 10.1109/TPAMI.2005.159
– volume: 286
  start-page: 531
  year: 1999
  ident: 1742_CR43
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  ident: 1742_CR40
  publication-title: Proceedings of the National Accademy of Siences of the United States of America
  doi: 10.1073/pnas.96.12.6745
– volume: 19
  start-page: 1061
  issue: 9
  year: 2003
  ident: 1742_CR51
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btf867
– volume-title: Statistical Pattern Recognition
  year: 2002
  ident: 1742_CR34
  doi: 10.1002/0470854774
– volume-title: Advances in Neural Information Processing Systems
  year: 2000
  ident: 1742_CR52
– volume: 19
  start-page: 1132
  issue: 9
  year: 2003
  ident: 1742_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg102
– ident: 1742_CR19
  doi: 10.1245/s10434-006-9090-0
– volume: 97
  start-page: 245
  year: 1997
  ident: 1742_CR20
  publication-title: Intelligence
– volume-title: Proceedings NIPS
  year: 2003
  ident: 1742_CR53
– start-page: 193
  volume-title: Data analysis and visualization in genomics and proteomics
  year: 2005
  ident: 1742_CR7
  doi: 10.1002/0470094419.ch12
– volume-title: Genome biology
  year: 2002
  ident: 1742_CR50
– volume: 11
  start-page: 1878
  year: 2001
  ident: 1742_CR31
  publication-title: Genome Research
  doi: 10.1101/gr.190001
– start-page: 21
  volume-title: AMIA 2003 Annual Symposium Proceedings
  year: 2003
  ident: 1742_CR60
– volume: 1
  start-page: 203
  year: 2002
  ident: 1742_CR45
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00030-2
– volume: 151
  start-page: 155
  year: 2003
  ident: 1742_CR25
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(03)00079-1
– volume: 38
  start-page: 1471
  issue: 3
  year: 2000
  ident: 1742_CR36
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.843045
– volume-title: Introduction to Statistical Pattern Recognition
  year: 1990
  ident: 1742_CR62
– volume-title: A Probabilistic Theory of Pattern Recognition
  year: 1996
  ident: 1742_CR61
  doi: 10.1007/978-1-4612-0711-5
– volume: 7
  start-page: 235
  year: 2006
  ident: 1742_CR28
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-235
– volume: 7
  start-page: 3
  year: 2006
  ident: 1742_CR55
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-3
– volume: 7
  start-page: 673
  issue: 6
  year: 2001
  ident: 1742_CR2
  publication-title: Nature Medicine
  doi: 10.1038/89044
– start-page: 54
  volume-title: Proceedings of the fourth annual international Conference on Computational molecular biology
  year: 2000
  ident: 1742_CR13
  doi: 10.1145/332306.332328
– volume: 18
  start-page: 1332
  year: 2002
  ident: 1742_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.10.1332
– volume: 21
  start-page: 631
  issue: 5
  year: 2005
  ident: 1742_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti033
– ident: 1742_CR48
– volume: 3
  start-page: 185
  issue: 2
  year: 2005
  ident: 1742_CR26
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720005001004
– volume: 99
  start-page: 6562
  issue: 10
  year: 2002
  ident: 1742_CR49
  publication-title: Proceedings of the National Accademy of Siences of the United States of America
  doi: 10.1073/pnas.102102699
– volume: 97
  start-page: 77
  issue: 457
  year: 2002
  ident: 1742_CR1
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502753479248
– start-page: 241
  volume-title: Proc of the Second International Symposium on Evolving Fuzzy System (EFS'06), IEEE Computational Intelligence Society
  year: 2006
  ident: 1742_CR54
– volume: 6
  start-page: 76
  year: 2005
  ident: 1742_CR23
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-76
– start-page: 737
  volume-title: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining
  year: 2004
  ident: 1742_CR27
  doi: 10.1145/1014052.1014149
– ident: 1742_CR44
– volume: 8
  start-page: 68
  issue: 1
  year: 2002
  ident: 1742_CR42
  publication-title: Nat Med
  doi: 10.1038/nm0102-68
– volume: 18
  start-page: 1373
  issue: 8
  year: 2004
  ident: 1742_CR14
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001404003800
– volume: 7
  start-page: 228
  year: 2006
  ident: 1742_CR30
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-228
– volume: 7
  start-page: 95
  year: 2006
  ident: 1742_CR18
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-95
SSID ssj0017805
Score 2.2117827
Snippet BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification...
Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification...
Abstract Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 370
SubjectTerms DNA microarrays
Genes
Genetic algorithms
Health aspects
Methodology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJQQXVL5DCxiEBBxC48RxnGOLqApSOQCVerP8NQVpyVbJrtD-e2aS7LIBVb1wjcdS8jwTv3Embxh7BcS6s9ylXgk6uhEh1dqiLyOZ8Mo7pSKdd5x-Vidn8tN5eb7V6otqwgZ54AG4g1gXUGMOImTlZOEqJzTIiJ4HDqytgN6-ma7XydT4_YCU-vv_iiqRYlJTjqI-QquDzbVUY3Rlk_2ol-3_9-W8tTv9XTl5a9lc2tUvO5ttbUvHu-zOyCf54fAcd9mN2NxjN4cOk6v77JRkpXnXN7vBFeBIUbknwkwVQv2i8Dnwn1SVZ9vWrjhVjHLa2gLHMWSH_MiuYsdj287bB-zs-MO39yfp2EEh9WUtFikoqSDomNm6CqIKpbc2qNLJSuHWH6TMbBCQyyCdKEoA5G8Yo7EmFf2QxVg8ZDvNvImPGQdXRwAVLM6WYEG7QkVfAVhK-WyesHdrHI0f5cWpy8XM9GmGVoaANwS80QaBT9ibzYTLQVnjatMjWpiNGUli9xfQUczoKOY6R0nYS1pWQ6IXDVXVXNhl15mPX7-YQ9IMkvSJOGGvRyOY4917O_6kgBiQTtbEcn9iiVHpJ8Mv1t5jaIhK2Zo4X3ZG0FGbIt6csOdX2ORZQXmiTtijwd_-IFTVSOFznFtNPHGCzXSk-fG9lw2nMEGekrC3G5-9Dvgn_wP4PXa7PxCnqotin-0s2mV8ikxu4Z71Qfsb589BZw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VqRBceFMMBRaEBByc-rFer48poipILQiIVE6rfZaK1I6cRCj8emZsJ8SFCiFxzc7I8WR29pvNzDeEPPeIuqNEh4bHeHUT21AIBb4MYMJwozl3eN9xdMwPx-zdSXayRd6vemH0udFnVUcaikTFw8029Enb5YBTFFy9N7W-3fSC78XwmBDSlywUsGcgh9_mGYDzAdkeH38YfWl6jDqJjuDnD1q9s6mh8P89UG-cVBerKK8uyqlafleTycYRdXCDTFcv11amfBsu5npoflzgffyPb3-TXO_gLB21_neLbLnyNrnSDrhc3iFHyGpNZ82sHXAACk-kBvE6Fig1PkErT8-xKFDVtVpSLFileLJaCmsATum-WroZdXVd1XfJ-ODN59eHYTfAITRZEc9Dzxn3VrhIFbmNc5sZpSzPNMs5IA_LWKRs7BNmmY7TzHuAjxAiXIEk_jZyLr1HBmVVuvuEel0477lVoM288kKn3Jnce4UZp0oCMlz9dNJ07OY4ZGMimyxHcIk2kmgjKSTYKCAv1wrTltjjctF99IW1GDJyNx9U9ansNrh0ReoLyJVBV7NU5zoWnjmIkF57pXIfkGfoSRI5N0os6jlVi9lMvv30UY6QsojhP9QBedEJ-Qq-vVFdjwTYAGm6epK7PUkICqa3_HTlsBKXsJKudNViJmO86eMI2wPy5BKZJEoxTRUB2Wld_JeF8gIyiAR0857z92zTXynPvjas5UkkCoBJAXm13iZ_M_yDf5B9SK411-5Y25HuksG8XrhHgBfn-nEXA34CVgFlTw
  priority: 102
  providerName: Unpaywall
Title Gene selection for classification of microarray data based on the Bayes error
URI https://www.ncbi.nlm.nih.gov/pubmed/17915022
https://www.proquest.com/docview/1835461932
https://www.proquest.com/docview/20343998
https://pubmed.ncbi.nlm.nih.gov/PMC2089123
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-8-370
https://doaj.org/article/e93f9094147b43b7b18f4e400fbfaa7f
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgE4IXxDeBUQxCfDxk5MNxnAeEOsQ0Km1CjErbk2XH9kAqSZe0gv733LlZu8AmeI3vmvR8F__OvvyOkBcOUXeU6LDkMW7dxCYUQoEvA5goeak5t7jfsX_A98ZsdJQdrVuVdgZsL0ztsJ_UuJls_zpdvIeAf-cDXvC3MdwihNQlCwXES_RyehpiVyk8fe1abFwlm7ByFdjaYZ-tTxmQz99_fdTpd9Q_F_xmb9Xy5P5_v8LPrWF_1lden1dTtfipJpNzi9fuLXKzQ510uHST2-SKre6Qa8s-lIu7ZB_Jp2nrW-LAPFEAsrREWI11RH7qaO3oD6zdU02jFhTrSikugIbCGGBIuqMWtqW2aermHhnvfvz6YS_s-iyEZVbEs9Bxxp0RNlJFbuLcZKVShmea5RwAgmEsUiZ2CTNMx2nmHKA8iGRbINe-iaxN75ONqq7sQ0KdLqxz3CjQZk45oVNuy9w5hYmhSgKyfWZHWXYk5NgLYyJ9MiK4RMNLNLwUEgwfkNcrhemSf-Ny0R2cmJUYEmf7C3VzIrs4lLZIXQEpLehqlupcx8IxCy8yp51SuQvIc5xWidQYFdbenKh528pPh1_kEJmFGB4kB-RVJ-RqePpSdZ8ygA2QTasnudWThNgte8PPzrxH4hAWvFW2nrcyxg05jug6IE8vkUmiFLNJEZAHS39bWygvAOgnoJv3PLFnm_5I9f2bJxdPIlEAmgnIm5XP_svwj_7jXzwmN_yuOJZepFtkY9bM7ROAczM9IJvD4ehwNPDbIQMfoXBtfPB5ePwbAY5Icw
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VqRBceFMMBRaEBByc-rFer48poipILQiIVE6rfZaK1I6cRCj8emZsJ8SFCiFxzc7I8WR29pvNzDeEPPeIuqNEh4bHeHUT21AIBb4MYMJwozl3eN9xdMwPx-zdSXayRd6vemH0udFnVUcaikTFw8029Enb5YBTFFy9N7W-3fSC78XwmBDSlywUsGcgh9_mGYDzAdkeH38YfWl6jDqJjuDnD1q9s6mh8P89UG-cVBerKK8uyqlafleTycYRdXCDTFcv11amfBsu5npoflzgffyPb3-TXO_gLB21_neLbLnyNrnSDrhc3iFHyGpNZ82sHXAACk-kBvE6Fig1PkErT8-xKFDVtVpSLFileLJaCmsATum-WroZdXVd1XfJ-ODN59eHYTfAITRZEc9Dzxn3VrhIFbmNc5sZpSzPNMs5IA_LWKRs7BNmmY7TzHuAjxAiXIEk_jZyLr1HBmVVuvuEel0477lVoM288kKn3Jnce4UZp0oCMlz9dNJ07OY4ZGMimyxHcIk2kmgjKSTYKCAv1wrTltjjctF99IW1GDJyNx9U9ansNrh0ReoLyJVBV7NU5zoWnjmIkF57pXIfkGfoSRI5N0os6jlVi9lMvv30UY6QsojhP9QBedEJ-Qq-vVFdjwTYAGm6epK7PUkICqa3_HTlsBKXsJKudNViJmO86eMI2wPy5BKZJEoxTRUB2Wld_JeF8gIyiAR0857z92zTXynPvjas5UkkCoBJAXm13iZ_M_yDf5B9SK411-5Y25HuksG8XrhHgBfn-nEXA34CVgFlTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+for+classification+of+microarray+data+based+on+the+Bayes+error&rft.jtitle=BMC+bioinformatics&rft.au=Zhang%2C+Ji-Gang&rft.au=Deng%2C+Hong-Wen&rft.date=2007-10-03&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=8&rft.issue=1&rft.spage=370&rft_id=info:doi/10.1186%2F1471-2105-8-370&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon