Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm

•Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features.•Extracted features from a time series is faster and more robust to against noise than those based on FFT. This...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 115; no. 2; pp. 64 - 75
Main Authors Zhu, Guohun, Li, Yan, Wen, Peng (Paul)
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ireland Ltd 01.07.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2014.04.001

Cover

Abstract •Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features.•Extracted features from a time series is faster and more robust to against noise than those based on FFT. This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification.
AbstractList This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification.This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification.
Highlights • Developing a fast algorithm for constructing a network from a time series in linear time. • Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features. • Extracted features from a time series is faster and more robust to against noise than those based on FFT.
•Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features.•Extracted features from a time series is faster and more robust to against noise than those based on FFT. This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification.
This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification.
Author Zhu, Guohun
Wen, Peng (Paul)
Li, Yan
Author_xml – sequence: 1
  givenname: Guohun
  surname: Zhu
  fullname: Zhu, Guohun
  email: Guohun.Zhu@usq.edu.au, zhuguohun@hotmail.com
– sequence: 2
  givenname: Yan
  surname: Li
  fullname: Li, Yan
– sequence: 3
  givenname: Peng (Paul)
  surname: Wen
  fullname: Wen, Peng (Paul)
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28475722$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24768081$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6BXyQvAi-zJp_M5kVKUjZtkLBB_U5ZDJ3du86m1mTTGX76c2wW4SCVQgEwu_cm3vOPSMnfvBAyGvO5pzx6v1m7ra7Zi4YV3OWD-PPyIzXWhS6rMoTMsvQohAV06fkLMYNY0yUZfWCnAqlq5rVfEbscoc97BI6GgHvxwC0hQQu4eAperpcXkcaceVtH-kY0a-opZ2Nif4CXK0TtHQ9BLwffLI9vcOIDfaY9tT2q_ye1tuX5HmXxfDqeJ-T71fLb5c3xe2X68-Xn24LVy54Ktq2tvl3DMpG10rJVkrQdiGdUHVju27RtZ2UVdkwIaV0qhLCNQubJ1ROyaqV5-Tdoe4uDD9HiMlsMTroe-thGKPhpVS10LWu_gMVUjHNpM7omyM6NltozS7g1oa9eXAwA2-PgI3O9l2w3mH8w9VKl1qIzNUHzoUhxgCdcZjsZHMKFnvDmZlCNRszhWqmUA3Lh00txCPpQ_UnRR8PIsie3yEEEx2Cd9BiyPGadsCn5ReP5K5Hj3nCH7CHuBnGMK2E4SYKw8zXadWmTeMqq0U1efzh7wX-1f034Hnibg
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3294473
crossref_primary_10_1080_10255842_2021_2023809
crossref_primary_10_1109_ACCESS_2020_2996946
crossref_primary_10_1016_j_brainres_2022_147777
crossref_primary_10_1063_5_0140579
crossref_primary_10_1016_j_bspc_2022_104155
crossref_primary_10_3390_e23020222
crossref_primary_10_1016_j_bspc_2020_102006
crossref_primary_10_1186_s40064_016_3772_2
crossref_primary_10_1063_5_0062242
crossref_primary_10_3390_s18061720
crossref_primary_10_1016_j_physa_2023_129230
crossref_primary_10_3390_s22239302
crossref_primary_10_1016_j_jwpe_2024_106107
crossref_primary_10_1007_s11571_019_09527_y
crossref_primary_10_1016_j_mehy_2019_109519
crossref_primary_10_1111_exsy_12211
crossref_primary_10_1007_s11042_023_15681_7
crossref_primary_10_1088_1674_1056_acdfbf
crossref_primary_10_1016_j_neucom_2016_06_056
crossref_primary_10_1016_j_displa_2014_10_001
crossref_primary_10_1109_RBME_2021_3055956
crossref_primary_10_1016_j_eswa_2014_08_030
crossref_primary_10_1109_TNNLS_2023_3252569
crossref_primary_10_1007_s40846_017_0286_5
crossref_primary_10_1049_el_2016_1992
crossref_primary_10_1007_s40708_015_0029_8
crossref_primary_10_1109_TIM_2021_3087834
crossref_primary_10_1142_S0129065718500107
crossref_primary_10_1016_j_bbe_2017_08_003
crossref_primary_10_1109_TIM_2023_3295014
crossref_primary_10_1016_j_knosys_2018_10_029
crossref_primary_10_1109_TNSRE_2022_3156931
crossref_primary_10_1016_j_eswa_2017_08_012
crossref_primary_10_1016_j_physa_2023_128601
crossref_primary_10_1007_s11042_025_20594_8
crossref_primary_10_1109_ACCESS_2025_3546558
crossref_primary_10_1016_j_bspc_2018_03_004
crossref_primary_10_1016_j_bspc_2024_106159
crossref_primary_10_1109_ACCESS_2018_2833746
crossref_primary_10_1109_JBHI_2017_2654479
crossref_primary_10_1142_S0217979218500868
crossref_primary_10_3390_brainsci11050668
crossref_primary_10_1016_j_physa_2017_04_166
crossref_primary_10_1007_s11042_022_12702_9
crossref_primary_10_1186_s13634_018_0568_2
crossref_primary_10_1007_s11071_019_04768_2
crossref_primary_10_1016_j_physa_2015_03_057
crossref_primary_10_1109_JERM_2020_2995329
crossref_primary_10_1016_j_compbiomed_2022_105397
crossref_primary_10_1007_s13538_022_01231_3
crossref_primary_10_1016_j_compbiomed_2016_02_016
crossref_primary_10_1088_1361_6579_ab8cb3
crossref_primary_10_6000_1929_6029_2017_06_01_2
crossref_primary_10_1007_s00521_020_05330_7
crossref_primary_10_4028_www_scientific_net_AMR_1049_1050_1626
crossref_primary_10_1016_j_physleta_2017_11_022
crossref_primary_10_1109_JBHI_2020_3001877
crossref_primary_10_1109_ACCESS_2019_2890895
crossref_primary_10_7498_aps_66_160502
crossref_primary_10_3389_fninf_2019_00045
crossref_primary_10_3390_s21051870
crossref_primary_10_1142_S0129065717500058
crossref_primary_10_1007_s12652_022_03737_9
crossref_primary_10_1016_j_seizure_2019_02_001
crossref_primary_10_1016_j_bspc_2018_08_014
crossref_primary_10_1016_j_bspc_2016_06_006
crossref_primary_10_1007_s12021_024_09652_y
crossref_primary_10_1109_ACCESS_2016_2612242
crossref_primary_10_1088_1741_2552_aca82c
crossref_primary_10_1049_iet_smt_2018_5358
crossref_primary_10_1108_IJIUS_10_2021_0115
crossref_primary_10_1016_j_measurement_2018_05_017
crossref_primary_10_3389_fnins_2020_00641
crossref_primary_10_1016_j_jneumeth_2018_11_014
crossref_primary_10_1016_j_knosys_2018_07_019
crossref_primary_10_1016_j_sysarc_2024_103114
crossref_primary_10_3389_fnins_2023_1268485
crossref_primary_10_1016_j_bspc_2021_102554
crossref_primary_10_1016_j_physa_2020_125108
crossref_primary_10_1093_comnet_cnae044
crossref_primary_10_1049_iet_spr_2017_0140
crossref_primary_10_1016_j_physa_2014_07_077
crossref_primary_10_1007_s11045_016_0419_y
crossref_primary_10_1038_srep35622
crossref_primary_10_1016_j_bspc_2019_101569
crossref_primary_10_1016_j_bspc_2020_102028
crossref_primary_10_32604_cmc_2021_015524
crossref_primary_10_1007_s13246_021_01006_1
crossref_primary_10_3390_e20110891
crossref_primary_10_1016_j_compbiomed_2022_105240
crossref_primary_10_1007_s11045_019_00673_4
crossref_primary_10_1007_s11071_024_09342_z
crossref_primary_10_1016_j_compbiomed_2021_104922
crossref_primary_10_1016_j_bbe_2016_07_004
crossref_primary_10_1007_s11042_021_10882_4
crossref_primary_10_1371_journal_pcbi_1010985
crossref_primary_10_1016_j_chaos_2021_110939
crossref_primary_10_1007_s11517_020_02279_6
crossref_primary_10_1007_s40708_014_0003_x
crossref_primary_10_1016_j_bspc_2019_101707
crossref_primary_10_1016_j_bspc_2018_04_007
crossref_primary_10_1016_j_clinph_2024_01_009
crossref_primary_10_1016_j_seizure_2017_07_001
crossref_primary_10_3389_fnins_2024_1436619
crossref_primary_10_1016_j_ifacol_2024_11_063
crossref_primary_10_1142_S012906571850003X
Cites_doi 10.1007/s10916-010-9433-z
10.1111/j.1469-8986.1995.tb02100.x
10.1016/j.clinph.2008.04.005
10.1016/j.eplepsyres.2012.11.003
10.1073/pnas.0709247105
10.1016/j.bspc.2011.07.007
10.1016/j.physa.2011.02.031
10.1063/1.4824993
10.1103/PhysRevE.82.036120
10.1080/09524622.2008.9753600
10.1109/LGRS.2012.2236819
10.1063/1.3676686
10.1109/TIT.1967.1053964
10.1137/S003614450342480
10.1007/s10916-005-6133-1
10.1016/0893-9659(93)90022-F
10.1016/j.eswa.2011.04.149
10.1016/j.eswa.2011.07.008
10.1016/j.chaos.2004.02.061
10.1063/1.3308505
10.1016/j.eswa.2007.02.009
10.1177/1550059412464449
10.1103/PhysRevE.74.031916
10.1109/TBME.2006.886855
10.1103/PhysRevE.64.061907
10.1007/s10916-010-9633-6
10.4236/jbise.2010.36078
10.1152/ajpheart.2000.278.6.H2039
10.1142/S0129065711002912
10.1103/PhysRevE.80.046103
10.1016/j.cmpb.2010.11.014
10.1016/j.eswa.2011.02.118
10.1016/j.amc.2006.09.022
10.1142/S0129065711002808
10.1073/pnas.0400087101
ContentType Journal Article
Copyright 2014 Elsevier Ireland Ltd
Elsevier Ireland Ltd
2015 INIST-CNRS
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1016/j.cmpb.2014.04.001
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic



MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
EISSN 1872-7565
EndPage 75
ExternalDocumentID 24768081
28475722
10_1016_j_cmpb_2014_04_001
S0169260714001266
1_s2_0_S0169260714001266
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c591t-dd8a2550e5b78443d33e7a93c248baff9fdf3365b02333c4622cb9a1694c436d3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Tue Oct 07 11:10:01 EDT 2025
Thu Oct 02 20:00:59 EDT 2025
Mon Jul 21 06:00:48 EDT 2025
Wed Apr 02 07:21:52 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Wed Oct 01 03:21:02 EDT 2025
Fri Feb 23 02:26:01 EST 2024
Fri May 16 00:31:31 EDT 2025
Tue Oct 14 19:30:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mean degree
Mean strength
Computational complexity
Weighted horizontal visibility graph
Epilepsy
Chaos
Fast Fourier transformation
Time series
Electroencephalography
Entropy
Graph theory
Pattern recognition
Weighted graph
Experimental result
Classification
Mental disorder
Selection criterion
Noise immunity
Feature extraction
Visibility
Fast algorithm
Pattern extraction
Strength
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-dd8a2550e5b78443d33e7a93c248baff9fdf3365b02333c4622cb9a1694c436d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24768081
PQID 1523407037
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1534827876
proquest_miscellaneous_1523407037
pubmed_primary_24768081
pascalfrancis_primary_28475722
crossref_citationtrail_10_1016_j_cmpb_2014_04_001
crossref_primary_10_1016_j_cmpb_2014_04_001
elsevier_sciencedirect_doi_10_1016_j_cmpb_2014_04_001
elsevier_clinicalkeyesjournals_1_s2_0_S0169260714001266
elsevier_clinicalkey_doi_10_1016_j_cmpb_2014_04_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2014
Publisher Elsevier Ireland Ltd
Elsevier
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier
References Barlow (bib0180) 1985; 2
Song, Liò (bib0065) 2010; 3
Tang, Xia, Liao, Liu, Peng, Gao (bib0100) 2013; 44
Luque, Lacasa, Ballesteros, Luque (bib0110) 2009; 80
Zhu, Li, Wen, Wang, Xi (bib0075) 2013; 1559
Guo, Rivero, Dorado, Munteanu, Pazos (bib0005) 2011; 38
Richman, Moorman (bib0155) 2000; 278
Polat, Güneş (bib0025) 2007; 187
Bai, Qiu, Li (bib0055) 2007; 24
Shao (bib0120) 2010; 96
Schank, Wagner (bib0140) 2005; vol. 3503
Boyu, Chi Man, Feng, Peng-Un, Pui-In, Mang (bib0160) 2009
Acharya, Sree, Chattopadhyay, Yu, Ang (bib0090) 2011; 21
Cover, Hart (bib0165) 1967; 13
Pritchard, Duke, Krieble (bib0035) 1995; 32
Lacasa, Luque, Ballesteros, Luque, Nuño (bib0115) 2008; 105
Du, Dua, Acharya, Chua (bib0080) 2012; 36
Xia, Wang, Zhang (bib0170) 2013; 10
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib0040) 2001; 64
Suri, Acharya, Sree (bib0050) 2011; 21
Gutin, Mansour, Severini (bib0175) 2011; 390
Siuly, Li, Wen (bib0205) 2011; 104
Srinivasan, Eswaran, Sriraam (bib0010) 2005; 29
Chua, Chandran, Acharya, Lim (bib0085) 2011; 35
Sueur, Aubin, Simonis (bib0150) 2008; 18
Newman (bib0130) 2003; 45
Barrat, Barthélemy, Pastor-Satorras, Vespignani (bib0135) 2004; 101
Ouyang, Li, Dang, Richards (bib0095) 2008; 119
Ansari-Asl, Senhadji, Bellanger, Wendling (bib0020) 2006; 74
Nicolaou, Georgiou (bib0060) 2012; 39
Hu, Gao, White (bib0195) 2004; 22
Goldberg, Radzik (bib0145) 1993; 6
Luque, Lacasa, Ballesteros, Robledo (bib0190) 2012; 22
Polat, Güneş (bib0030) 2008; 34
Zhu, Li, Wen (bib0125) 2012; vol. 7670
Adeli, Ghosh-Dastidar, Dadmehr (bib0045) 2007; 54
Zhu, Li, Wen (bib0105) 2012
Ouyang, Li, Liu, Li (bib0185) 2013; 104
Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (bib0070) 2012; 7
Orhan, Hekim, Ozer (bib0015) 2011; 38
Lacasa, Toral (bib0200) 2010; 82
Zhu (10.1016/j.cmpb.2014.04.001_bib0075) 2013; 1559
Goldberg (10.1016/j.cmpb.2014.04.001_bib0145) 1993; 6
Ouyang (10.1016/j.cmpb.2014.04.001_bib0095) 2008; 119
Nicolaou (10.1016/j.cmpb.2014.04.001_bib0060) 2012; 39
Guo (10.1016/j.cmpb.2014.04.001_bib0005) 2011; 38
Acharya (10.1016/j.cmpb.2014.04.001_bib0070) 2012; 7
Zhu (10.1016/j.cmpb.2014.04.001_bib0125) 2012; vol. 7670
Cover (10.1016/j.cmpb.2014.04.001_bib0165) 1967; 13
Barlow (10.1016/j.cmpb.2014.04.001_bib0180) 1985; 2
Du (10.1016/j.cmpb.2014.04.001_bib0080) 2012; 36
Luque (10.1016/j.cmpb.2014.04.001_bib0110) 2009; 80
Orhan (10.1016/j.cmpb.2014.04.001_bib0015) 2011; 38
Acharya (10.1016/j.cmpb.2014.04.001_bib0090) 2011; 21
Zhu (10.1016/j.cmpb.2014.04.001_bib0105) 2012
Polat (10.1016/j.cmpb.2014.04.001_bib0030) 2008; 34
Pritchard (10.1016/j.cmpb.2014.04.001_bib0035) 1995; 32
Gutin (10.1016/j.cmpb.2014.04.001_bib0175) 2011; 390
Lacasa (10.1016/j.cmpb.2014.04.001_bib0200) 2010; 82
Siuly (10.1016/j.cmpb.2014.04.001_bib0205) 2011; 104
Sueur (10.1016/j.cmpb.2014.04.001_bib0150) 2008; 18
Luque (10.1016/j.cmpb.2014.04.001_bib0190) 2012; 22
Suri (10.1016/j.cmpb.2014.04.001_bib0050) 2011; 21
Boyu (10.1016/j.cmpb.2014.04.001_bib0160) 2009
Chua (10.1016/j.cmpb.2014.04.001_bib0085) 2011; 35
Ansari-Asl (10.1016/j.cmpb.2014.04.001_bib0020) 2006; 74
Shao (10.1016/j.cmpb.2014.04.001_bib0120) 2010; 96
Adeli (10.1016/j.cmpb.2014.04.001_bib0045) 2007; 54
Ouyang (10.1016/j.cmpb.2014.04.001_bib0185) 2013; 104
Xia (10.1016/j.cmpb.2014.04.001_bib0170) 2013; 10
Newman (10.1016/j.cmpb.2014.04.001_bib0130) 2003; 45
Schank (10.1016/j.cmpb.2014.04.001_bib0140) 2005; vol. 3503
Richman (10.1016/j.cmpb.2014.04.001_bib0155) 2000; 278
Song (10.1016/j.cmpb.2014.04.001_bib0065) 2010; 3
Hu (10.1016/j.cmpb.2014.04.001_bib0195) 2004; 22
Srinivasan (10.1016/j.cmpb.2014.04.001_bib0010) 2005; 29
Bai (10.1016/j.cmpb.2014.04.001_bib0055) 2007; 24
Tang (10.1016/j.cmpb.2014.04.001_bib0100) 2013; 44
Polat (10.1016/j.cmpb.2014.04.001_bib0025) 2007; 187
Lacasa (10.1016/j.cmpb.2014.04.001_bib0115) 2008; 105
Barrat (10.1016/j.cmpb.2014.04.001_bib0135) 2004; 101
Andrzejak (10.1016/j.cmpb.2014.04.001_bib0040) 2001; 64
References_xml – volume: 6
  start-page: 3
  year: 1993
  end-page: 6
  ident: bib0145
  article-title: A heuristic improvement of the Bellman–Ford algorithm
  publication-title: Appl. Math. Lett.
– volume: 104
  start-page: 358
  year: 2011
  end-page: 372
  ident: bib0205
  article-title: Clustering technique-based least square support vector machine for EEG signal classification
  publication-title: Comput. Meth. Prog. Biomed.
– volume: 7
  start-page: 401
  year: 2012
  end-page: 408
  ident: bib0070
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Cont.
– volume: 96
  year: 2010
  ident: bib0120
  article-title: Network analysis of human heartbeat dynamics
  publication-title: Appl. Phys. Lett.
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  ident: bib0130
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev.
– volume: 101
  start-page: 3747
  year: 2004
  end-page: 3752
  ident: bib0135
  article-title: The architecture of complex weighted networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: vol. 3503
  start-page: 606
  year: 2005
  end-page: 609
  ident: bib0140
  article-title: Finding, counting and listing all triangles in large graphs an experimental study
  publication-title: Experimental and Efficient Algorithms
– volume: 80
  start-page: 046103
  year: 2009
  ident: bib0110
  article-title: Horizontal visibility graphs: exact results for random time series
  publication-title: Phys. Rev. E
– volume: 390
  start-page: 2421
  year: 2011
  end-page: 2428
  ident: bib0175
  article-title: A characterization of horizontal visibility graphs and combinatorics on words
  publication-title: Phys. A: Stat. Mech. Appl.
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  ident: bib0025
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 486
  year: 1995
  end-page: 491
  ident: bib0035
  article-title: Dimensional analysis of resting human EEG II: surrogate-data testing indicates nonlinearity but not low-dimensional chaos
  publication-title: Psychophysiology
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib0165
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
– volume: 2
  start-page: 267
  year: 1985
  end-page: 304
  ident: bib0180
  article-title: Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review
  publication-title: J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc.
– volume: 21
  start-page: 199
  year: 2011
  end-page: 211
  ident: bib0090
  article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
  publication-title: Int. J. Neural Syst.
– volume: 119
  start-page: 1747
  year: 2008
  end-page: 1755
  ident: bib0095
  article-title: Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats
  publication-title: Clin. Neurophysiol.
– volume: 38
  start-page: 10425
  year: 2011
  end-page: 10436
  ident: bib0005
  article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification
  publication-title: Expert Syst. Appl.
– volume: 34
  start-page: 2039
  year: 2008
  end-page: 2048
  ident: bib0030
  article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 150
  year: 2013
  end-page: 156
  ident: bib0100
  article-title: New approach to epileptic diagnosis using visibility graph of high-frequency signal
  publication-title: Clin. EEG Neurosci.
– volume: 3
  start-page: 556
  year: 2010
  end-page: 567
  ident: bib0065
  article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
  publication-title: J. Biomed. Sci. Eng.
– volume: 38
  start-page: 13475
  year: 2011
  end-page: 13481
  ident: bib0015
  article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 807
  year: 2004
  end-page: 819
  ident: bib0195
  article-title: Estimating measurement noise in a time series by exploiting nonstationarity
  publication-title: Chaos Solitons Fractals
– volume: 104
  start-page: 246
  year: 2013
  end-page: 252
  ident: bib0185
  article-title: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis
  publication-title: Epilepsy Res.
– volume: 29
  start-page: 647
  year: 2005
  end-page: 660
  ident: bib0010
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst.
– volume: 18
  start-page: 213
  year: 2008
  end-page: 226
  ident: bib0150
  article-title: Equipment review: seewave, a free modular tool for sound analysis and synthesis
  publication-title: Bioacoustics
– volume: 10
  start-page: 1229
  year: 2013
  end-page: 1233
  ident: bib0170
  article-title: Band selection for hyperspectral imagery: a new approach based on complex networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 74
  start-page: 031916
  year: 2006
  ident: bib0020
  article-title: Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals
  publication-title: Phys. Rev. E
– volume: 24
  start-page: 5
  year: 2007
  ident: bib0055
  article-title: The sample entropy and its application in EEG based epilepsy detection
  publication-title: J. Biomed. Eng.
– volume: 35
  start-page: 1563
  year: 2011
  end-page: 1571
  ident: bib0085
  article-title: Application of higher order spectra to identify epileptic EEG
  publication-title: J. Med. Syst.
– start-page: 1416
  year: 2009
  end-page: 1421
  ident: bib0160
  article-title: Comparison of different classification methods for EEG-based brain computer interfaces: a case study
  publication-title: ICIA’09. International Conference on Information and Automation
– volume: 1559
  start-page: 31
  year: 2013
  end-page: 36
  ident: bib0075
  article-title: Epileptogenic focus detection in intracranial EEG based on delay permutation entropy
  publication-title: AIP Conf. Proc.
– volume: 22
  start-page: 013109
  year: 2012
  ident: bib0190
  article-title: Analytical properties of horizontal visibility graphs in the Feigenbaum scenario
  publication-title: Chaos: Interdisciplin. J. Nonlin. Sci.
– volume: 54
  start-page: 205
  year: 2007
  end-page: 211
  ident: bib0045
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 82
  start-page: 036120
  year: 2010
  ident: bib0200
  article-title: Description of stochastic and chaotic series using visibility graphs
  publication-title: Phys. Rev. E
– volume: 64
  start-page: 061907
  year: 2001
  ident: bib0040
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– volume: 21
  start-page: 403
  year: 2011
  end-page: 414
  ident: bib0050
  article-title: Automatic detection of epileptic EEG signals using higher order cumulant features
  publication-title: Int. J. Neural Syst.
– start-page: 432
  year: 2012
  end-page: 436
  ident: bib0105
  article-title: Analysing epileptic EEGs with a visibility graph algorithm
  publication-title: 5th International Conference on Biomedical Engineering and Informatics (BMEI2012)
– volume: 39
  start-page: 202
  year: 2012
  end-page: 209
  ident: bib0060
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
  publication-title: Expert Syst. Appl.
– volume: 105
  start-page: 4972
  year: 2008
  end-page: 4975
  ident: bib0115
  article-title: From time series to complex networks: the visibility graph
  publication-title: Proc. Natl. Acad. Sci.
– volume: 36
  start-page: 1731
  year: 2012
  end-page: 1743
  ident: bib0080
  article-title: Classification of epilepsy using high-order spectra features and principle component analysis
  publication-title: J. Med. Syst.
– volume: vol. 7670
  start-page: 185
  year: 2012
  end-page: 195
  ident: bib0125
  article-title: An efficient visibility graph similarity algorithm and its application on sleep stages classification
  publication-title: Brain Informatics
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: bib0155
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Phys. – Heart Circul. Physiol.
– volume: 35
  start-page: 1563
  year: 2011
  ident: 10.1016/j.cmpb.2014.04.001_bib0085
  article-title: Application of higher order spectra to identify epileptic EEG
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9433-z
– volume: 32
  start-page: 486
  year: 1995
  ident: 10.1016/j.cmpb.2014.04.001_bib0035
  article-title: Dimensional analysis of resting human EEG II: surrogate-data testing indicates nonlinearity but not low-dimensional chaos
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1995.tb02100.x
– volume: 119
  start-page: 1747
  year: 2008
  ident: 10.1016/j.cmpb.2014.04.001_bib0095
  article-title: Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.04.005
– volume: 104
  start-page: 246
  year: 2013
  ident: 10.1016/j.cmpb.2014.04.001_bib0185
  article-title: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2012.11.003
– volume: 105
  start-page: 4972
  year: 2008
  ident: 10.1016/j.cmpb.2014.04.001_bib0115
  article-title: From time series to complex networks: the visibility graph
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0709247105
– volume: 7
  start-page: 401
  year: 2012
  ident: 10.1016/j.cmpb.2014.04.001_bib0070
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Cont.
  doi: 10.1016/j.bspc.2011.07.007
– volume: 390
  start-page: 2421
  year: 2011
  ident: 10.1016/j.cmpb.2014.04.001_bib0175
  article-title: A characterization of horizontal visibility graphs and combinatorics on words
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2011.02.031
– volume: 1559
  start-page: 31
  year: 2013
  ident: 10.1016/j.cmpb.2014.04.001_bib0075
  article-title: Epileptogenic focus detection in intracranial EEG based on delay permutation entropy
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4824993
– volume: 82
  start-page: 036120
  year: 2010
  ident: 10.1016/j.cmpb.2014.04.001_bib0200
  article-title: Description of stochastic and chaotic series using visibility graphs
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.036120
– volume: 18
  start-page: 213
  year: 2008
  ident: 10.1016/j.cmpb.2014.04.001_bib0150
  article-title: Equipment review: seewave, a free modular tool for sound analysis and synthesis
  publication-title: Bioacoustics
  doi: 10.1080/09524622.2008.9753600
– volume: 10
  start-page: 1229
  year: 2013
  ident: 10.1016/j.cmpb.2014.04.001_bib0170
  article-title: Band selection for hyperspectral imagery: a new approach based on complex networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2236819
– volume: 22
  start-page: 013109
  year: 2012
  ident: 10.1016/j.cmpb.2014.04.001_bib0190
  article-title: Analytical properties of horizontal visibility graphs in the Feigenbaum scenario
  publication-title: Chaos: Interdisciplin. J. Nonlin. Sci.
  doi: 10.1063/1.3676686
– start-page: 432
  year: 2012
  ident: 10.1016/j.cmpb.2014.04.001_bib0105
  article-title: Analysing epileptic EEGs with a visibility graph algorithm
– volume: 13
  start-page: 21
  year: 1967
  ident: 10.1016/j.cmpb.2014.04.001_bib0165
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 45
  start-page: 167
  year: 2003
  ident: 10.1016/j.cmpb.2014.04.001_bib0130
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450342480
– start-page: 1416
  year: 2009
  ident: 10.1016/j.cmpb.2014.04.001_bib0160
  article-title: Comparison of different classification methods for EEG-based brain computer interfaces: a case study
– volume: 29
  start-page: 647
  year: 2005
  ident: 10.1016/j.cmpb.2014.04.001_bib0010
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-005-6133-1
– volume: vol. 7670
  start-page: 185
  year: 2012
  ident: 10.1016/j.cmpb.2014.04.001_bib0125
  article-title: An efficient visibility graph similarity algorithm and its application on sleep stages classification
– volume: 6
  start-page: 3
  year: 1993
  ident: 10.1016/j.cmpb.2014.04.001_bib0145
  article-title: A heuristic improvement of the Bellman–Ford algorithm
  publication-title: Appl. Math. Lett.
  doi: 10.1016/0893-9659(93)90022-F
– volume: 38
  start-page: 13475
  year: 2011
  ident: 10.1016/j.cmpb.2014.04.001_bib0015
  article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.149
– volume: 39
  start-page: 202
  year: 2012
  ident: 10.1016/j.cmpb.2014.04.001_bib0060
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.008
– volume: 22
  start-page: 807
  year: 2004
  ident: 10.1016/j.cmpb.2014.04.001_bib0195
  article-title: Estimating measurement noise in a time series by exploiting nonstationarity
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.02.061
– volume: 96
  year: 2010
  ident: 10.1016/j.cmpb.2014.04.001_bib0120
  article-title: Network analysis of human heartbeat dynamics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3308505
– volume: 24
  start-page: 5
  year: 2007
  ident: 10.1016/j.cmpb.2014.04.001_bib0055
  article-title: The sample entropy and its application in EEG based epilepsy detection
  publication-title: J. Biomed. Eng.
– volume: 34
  start-page: 2039
  year: 2008
  ident: 10.1016/j.cmpb.2014.04.001_bib0030
  article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.02.009
– volume: 44
  start-page: 150
  issue: March
  year: 2013
  ident: 10.1016/j.cmpb.2014.04.001_bib0100
  article-title: New approach to epileptic diagnosis using visibility graph of high-frequency signal
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/1550059412464449
– volume: 2
  start-page: 267
  year: 1985
  ident: 10.1016/j.cmpb.2014.04.001_bib0180
  article-title: Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review
  publication-title: J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc.
– volume: 74
  start-page: 031916
  year: 2006
  ident: 10.1016/j.cmpb.2014.04.001_bib0020
  article-title: Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.031916
– volume: 54
  start-page: 205
  year: 2007
  ident: 10.1016/j.cmpb.2014.04.001_bib0045
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886855
– volume: 64
  start-page: 061907
  year: 2001
  ident: 10.1016/j.cmpb.2014.04.001_bib0040
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 36
  start-page: 1731
  year: 2012
  ident: 10.1016/j.cmpb.2014.04.001_bib0080
  article-title: Classification of epilepsy using high-order spectra features and principle component analysis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9633-6
– volume: 3
  start-page: 556
  year: 2010
  ident: 10.1016/j.cmpb.2014.04.001_bib0065
  article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2010.36078
– volume: vol. 3503
  start-page: 606
  year: 2005
  ident: 10.1016/j.cmpb.2014.04.001_bib0140
  article-title: Finding, counting and listing all triangles in large graphs an experimental study
– volume: 278
  start-page: H2039
  issue: June
  year: 2000
  ident: 10.1016/j.cmpb.2014.04.001_bib0155
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Phys. – Heart Circul. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 21
  start-page: 403
  year: 2011
  ident: 10.1016/j.cmpb.2014.04.001_bib0050
  article-title: Automatic detection of epileptic EEG signals using higher order cumulant features
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065711002912
– volume: 80
  start-page: 046103
  year: 2009
  ident: 10.1016/j.cmpb.2014.04.001_bib0110
  article-title: Horizontal visibility graphs: exact results for random time series
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.046103
– volume: 104
  start-page: 358
  year: 2011
  ident: 10.1016/j.cmpb.2014.04.001_bib0205
  article-title: Clustering technique-based least square support vector machine for EEG signal classification
  publication-title: Comput. Meth. Prog. Biomed.
  doi: 10.1016/j.cmpb.2010.11.014
– volume: 38
  start-page: 10425
  year: 2011
  ident: 10.1016/j.cmpb.2014.04.001_bib0005
  article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.118
– volume: 187
  start-page: 1017
  year: 2007
  ident: 10.1016/j.cmpb.2014.04.001_bib0025
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.022
– volume: 21
  start-page: 199
  year: 2011
  ident: 10.1016/j.cmpb.2014.04.001_bib0090
  article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065711002808
– volume: 101
  start-page: 3747
  issue: March
  year: 2004
  ident: 10.1016/j.cmpb.2014.04.001_bib0135
  article-title: The architecture of complex weighted networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400087101
SSID ssj0002556
Score 2.4420118
Snippet •Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100%...
Highlights • Developing a fast algorithm for constructing a network from a time series in linear time. • Discriminating between healthy and seizure EEG signals...
This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Biological and medical sciences
Computational complexity
Computer science; control theory; systems
Computer Simulation
Databases, Factual - statistics & numerical data
Diagnosis, Computer-Assisted - methods
Diagnosis, Computer-Assisted - statistics & numerical data
Electrodiagnosis. Electric activity recording
Electroencephalography - statistics & numerical data
Epilepsy
Epilepsy - diagnosis
Exact sciences and technology
Fourier Analysis
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Humans
Information retrieval. Graph
Internal Medicine
Investigative techniques, diagnostic techniques (general aspects)
Mean degree
Mean strength
Medical sciences
Nervous system
Nervous system (semeiology, syndromes)
Neurology
Nonlinear Dynamics
Other
Theoretical computing
Weighted horizontal visibility graph
Title Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260714001266
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260714001266
https://dx.doi.org/10.1016/j.cmpb.2014.04.001
https://www.ncbi.nlm.nih.gov/pubmed/24768081
https://www.proquest.com/docview/1523407037
https://www.proquest.com/docview/1534827876
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhVIopelz02ZRobfirm2N7fUxhE23LcmlDeQmJFlKXBKvWXspySG_PTO2vCE03UKPNhKWR_Oy9c03jH1EIzAYptIg04UJII9soCmRcxaDX-KEhq5N59FxOj-Bb6fJ6RY7GGphCFbpfX_v0ztv7e9MvDQndVlOfhCPSEz0aEAxOyXabYCMuhh8vrmDeRDFVs_vnQc02hfO9Bgvc1lrgndBR3fqG8M8EJye1qpBkbm-18Xfk9EuKB0-Z898Nsn3-wXvsC1bvWCPj_x5-UumZjVaPXoFwxtbXq-Wlhe27dBXFS8rPpt9aThBOFAJOUHgz7jiTjUt_939MrUFP18sy-sF1UxyqkPvsLRXXF2c4f32_PIVOzmc_TyYB76pQmCSPGqDopgqlEloE51NAUQhhM1ULkwMU62cy13hhEgTjcFcCANpHBudKxQfGBBpIV6z7WpR2beMO0BnEOd2CgV-ZxihrKC-TRqSMDSRcyMWDdKUxjOOU-OLCzlAy35J2gFJOyBDIHzdiH1az6l7vo2No8WwSXKoJEXfJzEcbJyVPTTLNt58GxnJJpah_EPFRixZz7ynpf984vieBq1fjZKDJIvjEfswqJRE-6ZDG1XZxQqXksQCyC9nm8YQRRG6Xlzgm14f754AWdddZfc_l_6OPaGrHqH8nm23y5Xdwzys1ePO0Mbs0f7X7_PjW400L9U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkQAJIV6F5VGMxA2FTfxINkdUbVmg2wut1JtlO3Yb1GajTVaIHvjtzCTOVhVlkbgmHtkZz8vxNzOEvAMlsOCm0igzhY1EnrjIYCDnHTg_6bkRXZvO-WE6OxZfTuTJFtkbcmEQVhlsf2_TO2sdnowDN8d1WY6_YR0RhuXRBPrsNL1FbgvJMjyBffh1hfPAGlt9ge88wuEhc6YHedmL2iC-S3T1TkNnmBu80_1aN8Az3ze7-Hs02nml_YfkQQgn6cd-xY_IlqsekzvzcGH-hOhpDWoPZsHSxpWXq6WjhWs7-FVFy4pOp58aihgOkEKKGPhTqqnXTUt_dP9MXUHPFsvycoFJkxQT0Tsw7U-qz0_heXt28ZQc70-P9mZR6KoQWZknbVQUEw08iZ002UQIXnDuMp1zy8TEaO9zX3jOU2nAm3NuRcqYNbkG9gkreFrwHbJdLSr3nFAvwBqw3E1EAQcNy7Xj2LjJCBnHNvF-RJKBm8qGkuPY-eJcDdiy7wp3QOEOqFggwG5E3q9p6r7gxsbRfNgkNaSSgvFT4A82UmU3Ubkm6G-jEtUwFas_ZGxE5Jrympj-c8bdaxK0_jSMDmTG2Ii8HURKgYLjrY2u3GIFS5GMCzTM2aYxWKMIbC8s8Fkvj1cziKxrr_LiP5f-htydHc0P1MHnw68vyT1808OVX5HtdrlyryEoa81up3S_AUxNMWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+detection+in+EEGs+signals+using+a+fast+weighted+horizontal+visibility+algorithm&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Zhu%2C+Guohun&rft.au=Li%2C+Yan&rft.au=Wen%2C+Peng&rft.date=2014-07-01&rft.issn=0169-2607&rft.volume=115&rft.issue=2&rft.spage=64&rft.epage=75&rft_id=info:doi/10.1016%2Fj.cmpb.2014.04.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260714X00088%2Fcov150h.gif