Gene selection for classification of microarray data based on the Bayes error
BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their indi...
Saved in:
| Published in | BMC bioinformatics Vol. 8; no. 1; p. 370 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
BioMed Central Ltd
03.10.2007
BioMed Central BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-8-370 |
Cover
| Abstract | BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. RESULTS: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. CONCLUSION: The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection. |
|---|---|
| AbstractList | Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. Results In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. Conclusion The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection. Abstract Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. Results In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. Conclusion The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection. BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. RESULTS: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. CONCLUSION: The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.ABSTRACT: BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. RESULTS: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. CONCLUSION: The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection. |
| ArticleNumber | 370 |
| Audience | Academic |
| Author | Deng, Hong-Wen Zhang, Ji-Gang |
| AuthorAffiliation | 1 Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China 2 The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China 3 Departments of Orthopedic Surgery and Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA |
| AuthorAffiliation_xml | – name: 1 Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China – name: 2 The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China – name: 3 Departments of Orthopedic Surgery and Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA |
| Author_xml | – sequence: 1 givenname: Ji-Gang surname: Zhang fullname: Zhang, Ji-Gang – sequence: 2 givenname: Hong-Wen surname: Deng fullname: Deng, Hong-Wen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17915022$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1v1DAQxSNURD_gzA1FQkJwSOtJnMS-IJUKykpFSHycrYk93rrKxls7C-x_j3ezKl0ECOXgaPx7z-PnOc4OBj9Qlj0FdgogmjPgLRQlsLoQRdWyB9nRXeXg3v9hdhzjDWPQClY_yg6hlVCzsjzKPlzSQHmknvTo_JBbH3LdY4zOOo3bkrf5wungMQRc5wZHzDuMZPK0N15T_gbXFHMKwYfH2UOLfaQnu_Uk-_ru7ZeL98XVx8vZxflVoWsJY2Eb3lgjiKFsDbSm1oimqTveNkyUhnOGBmzJDe-gqq1lNa-BkYQGhGFE1Uk2m3yNxxu1DG6BYa08OrUt-DBXGEane1IkKyuZ5CmLjldd24GwnDhjtrOIrU1ebPJaDUtcf8e-vzMEpjYpq02OapOjEiqlnCSvJ8ly1S3IaBrGgP1eH_s7g7tWc_9NlUxIKKtk8GJnEPztiuKoFi5q6nscyK9i4ipeSSkS-PKfIIiq5g3Iqkzo8wmdY7q2G6xPR-sNrs6hhYYz3mxaP_0DlT5D6ZHTcFmX6nuCV3uCxIz0Y5zjKkY1-_xpn312P5dfOe7GLQFnE5DGKcZA9j-irn9TaDdu5zL17fq_6n4CSMvzuw |
| CitedBy_id | crossref_primary_10_3390_ijms19113398 crossref_primary_10_4018_jitr_2015040102 crossref_primary_10_1155_2014_769159 crossref_primary_10_3390_antiox11112286 crossref_primary_10_1016_j_mehy_2020_109577 crossref_primary_10_1186_1471_2105_9_380 crossref_primary_10_1186_s12920_016_0204_7 crossref_primary_10_1371_journal_pcbi_1004614 crossref_primary_10_1016_j_ins_2014_09_064 crossref_primary_10_1016_j_neucom_2010_02_025 crossref_primary_10_3390_s18092869 crossref_primary_10_1109_TCBB_2012_33 crossref_primary_10_1016_j_jbi_2015_11_003 crossref_primary_10_1155_2014_195470 crossref_primary_10_1515_jib_2019_0110 crossref_primary_10_1007_s00500_022_07515_9 crossref_primary_10_3233_JIFS_181665 crossref_primary_10_1007_s11426_011_4263_5 crossref_primary_10_1007_s40009_015_0390_4 crossref_primary_10_1186_1471_2105_9_S9_S9 crossref_primary_10_1016_j_genrep_2016_04_007 crossref_primary_10_1007_s40012_016_0131_y crossref_primary_10_3390_sym14101955 crossref_primary_10_1371_journal_pone_0097530 crossref_primary_10_4018_IJEHMC_2017040103 crossref_primary_10_1089_omi_2008_0083 crossref_primary_10_1109_TNB_2009_2035284 crossref_primary_10_1007_s12539_016_0183_6 crossref_primary_10_1016_j_patcog_2016_09_007 crossref_primary_10_4316_AECE_2014_01019 crossref_primary_10_1155_2019_9864213 crossref_primary_10_1186_1752_0509_2_72 crossref_primary_10_1371_journal_pone_0014579 crossref_primary_10_1016_j_patcog_2010_02_008 crossref_primary_10_1007_s43674_022_00047_7 crossref_primary_10_1186_1471_2105_15_70 crossref_primary_10_1186_s12859_015_0565_5 crossref_primary_10_1002_cnm_3372 crossref_primary_10_1166_jmihi_2021_3318 crossref_primary_10_1186_1471_2105_13_298 crossref_primary_10_4018_IJSIR_2019040102 |
| Cites_doi | 10.1080/10255810305042 10.1186/gb-2002-3-12-research0069 10.1186/1471-2105-6-148 10.1109/ICPR.2006.557 10.1093/bioinformatics/bth469 10.1093/bioinformatics/bti171 10.1152/physiolgenomics.2001.5.2.99 10.1186/1471-2105-5-126 10.1038/35000501 10.1093/bioinformatics/bti319 10.1109/CRV.2005.53 10.1093/bioinformatics/bth267 10.1186/1471-2105-7-320 10.1093/bioinformatics/17.6.509 10.1364/JOSAA.21.001231 10.1016/j.csda.2004.03.017 10.1109/TPAMI.2005.159 10.1126/science.286.5439.531 10.1073/pnas.96.12.6745 10.1093/bioinformatics/btf867 10.1002/0470854774 10.1093/bioinformatics/btg102 10.1245/s10434-006-9090-0 10.1002/0470094419.ch12 10.1101/gr.190001 10.1016/S1535-6108(02)00030-2 10.1016/S0004-3702(03)00079-1 10.1109/36.843045 10.1007/978-1-4612-0711-5 10.1186/1471-2105-7-235 10.1186/1471-2105-7-3 10.1038/89044 10.1145/332306.332328 10.1093/bioinformatics/18.10.1332 10.1093/bioinformatics/bti033 10.1142/S0219720005001004 10.1073/pnas.102102699 10.1198/016214502753479248 10.1186/1471-2105-6-76 10.1145/1014052.1014149 10.1038/nm0102-68 10.1142/S0218001404003800 10.1186/1471-2105-7-228 10.1186/1471-2105-7-95 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2007 BioMed Central Ltd. Copyright © 2007 Zhang and Deng; licensee BioMed Central Ltd. 2007 Zhang and Deng; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: COPYRIGHT 2007 BioMed Central Ltd. – notice: Copyright © 2007 Zhang and Deng; licensee BioMed Central Ltd. 2007 Zhang and Deng; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION NPM ISR 7X8 7QO 8FD FR3 P64 RC3 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-8-370 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 370 |
| ExternalDocumentID | oai_doaj_org_article_e93f9094147b43b7b18f4e400fbfaa7f 10.1186/1471-2105-8-370 PMC2089123 A171640460 17915022 10_1186_1471_2105_8_370 |
| Genre | Journal Article |
| GeographicLocations | United States China |
| GeographicLocations_xml | – name: China – name: United States |
| GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR050496 – fundername: NIA NIH HHS grantid: R21 AG027110 – fundername: NIAMS NIH HHS grantid: K01 AR002170 – fundername: NIA NIH HHS grantid: R01 AG026564 |
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB ALIPV NPM 7X8 7QO 8FD FR3 P64 RC3 5PM 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFKRA ARAPS AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK K6V K7- LK8 M1P M7P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY |
| ID | FETCH-LOGICAL-c591t-f646fd8e0a97d17d5caad65b476082d440ad1f24d4b135ff054510e91618d0ee3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:42:22 EDT 2025 Sun Oct 26 03:44:48 EDT 2025 Thu Aug 21 13:34:56 EDT 2025 Tue Oct 07 09:23:56 EDT 2025 Thu Sep 04 19:15:18 EDT 2025 Mon Oct 20 23:07:34 EDT 2025 Mon Oct 20 17:17:59 EDT 2025 Thu Oct 16 16:19:47 EDT 2025 Thu Apr 03 06:56:55 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Wed Oct 01 01:46:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c591t-f646fd8e0a97d17d5caad65b476082d440ad1f24d4b135ff054510e91618d0ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/e93f9094147b43b7b18f4e400fbfaa7f |
| PMID | 17915022 |
| PQID | 1835461932 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e93f9094147b43b7b18f4e400fbfaa7f unpaywall_primary_10_1186_1471_2105_8_370 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2089123 proquest_miscellaneous_20343998 proquest_miscellaneous_1835461932 gale_infotracmisc_A171640460 gale_infotracacademiconefile_A171640460 gale_incontextgauss_ISR_A171640460 pubmed_primary_17915022 crossref_primary_10_1186_1471_2105_8_370 crossref_citationtrail_10_1186_1471_2105_8_370 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-10-03 |
| PublicationDateYYYYMMDD | 2007-10-03 |
| PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-03 day: 03 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2007 |
| Publisher | BioMed Central Ltd BioMed Central BMC |
| Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
| References | EK Tang (1742_CR18) 2006; 7 1742_CR44 F Goudail (1742_CR39) 2004; 21 R Diaz-Uriarte (1742_CR7) 2005 1742_CR48 1742_CR46 A Statnikov (1742_CR17) 2005; 21 1742_CR41 K Tumer (1742_CR58) 2003; 5 Y Lee (1742_CR3) 2003; 19 A Ben-Dor (1742_CR13) 2000 Y Li (1742_CR5) 2002; 18 JW Lee (1742_CR10) 2005; 48 R Blanco (1742_CR14) 2004; 18 L Devroye (1742_CR61) 1996 R Schalkhoff (1742_CR64) 1992 C Ding (1742_CR26) 2005; 3 P Baldi (1742_CR4) 2001; 17 J Khan (1742_CR2) 2001; 7 M Chow (1742_CR15) 2001; 5 T Golub (1742_CR43) 1999; 286 M Dash (1742_CR25) 2003; 151 RO Duda (1742_CR56) 2001 M Dettling (1742_CR51) 2003; 19 C Gentile (1742_CR53) 2003 G Kohavi (1742_CR21) 1997 PA Devijver (1742_CR63) 1982 U Alon (1742_CR40) 1999; 96 I Tssamardinos (1742_CR33) 2003 S Varma (1742_CR6) 2004; 5 AL Blum (1742_CR20) 1997; 97 ZY Wang (1742_CR54) 2006 KY Yeung (1742_CR12) 2005; 21 K Yang (1742_CR30) 2006; 7 C Lee (1742_CR36) 2000; 38 J Weston (1742_CR52) 2000 HC Peng (1742_CR35) 2005; 27 S Mukherjee (1742_CR11) 2004 G Carneiro (1742_CR38) 2005 CH Ooi (1742_CR24) 2006; 7 S Singh (1742_CR57) 2006 S Dudoit (1742_CR1) 2002; 97 M Wang (1742_CR59) 2003; 1 T Li (1742_CR29) 2004; 20 1742_CR16 M Xiong (1742_CR31) 2001; 11 GR Xuan (1742_CR37) 2006; 4 E Xing (1742_CR32) 2001 AR Webb (1742_CR34) 2002 J Hua (1742_CR8) 2005; 21 X Liu (1742_CR23) 2005; 6 C Lai (1742_CR28) 2006; 7 K Fukunaga (1742_CR62) 1990 D Singh (1742_CR45) 2002; 1 TH Bo (1742_CR50) 2002 AA Alizadeh (1742_CR47) 2000; 403 R Diaz-Uriarte (1742_CR55) 2006; 7 MA Shipp (1742_CR42) 2002; 8 T Jirapech-Umpai (1742_CR9) 2005; 6 1742_CR19 M Dettling (1742_CR22) 2002; 3 L Yu (1742_CR27) 2004 CF Aliferis (1742_CR60) 2003 C Ambroise (1742_CR49) 2002; 99 |
| References_xml | – volume: 5 start-page: 95 year: 2003 ident: 1742_CR58 publication-title: International Journal of Smart Engineering System Design doi: 10.1080/10255810305042 – volume: 3 start-page: RESEARCH0069 issue: 12 year: 2002 ident: 1742_CR22 publication-title: Genome Biol doi: 10.1186/gb-2002-3-12-research0069 – volume: 6 start-page: 148 year: 2005 ident: 1742_CR9 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-148 – volume: 4 start-page: 957 year: 2006 ident: 1742_CR37 publication-title: 18th International Conference on Pattern Recognition doi: 10.1109/ICPR.2006.557 – ident: 1742_CR16 doi: 10.1093/bioinformatics/bth469 – ident: 1742_CR41 – volume: 21 start-page: 1509 year: 2005 ident: 1742_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti171 – volume-title: Pattern Classification year: 2001 ident: 1742_CR56 – volume: 5 start-page: 99 year: 2001 ident: 1742_CR15 publication-title: Physiol Genomics doi: 10.1152/physiolgenomics.2001.5.2.99 – volume: 5 start-page: 126 year: 2004 ident: 1742_CR6 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-126 – volume: 403 start-page: 503 year: 2000 ident: 1742_CR47 publication-title: Nature doi: 10.1038/35000501 – volume-title: Pattern Recognition, statistical, structural and neural approaches year: 1992 ident: 1742_CR64 – start-page: 250 volume-title: Proceedings of the 24th IASTED International Multi-Conference year: 2006 ident: 1742_CR57 – start-page: 273 volume-title: Artificial Intelligence year: 1997 ident: 1742_CR21 – ident: 1742_CR46 – volume: 21 start-page: 2394 year: 2005 ident: 1742_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti319 – start-page: 131 volume-title: Proceedings of IEEE Computer Society Bioinformatics Conference (CSB 2004) year: 2004 ident: 1742_CR11 – volume-title: Ninth International Workshop on Artificial Intelligence and Statistics year: 2003 ident: 1742_CR33 – start-page: 253 volume-title: Proceedings of the Second Canadian Conference on Computer and Robot Vision year: 2005 ident: 1742_CR38 doi: 10.1109/CRV.2005.53 – volume-title: Pattern Recognition, a Statistical Approach year: 1982 ident: 1742_CR63 – start-page: 601 volume-title: International Conference on Machine Learning year: 2001 ident: 1742_CR32 – volume: 1 start-page: 45 year: 2003 ident: 1742_CR59 publication-title: Proceedings of Networks and Signal Processing – volume: 20 start-page: 2429 year: 2004 ident: 1742_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth267 – volume: 7 start-page: 320 year: 2006 ident: 1742_CR24 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-320 – volume: 17 start-page: 509 year: 2001 ident: 1742_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.509 – volume: 21 start-page: 1231 issue: 7 year: 2004 ident: 1742_CR39 publication-title: J Opt Soc Am A Opt Image Sci Vis doi: 10.1364/JOSAA.21.001231 – volume: 48 start-page: 869 year: 2005 ident: 1742_CR10 publication-title: Computation Statistics and Data Analysis doi: 10.1016/j.csda.2004.03.017 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 1742_CR35 publication-title: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE doi: 10.1109/TPAMI.2005.159 – volume: 286 start-page: 531 year: 1999 ident: 1742_CR43 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 1742_CR40 publication-title: Proceedings of the National Accademy of Siences of the United States of America doi: 10.1073/pnas.96.12.6745 – volume: 19 start-page: 1061 issue: 9 year: 2003 ident: 1742_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btf867 – volume-title: Statistical Pattern Recognition year: 2002 ident: 1742_CR34 doi: 10.1002/0470854774 – volume-title: Advances in Neural Information Processing Systems year: 2000 ident: 1742_CR52 – volume: 19 start-page: 1132 issue: 9 year: 2003 ident: 1742_CR3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg102 – ident: 1742_CR19 doi: 10.1245/s10434-006-9090-0 – volume: 97 start-page: 245 year: 1997 ident: 1742_CR20 publication-title: Intelligence – volume-title: Proceedings NIPS year: 2003 ident: 1742_CR53 – start-page: 193 volume-title: Data analysis and visualization in genomics and proteomics year: 2005 ident: 1742_CR7 doi: 10.1002/0470094419.ch12 – volume-title: Genome biology year: 2002 ident: 1742_CR50 – volume: 11 start-page: 1878 year: 2001 ident: 1742_CR31 publication-title: Genome Research doi: 10.1101/gr.190001 – start-page: 21 volume-title: AMIA 2003 Annual Symposium Proceedings year: 2003 ident: 1742_CR60 – volume: 1 start-page: 203 year: 2002 ident: 1742_CR45 publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – volume: 151 start-page: 155 year: 2003 ident: 1742_CR25 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(03)00079-1 – volume: 38 start-page: 1471 issue: 3 year: 2000 ident: 1742_CR36 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.843045 – volume-title: Introduction to Statistical Pattern Recognition year: 1990 ident: 1742_CR62 – volume-title: A Probabilistic Theory of Pattern Recognition year: 1996 ident: 1742_CR61 doi: 10.1007/978-1-4612-0711-5 – volume: 7 start-page: 235 year: 2006 ident: 1742_CR28 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-235 – volume: 7 start-page: 3 year: 2006 ident: 1742_CR55 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-3 – volume: 7 start-page: 673 issue: 6 year: 2001 ident: 1742_CR2 publication-title: Nature Medicine doi: 10.1038/89044 – start-page: 54 volume-title: Proceedings of the fourth annual international Conference on Computational molecular biology year: 2000 ident: 1742_CR13 doi: 10.1145/332306.332328 – volume: 18 start-page: 1332 year: 2002 ident: 1742_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.10.1332 – volume: 21 start-page: 631 issue: 5 year: 2005 ident: 1742_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti033 – ident: 1742_CR48 – volume: 3 start-page: 185 issue: 2 year: 2005 ident: 1742_CR26 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720005001004 – volume: 99 start-page: 6562 issue: 10 year: 2002 ident: 1742_CR49 publication-title: Proceedings of the National Accademy of Siences of the United States of America doi: 10.1073/pnas.102102699 – volume: 97 start-page: 77 issue: 457 year: 2002 ident: 1742_CR1 publication-title: J Am Stat Assoc doi: 10.1198/016214502753479248 – start-page: 241 volume-title: Proc of the Second International Symposium on Evolving Fuzzy System (EFS'06), IEEE Computational Intelligence Society year: 2006 ident: 1742_CR54 – volume: 6 start-page: 76 year: 2005 ident: 1742_CR23 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-76 – start-page: 737 volume-title: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining year: 2004 ident: 1742_CR27 doi: 10.1145/1014052.1014149 – ident: 1742_CR44 – volume: 8 start-page: 68 issue: 1 year: 2002 ident: 1742_CR42 publication-title: Nat Med doi: 10.1038/nm0102-68 – volume: 18 start-page: 1373 issue: 8 year: 2004 ident: 1742_CR14 publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001404003800 – volume: 7 start-page: 228 year: 2006 ident: 1742_CR30 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-228 – volume: 7 start-page: 95 year: 2006 ident: 1742_CR18 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-95 |
| SSID | ssj0017805 |
| Score | 2.2117827 |
| Snippet | BACKGROUND: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification... Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification... Abstract Background With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 370 |
| SubjectTerms | DNA microarrays Genes Genetic algorithms Health aspects Methodology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJQQXVL5DCxiEBBxC48RxnGOLqApSOQCVerP8NQVpyVbJrtD-e2aS7LIBVb1wjcdS8jwTv3Embxh7BcS6s9ylXgk6uhEh1dqiLyOZ8Mo7pSKdd5x-Vidn8tN5eb7V6otqwgZ54AG4g1gXUGMOImTlZOEqJzTIiJ4HDqytgN6-ma7XydT4_YCU-vv_iiqRYlJTjqI-QquDzbVUY3Rlk_2ol-3_9-W8tTv9XTl5a9lc2tUvO5ttbUvHu-zOyCf54fAcd9mN2NxjN4cOk6v77JRkpXnXN7vBFeBIUbknwkwVQv2i8Dnwn1SVZ9vWrjhVjHLa2gLHMWSH_MiuYsdj287bB-zs-MO39yfp2EEh9WUtFikoqSDomNm6CqIKpbc2qNLJSuHWH6TMbBCQyyCdKEoA5G8Yo7EmFf2QxVg8ZDvNvImPGQdXRwAVLM6WYEG7QkVfAVhK-WyesHdrHI0f5cWpy8XM9GmGVoaANwS80QaBT9ibzYTLQVnjatMjWpiNGUli9xfQUczoKOY6R0nYS1pWQ6IXDVXVXNhl15mPX7-YQ9IMkvSJOGGvRyOY4917O_6kgBiQTtbEcn9iiVHpJ8Mv1t5jaIhK2Zo4X3ZG0FGbIt6csOdX2ORZQXmiTtijwd_-IFTVSOFznFtNPHGCzXSk-fG9lw2nMEGekrC3G5-9Dvgn_wP4PXa7PxCnqotin-0s2mV8ikxu4Z71Qfsb589BZw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VqRBceFMMBRaEBByc-rFer48poipILQiIVE6rfZaK1I6cRCj8emZsJ8SFCiFxzc7I8WR29pvNzDeEPPeIuqNEh4bHeHUT21AIBb4MYMJwozl3eN9xdMwPx-zdSXayRd6vemH0udFnVUcaikTFw8029Enb5YBTFFy9N7W-3fSC78XwmBDSlywUsGcgh9_mGYDzAdkeH38YfWl6jDqJjuDnD1q9s6mh8P89UG-cVBerKK8uyqlafleTycYRdXCDTFcv11amfBsu5npoflzgffyPb3-TXO_gLB21_neLbLnyNrnSDrhc3iFHyGpNZ82sHXAACk-kBvE6Fig1PkErT8-xKFDVtVpSLFileLJaCmsATum-WroZdXVd1XfJ-ODN59eHYTfAITRZEc9Dzxn3VrhIFbmNc5sZpSzPNMs5IA_LWKRs7BNmmY7TzHuAjxAiXIEk_jZyLr1HBmVVuvuEel0477lVoM288kKn3Jnce4UZp0oCMlz9dNJ07OY4ZGMimyxHcIk2kmgjKSTYKCAv1wrTltjjctF99IW1GDJyNx9U9ansNrh0ReoLyJVBV7NU5zoWnjmIkF57pXIfkGfoSRI5N0os6jlVi9lMvv30UY6QsojhP9QBedEJ-Qq-vVFdjwTYAGm6epK7PUkICqa3_HTlsBKXsJKudNViJmO86eMI2wPy5BKZJEoxTRUB2Wld_JeF8gIyiAR0857z92zTXynPvjas5UkkCoBJAXm13iZ_M_yDf5B9SK411-5Y25HuksG8XrhHgBfn-nEXA34CVgFlTw priority: 102 providerName: Unpaywall |
| Title | Gene selection for classification of microarray data based on the Bayes error |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17915022 https://www.proquest.com/docview/1835461932 https://www.proquest.com/docview/20343998 https://pubmed.ncbi.nlm.nih.gov/PMC2089123 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-8-370 https://doaj.org/article/e93f9094147b43b7b18f4e400fbfaa7f |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgE4IXxDeBUQxCfDxk5MNxnAeEOsQ0Km1CjErbk2XH9kAqSZe0gv733LlZu8AmeI3vmvR8F__OvvyOkBcOUXeU6LDkMW7dxCYUQoEvA5goeak5t7jfsX_A98ZsdJQdrVuVdgZsL0ztsJ_UuJls_zpdvIeAf-cDXvC3MdwihNQlCwXES_RyehpiVyk8fe1abFwlm7ByFdjaYZ-tTxmQz99_fdTpd9Q_F_xmb9Xy5P5_v8LPrWF_1lden1dTtfipJpNzi9fuLXKzQ510uHST2-SKre6Qa8s-lIu7ZB_Jp2nrW-LAPFEAsrREWI11RH7qaO3oD6zdU02jFhTrSikugIbCGGBIuqMWtqW2aermHhnvfvz6YS_s-iyEZVbEs9Bxxp0RNlJFbuLcZKVShmea5RwAgmEsUiZ2CTNMx2nmHKA8iGRbINe-iaxN75ONqq7sQ0KdLqxz3CjQZk45oVNuy9w5hYmhSgKyfWZHWXYk5NgLYyJ9MiK4RMNLNLwUEgwfkNcrhemSf-Ny0R2cmJUYEmf7C3VzIrs4lLZIXQEpLehqlupcx8IxCy8yp51SuQvIc5xWidQYFdbenKh528pPh1_kEJmFGB4kB-RVJ-RqePpSdZ8ygA2QTasnudWThNgte8PPzrxH4hAWvFW2nrcyxg05jug6IE8vkUmiFLNJEZAHS39bWygvAOgnoJv3PLFnm_5I9f2bJxdPIlEAmgnIm5XP_svwj_7jXzwmN_yuOJZepFtkY9bM7ROAczM9IJvD4ehwNPDbIQMfoXBtfPB5ePwbAY5Icw |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VqRBceFMMBRaEBByc-rFer48poipILQiIVE6rfZaK1I6cRCj8emZsJ8SFCiFxzc7I8WR29pvNzDeEPPeIuqNEh4bHeHUT21AIBb4MYMJwozl3eN9xdMwPx-zdSXayRd6vemH0udFnVUcaikTFw8029Enb5YBTFFy9N7W-3fSC78XwmBDSlywUsGcgh9_mGYDzAdkeH38YfWl6jDqJjuDnD1q9s6mh8P89UG-cVBerKK8uyqlafleTycYRdXCDTFcv11amfBsu5npoflzgffyPb3-TXO_gLB21_neLbLnyNrnSDrhc3iFHyGpNZ82sHXAACk-kBvE6Fig1PkErT8-xKFDVtVpSLFileLJaCmsATum-WroZdXVd1XfJ-ODN59eHYTfAITRZEc9Dzxn3VrhIFbmNc5sZpSzPNMs5IA_LWKRs7BNmmY7TzHuAjxAiXIEk_jZyLr1HBmVVuvuEel0477lVoM288kKn3Jnce4UZp0oCMlz9dNJ07OY4ZGMimyxHcIk2kmgjKSTYKCAv1wrTltjjctF99IW1GDJyNx9U9ansNrh0ReoLyJVBV7NU5zoWnjmIkF57pXIfkGfoSRI5N0os6jlVi9lMvv30UY6QsojhP9QBedEJ-Qq-vVFdjwTYAGm6epK7PUkICqa3_HTlsBKXsJKudNViJmO86eMI2wPy5BKZJEoxTRUB2Wld_JeF8gIyiAR0857z92zTXynPvjas5UkkCoBJAXm13iZ_M_yDf5B9SK411-5Y25HuksG8XrhHgBfn-nEXA34CVgFlTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+for+classification+of+microarray+data+based+on+the+Bayes+error&rft.jtitle=BMC+bioinformatics&rft.au=Zhang%2C+Ji-Gang&rft.au=Deng%2C+Hong-Wen&rft.date=2007-10-03&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=8&rft.issue=1&rft.spage=370&rft_id=info:doi/10.1186%2F1471-2105-8-370&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |