Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm
•Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features.•Extracted features from a time series is faster and more robust to against noise than those based on FFT. This...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 115; no. 2; pp. 64 - 75 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ireland Ltd
01.07.2014
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2014.04.001 |
Cover
| Abstract | •Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features.•Extracted features from a time series is faster and more robust to against noise than those based on FFT.
This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification. |
|---|---|
| AbstractList | This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification.This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification. Highlights • Developing a fast algorithm for constructing a network from a time series in linear time. • Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features. • Extracted features from a time series is faster and more robust to against noise than those based on FFT. •Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100% accuracy with only two features.•Extracted features from a time series is faster and more robust to against noise than those based on FFT. This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification. This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the FWHVA is evaluated by comparing with Fast Fourier Transform (FFT) and sample entropy (SampEn) method. Two noise-robustness graph features based on the FWHVA, mean degree and mean strength, are investigated using two chaos signals and five groups of EEG signals. Experimental results show that feature extraction using the FWHVA is faster than that of SampEn and FFT. And mean strength feature associated with ictal EEG is significant higher than that of healthy and inter-ictal EEGs. In addition, an 100% classification accuracy for identifying seizure from healthy shows that the features based on the FWHVA are more promising than the frequency features based on FFT and entropy indices based on SampEn for time series classification. |
| Author | Zhu, Guohun Wen, Peng (Paul) Li, Yan |
| Author_xml | – sequence: 1 givenname: Guohun surname: Zhu fullname: Zhu, Guohun email: Guohun.Zhu@usq.edu.au, zhuguohun@hotmail.com – sequence: 2 givenname: Yan surname: Li fullname: Li, Yan – sequence: 3 givenname: Peng (Paul) surname: Wen fullname: Wen, Peng (Paul) |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28475722$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24768081$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl9rFDEUxYNU7Lb6BXyQvAi-zJp_M5kVKUjZtkLBB_U5ZDJ3du86m1mTTGX76c2wW4SCVQgEwu_cm3vOPSMnfvBAyGvO5pzx6v1m7ra7Zi4YV3OWD-PPyIzXWhS6rMoTMsvQohAV06fkLMYNY0yUZfWCnAqlq5rVfEbscoc97BI6GgHvxwC0hQQu4eAperpcXkcaceVtH-kY0a-opZ2Nif4CXK0TtHQ9BLwffLI9vcOIDfaY9tT2q_ye1tuX5HmXxfDqeJ-T71fLb5c3xe2X68-Xn24LVy54Ktq2tvl3DMpG10rJVkrQdiGdUHVju27RtZ2UVdkwIaV0qhLCNQubJ1ROyaqV5-Tdoe4uDD9HiMlsMTroe-thGKPhpVS10LWu_gMVUjHNpM7omyM6NltozS7g1oa9eXAwA2-PgI3O9l2w3mH8w9VKl1qIzNUHzoUhxgCdcZjsZHMKFnvDmZlCNRszhWqmUA3Lh00txCPpQ_UnRR8PIsie3yEEEx2Cd9BiyPGadsCn5ReP5K5Hj3nCH7CHuBnGMK2E4SYKw8zXadWmTeMqq0U1efzh7wX-1f034Hnibg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3294473 crossref_primary_10_1080_10255842_2021_2023809 crossref_primary_10_1109_ACCESS_2020_2996946 crossref_primary_10_1016_j_brainres_2022_147777 crossref_primary_10_1063_5_0140579 crossref_primary_10_1016_j_bspc_2022_104155 crossref_primary_10_3390_e23020222 crossref_primary_10_1016_j_bspc_2020_102006 crossref_primary_10_1186_s40064_016_3772_2 crossref_primary_10_1063_5_0062242 crossref_primary_10_3390_s18061720 crossref_primary_10_1016_j_physa_2023_129230 crossref_primary_10_3390_s22239302 crossref_primary_10_1016_j_jwpe_2024_106107 crossref_primary_10_1007_s11571_019_09527_y crossref_primary_10_1016_j_mehy_2019_109519 crossref_primary_10_1111_exsy_12211 crossref_primary_10_1007_s11042_023_15681_7 crossref_primary_10_1088_1674_1056_acdfbf crossref_primary_10_1016_j_neucom_2016_06_056 crossref_primary_10_1016_j_displa_2014_10_001 crossref_primary_10_1109_RBME_2021_3055956 crossref_primary_10_1016_j_eswa_2014_08_030 crossref_primary_10_1109_TNNLS_2023_3252569 crossref_primary_10_1007_s40846_017_0286_5 crossref_primary_10_1049_el_2016_1992 crossref_primary_10_1007_s40708_015_0029_8 crossref_primary_10_1109_TIM_2021_3087834 crossref_primary_10_1142_S0129065718500107 crossref_primary_10_1016_j_bbe_2017_08_003 crossref_primary_10_1109_TIM_2023_3295014 crossref_primary_10_1016_j_knosys_2018_10_029 crossref_primary_10_1109_TNSRE_2022_3156931 crossref_primary_10_1016_j_eswa_2017_08_012 crossref_primary_10_1016_j_physa_2023_128601 crossref_primary_10_1007_s11042_025_20594_8 crossref_primary_10_1109_ACCESS_2025_3546558 crossref_primary_10_1016_j_bspc_2018_03_004 crossref_primary_10_1016_j_bspc_2024_106159 crossref_primary_10_1109_ACCESS_2018_2833746 crossref_primary_10_1109_JBHI_2017_2654479 crossref_primary_10_1142_S0217979218500868 crossref_primary_10_3390_brainsci11050668 crossref_primary_10_1016_j_physa_2017_04_166 crossref_primary_10_1007_s11042_022_12702_9 crossref_primary_10_1186_s13634_018_0568_2 crossref_primary_10_1007_s11071_019_04768_2 crossref_primary_10_1016_j_physa_2015_03_057 crossref_primary_10_1109_JERM_2020_2995329 crossref_primary_10_1016_j_compbiomed_2022_105397 crossref_primary_10_1007_s13538_022_01231_3 crossref_primary_10_1016_j_compbiomed_2016_02_016 crossref_primary_10_1088_1361_6579_ab8cb3 crossref_primary_10_6000_1929_6029_2017_06_01_2 crossref_primary_10_1007_s00521_020_05330_7 crossref_primary_10_4028_www_scientific_net_AMR_1049_1050_1626 crossref_primary_10_1016_j_physleta_2017_11_022 crossref_primary_10_1109_JBHI_2020_3001877 crossref_primary_10_1109_ACCESS_2019_2890895 crossref_primary_10_7498_aps_66_160502 crossref_primary_10_3389_fninf_2019_00045 crossref_primary_10_3390_s21051870 crossref_primary_10_1142_S0129065717500058 crossref_primary_10_1007_s12652_022_03737_9 crossref_primary_10_1016_j_seizure_2019_02_001 crossref_primary_10_1016_j_bspc_2018_08_014 crossref_primary_10_1016_j_bspc_2016_06_006 crossref_primary_10_1007_s12021_024_09652_y crossref_primary_10_1109_ACCESS_2016_2612242 crossref_primary_10_1088_1741_2552_aca82c crossref_primary_10_1049_iet_smt_2018_5358 crossref_primary_10_1108_IJIUS_10_2021_0115 crossref_primary_10_1016_j_measurement_2018_05_017 crossref_primary_10_3389_fnins_2020_00641 crossref_primary_10_1016_j_jneumeth_2018_11_014 crossref_primary_10_1016_j_knosys_2018_07_019 crossref_primary_10_1016_j_sysarc_2024_103114 crossref_primary_10_3389_fnins_2023_1268485 crossref_primary_10_1016_j_bspc_2021_102554 crossref_primary_10_1016_j_physa_2020_125108 crossref_primary_10_1093_comnet_cnae044 crossref_primary_10_1049_iet_spr_2017_0140 crossref_primary_10_1016_j_physa_2014_07_077 crossref_primary_10_1007_s11045_016_0419_y crossref_primary_10_1038_srep35622 crossref_primary_10_1016_j_bspc_2019_101569 crossref_primary_10_1016_j_bspc_2020_102028 crossref_primary_10_32604_cmc_2021_015524 crossref_primary_10_1007_s13246_021_01006_1 crossref_primary_10_3390_e20110891 crossref_primary_10_1016_j_compbiomed_2022_105240 crossref_primary_10_1007_s11045_019_00673_4 crossref_primary_10_1007_s11071_024_09342_z crossref_primary_10_1016_j_compbiomed_2021_104922 crossref_primary_10_1016_j_bbe_2016_07_004 crossref_primary_10_1007_s11042_021_10882_4 crossref_primary_10_1371_journal_pcbi_1010985 crossref_primary_10_1016_j_chaos_2021_110939 crossref_primary_10_1007_s11517_020_02279_6 crossref_primary_10_1007_s40708_014_0003_x crossref_primary_10_1016_j_bspc_2019_101707 crossref_primary_10_1016_j_bspc_2018_04_007 crossref_primary_10_1016_j_clinph_2024_01_009 crossref_primary_10_1016_j_seizure_2017_07_001 crossref_primary_10_3389_fnins_2024_1436619 crossref_primary_10_1016_j_ifacol_2024_11_063 crossref_primary_10_1142_S012906571850003X |
| Cites_doi | 10.1007/s10916-010-9433-z 10.1111/j.1469-8986.1995.tb02100.x 10.1016/j.clinph.2008.04.005 10.1016/j.eplepsyres.2012.11.003 10.1073/pnas.0709247105 10.1016/j.bspc.2011.07.007 10.1016/j.physa.2011.02.031 10.1063/1.4824993 10.1103/PhysRevE.82.036120 10.1080/09524622.2008.9753600 10.1109/LGRS.2012.2236819 10.1063/1.3676686 10.1109/TIT.1967.1053964 10.1137/S003614450342480 10.1007/s10916-005-6133-1 10.1016/0893-9659(93)90022-F 10.1016/j.eswa.2011.04.149 10.1016/j.eswa.2011.07.008 10.1016/j.chaos.2004.02.061 10.1063/1.3308505 10.1016/j.eswa.2007.02.009 10.1177/1550059412464449 10.1103/PhysRevE.74.031916 10.1109/TBME.2006.886855 10.1103/PhysRevE.64.061907 10.1007/s10916-010-9633-6 10.4236/jbise.2010.36078 10.1152/ajpheart.2000.278.6.H2039 10.1142/S0129065711002912 10.1103/PhysRevE.80.046103 10.1016/j.cmpb.2010.11.014 10.1016/j.eswa.2011.02.118 10.1016/j.amc.2006.09.022 10.1142/S0129065711002808 10.1073/pnas.0400087101 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ireland Ltd Elsevier Ireland Ltd 2015 INIST-CNRS Copyright © 2014 Elsevier Ireland Ltd. All rights reserved. |
| Copyright_xml | – notice: 2014 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Ireland Ltd. All rights reserved. |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
| DOI | 10.1016/j.cmpb.2014.04.001 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Applied Sciences |
| EISSN | 1872-7565 |
| EndPage | 75 |
| ExternalDocumentID | 24768081 28475722 10_1016_j_cmpb_2014_04_001 S0169260714001266 1_s2_0_S0169260714001266 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AFCTW AGCQF AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
| ID | FETCH-LOGICAL-c591t-dd8a2550e5b78443d33e7a93c248baff9fdf3365b02333c4622cb9a1694c436d3 |
| IEDL.DBID | .~1 |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Tue Oct 07 11:10:01 EDT 2025 Thu Oct 02 20:00:59 EDT 2025 Mon Jul 21 06:00:48 EDT 2025 Wed Apr 02 07:21:52 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Wed Oct 01 03:21:02 EDT 2025 Fri Feb 23 02:26:01 EST 2024 Fri May 16 00:31:31 EDT 2025 Tue Oct 14 19:30:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Mean degree Mean strength Computational complexity Weighted horizontal visibility graph Epilepsy Chaos Fast Fourier transformation Time series Electroencephalography Entropy Graph theory Pattern recognition Weighted graph Experimental result Classification Mental disorder Selection criterion Noise immunity Feature extraction Visibility Fast algorithm Pattern extraction Strength |
| Language | English |
| License | CC BY 4.0 Copyright © 2014 Elsevier Ireland Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c591t-dd8a2550e5b78443d33e7a93c248baff9fdf3365b02333c4622cb9a1694c436d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24768081 |
| PQID | 1523407037 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1534827876 proquest_miscellaneous_1523407037 pubmed_primary_24768081 pascalfrancis_primary_28475722 crossref_citationtrail_10_1016_j_cmpb_2014_04_001 crossref_primary_10_1016_j_cmpb_2014_04_001 elsevier_sciencedirect_doi_10_1016_j_cmpb_2014_04_001 elsevier_clinicalkeyesjournals_1_s2_0_S0169260714001266 elsevier_clinicalkey_doi_10_1016_j_cmpb_2014_04_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-01 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2014 |
| Publisher | Elsevier Ireland Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier |
| References | Barlow (bib0180) 1985; 2 Song, Liò (bib0065) 2010; 3 Tang, Xia, Liao, Liu, Peng, Gao (bib0100) 2013; 44 Luque, Lacasa, Ballesteros, Luque (bib0110) 2009; 80 Zhu, Li, Wen, Wang, Xi (bib0075) 2013; 1559 Guo, Rivero, Dorado, Munteanu, Pazos (bib0005) 2011; 38 Richman, Moorman (bib0155) 2000; 278 Polat, Güneş (bib0025) 2007; 187 Bai, Qiu, Li (bib0055) 2007; 24 Shao (bib0120) 2010; 96 Schank, Wagner (bib0140) 2005; vol. 3503 Boyu, Chi Man, Feng, Peng-Un, Pui-In, Mang (bib0160) 2009 Acharya, Sree, Chattopadhyay, Yu, Ang (bib0090) 2011; 21 Cover, Hart (bib0165) 1967; 13 Pritchard, Duke, Krieble (bib0035) 1995; 32 Lacasa, Luque, Ballesteros, Luque, Nuño (bib0115) 2008; 105 Du, Dua, Acharya, Chua (bib0080) 2012; 36 Xia, Wang, Zhang (bib0170) 2013; 10 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib0040) 2001; 64 Suri, Acharya, Sree (bib0050) 2011; 21 Gutin, Mansour, Severini (bib0175) 2011; 390 Siuly, Li, Wen (bib0205) 2011; 104 Srinivasan, Eswaran, Sriraam (bib0010) 2005; 29 Chua, Chandran, Acharya, Lim (bib0085) 2011; 35 Sueur, Aubin, Simonis (bib0150) 2008; 18 Newman (bib0130) 2003; 45 Barrat, Barthélemy, Pastor-Satorras, Vespignani (bib0135) 2004; 101 Ouyang, Li, Dang, Richards (bib0095) 2008; 119 Ansari-Asl, Senhadji, Bellanger, Wendling (bib0020) 2006; 74 Nicolaou, Georgiou (bib0060) 2012; 39 Hu, Gao, White (bib0195) 2004; 22 Goldberg, Radzik (bib0145) 1993; 6 Luque, Lacasa, Ballesteros, Robledo (bib0190) 2012; 22 Polat, Güneş (bib0030) 2008; 34 Zhu, Li, Wen (bib0125) 2012; vol. 7670 Adeli, Ghosh-Dastidar, Dadmehr (bib0045) 2007; 54 Zhu, Li, Wen (bib0105) 2012 Ouyang, Li, Liu, Li (bib0185) 2013; 104 Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (bib0070) 2012; 7 Orhan, Hekim, Ozer (bib0015) 2011; 38 Lacasa, Toral (bib0200) 2010; 82 Zhu (10.1016/j.cmpb.2014.04.001_bib0075) 2013; 1559 Goldberg (10.1016/j.cmpb.2014.04.001_bib0145) 1993; 6 Ouyang (10.1016/j.cmpb.2014.04.001_bib0095) 2008; 119 Nicolaou (10.1016/j.cmpb.2014.04.001_bib0060) 2012; 39 Guo (10.1016/j.cmpb.2014.04.001_bib0005) 2011; 38 Acharya (10.1016/j.cmpb.2014.04.001_bib0070) 2012; 7 Zhu (10.1016/j.cmpb.2014.04.001_bib0125) 2012; vol. 7670 Cover (10.1016/j.cmpb.2014.04.001_bib0165) 1967; 13 Barlow (10.1016/j.cmpb.2014.04.001_bib0180) 1985; 2 Du (10.1016/j.cmpb.2014.04.001_bib0080) 2012; 36 Luque (10.1016/j.cmpb.2014.04.001_bib0110) 2009; 80 Orhan (10.1016/j.cmpb.2014.04.001_bib0015) 2011; 38 Acharya (10.1016/j.cmpb.2014.04.001_bib0090) 2011; 21 Zhu (10.1016/j.cmpb.2014.04.001_bib0105) 2012 Polat (10.1016/j.cmpb.2014.04.001_bib0030) 2008; 34 Pritchard (10.1016/j.cmpb.2014.04.001_bib0035) 1995; 32 Gutin (10.1016/j.cmpb.2014.04.001_bib0175) 2011; 390 Lacasa (10.1016/j.cmpb.2014.04.001_bib0200) 2010; 82 Siuly (10.1016/j.cmpb.2014.04.001_bib0205) 2011; 104 Sueur (10.1016/j.cmpb.2014.04.001_bib0150) 2008; 18 Luque (10.1016/j.cmpb.2014.04.001_bib0190) 2012; 22 Suri (10.1016/j.cmpb.2014.04.001_bib0050) 2011; 21 Boyu (10.1016/j.cmpb.2014.04.001_bib0160) 2009 Chua (10.1016/j.cmpb.2014.04.001_bib0085) 2011; 35 Ansari-Asl (10.1016/j.cmpb.2014.04.001_bib0020) 2006; 74 Shao (10.1016/j.cmpb.2014.04.001_bib0120) 2010; 96 Adeli (10.1016/j.cmpb.2014.04.001_bib0045) 2007; 54 Ouyang (10.1016/j.cmpb.2014.04.001_bib0185) 2013; 104 Xia (10.1016/j.cmpb.2014.04.001_bib0170) 2013; 10 Newman (10.1016/j.cmpb.2014.04.001_bib0130) 2003; 45 Schank (10.1016/j.cmpb.2014.04.001_bib0140) 2005; vol. 3503 Richman (10.1016/j.cmpb.2014.04.001_bib0155) 2000; 278 Song (10.1016/j.cmpb.2014.04.001_bib0065) 2010; 3 Hu (10.1016/j.cmpb.2014.04.001_bib0195) 2004; 22 Srinivasan (10.1016/j.cmpb.2014.04.001_bib0010) 2005; 29 Bai (10.1016/j.cmpb.2014.04.001_bib0055) 2007; 24 Tang (10.1016/j.cmpb.2014.04.001_bib0100) 2013; 44 Polat (10.1016/j.cmpb.2014.04.001_bib0025) 2007; 187 Lacasa (10.1016/j.cmpb.2014.04.001_bib0115) 2008; 105 Barrat (10.1016/j.cmpb.2014.04.001_bib0135) 2004; 101 Andrzejak (10.1016/j.cmpb.2014.04.001_bib0040) 2001; 64 |
| References_xml | – volume: 6 start-page: 3 year: 1993 end-page: 6 ident: bib0145 article-title: A heuristic improvement of the Bellman–Ford algorithm publication-title: Appl. Math. Lett. – volume: 104 start-page: 358 year: 2011 end-page: 372 ident: bib0205 article-title: Clustering technique-based least square support vector machine for EEG signal classification publication-title: Comput. Meth. Prog. Biomed. – volume: 7 start-page: 401 year: 2012 end-page: 408 ident: bib0070 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Cont. – volume: 96 year: 2010 ident: bib0120 article-title: Network analysis of human heartbeat dynamics publication-title: Appl. Phys. Lett. – volume: 45 start-page: 167 year: 2003 end-page: 256 ident: bib0130 article-title: The structure and function of complex networks publication-title: SIAM Rev. – volume: 101 start-page: 3747 year: 2004 end-page: 3752 ident: bib0135 article-title: The architecture of complex weighted networks publication-title: Proc. Natl. Acad. Sci. USA – volume: vol. 3503 start-page: 606 year: 2005 end-page: 609 ident: bib0140 article-title: Finding, counting and listing all triangles in large graphs an experimental study publication-title: Experimental and Efficient Algorithms – volume: 80 start-page: 046103 year: 2009 ident: bib0110 article-title: Horizontal visibility graphs: exact results for random time series publication-title: Phys. Rev. E – volume: 390 start-page: 2421 year: 2011 end-page: 2428 ident: bib0175 article-title: A characterization of horizontal visibility graphs and combinatorics on words publication-title: Phys. A: Stat. Mech. Appl. – volume: 187 start-page: 1017 year: 2007 end-page: 1026 ident: bib0025 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput. – volume: 32 start-page: 486 year: 1995 end-page: 491 ident: bib0035 article-title: Dimensional analysis of resting human EEG II: surrogate-data testing indicates nonlinearity but not low-dimensional chaos publication-title: Psychophysiology – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib0165 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory – volume: 2 start-page: 267 year: 1985 end-page: 304 ident: bib0180 article-title: Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review publication-title: J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. – volume: 21 start-page: 199 year: 2011 end-page: 211 ident: bib0090 article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals publication-title: Int. J. Neural Syst. – volume: 119 start-page: 1747 year: 2008 end-page: 1755 ident: bib0095 article-title: Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats publication-title: Clin. Neurophysiol. – volume: 38 start-page: 10425 year: 2011 end-page: 10436 ident: bib0005 article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification publication-title: Expert Syst. Appl. – volume: 34 start-page: 2039 year: 2008 end-page: 2048 ident: bib0030 article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals publication-title: Expert Syst. Appl. – volume: 44 start-page: 150 year: 2013 end-page: 156 ident: bib0100 article-title: New approach to epileptic diagnosis using visibility graph of high-frequency signal publication-title: Clin. EEG Neurosci. – volume: 3 start-page: 556 year: 2010 end-page: 567 ident: bib0065 article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine publication-title: J. Biomed. Sci. Eng. – volume: 38 start-page: 13475 year: 2011 end-page: 13481 ident: bib0015 article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model publication-title: Expert Syst. Appl. – volume: 22 start-page: 807 year: 2004 end-page: 819 ident: bib0195 article-title: Estimating measurement noise in a time series by exploiting nonstationarity publication-title: Chaos Solitons Fractals – volume: 104 start-page: 246 year: 2013 end-page: 252 ident: bib0185 article-title: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis publication-title: Epilepsy Res. – volume: 29 start-page: 647 year: 2005 end-page: 660 ident: bib0010 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst. – volume: 18 start-page: 213 year: 2008 end-page: 226 ident: bib0150 article-title: Equipment review: seewave, a free modular tool for sound analysis and synthesis publication-title: Bioacoustics – volume: 10 start-page: 1229 year: 2013 end-page: 1233 ident: bib0170 article-title: Band selection for hyperspectral imagery: a new approach based on complex networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 74 start-page: 031916 year: 2006 ident: bib0020 article-title: Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals publication-title: Phys. Rev. E – volume: 24 start-page: 5 year: 2007 ident: bib0055 article-title: The sample entropy and its application in EEG based epilepsy detection publication-title: J. Biomed. Eng. – volume: 35 start-page: 1563 year: 2011 end-page: 1571 ident: bib0085 article-title: Application of higher order spectra to identify epileptic EEG publication-title: J. Med. Syst. – start-page: 1416 year: 2009 end-page: 1421 ident: bib0160 article-title: Comparison of different classification methods for EEG-based brain computer interfaces: a case study publication-title: ICIA’09. International Conference on Information and Automation – volume: 1559 start-page: 31 year: 2013 end-page: 36 ident: bib0075 article-title: Epileptogenic focus detection in intracranial EEG based on delay permutation entropy publication-title: AIP Conf. Proc. – volume: 22 start-page: 013109 year: 2012 ident: bib0190 article-title: Analytical properties of horizontal visibility graphs in the Feigenbaum scenario publication-title: Chaos: Interdisciplin. J. Nonlin. Sci. – volume: 54 start-page: 205 year: 2007 end-page: 211 ident: bib0045 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy publication-title: IEEE Trans. Biomed. Eng. – volume: 82 start-page: 036120 year: 2010 ident: bib0200 article-title: Description of stochastic and chaotic series using visibility graphs publication-title: Phys. Rev. E – volume: 64 start-page: 061907 year: 2001 ident: bib0040 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E – volume: 21 start-page: 403 year: 2011 end-page: 414 ident: bib0050 article-title: Automatic detection of epileptic EEG signals using higher order cumulant features publication-title: Int. J. Neural Syst. – start-page: 432 year: 2012 end-page: 436 ident: bib0105 article-title: Analysing epileptic EEGs with a visibility graph algorithm publication-title: 5th International Conference on Biomedical Engineering and Informatics (BMEI2012) – volume: 39 start-page: 202 year: 2012 end-page: 209 ident: bib0060 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines publication-title: Expert Syst. Appl. – volume: 105 start-page: 4972 year: 2008 end-page: 4975 ident: bib0115 article-title: From time series to complex networks: the visibility graph publication-title: Proc. Natl. Acad. Sci. – volume: 36 start-page: 1731 year: 2012 end-page: 1743 ident: bib0080 article-title: Classification of epilepsy using high-order spectra features and principle component analysis publication-title: J. Med. Syst. – volume: vol. 7670 start-page: 185 year: 2012 end-page: 195 ident: bib0125 article-title: An efficient visibility graph similarity algorithm and its application on sleep stages classification publication-title: Brain Informatics – volume: 278 start-page: H2039 year: 2000 end-page: H2049 ident: bib0155 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Phys. – Heart Circul. Physiol. – volume: 35 start-page: 1563 year: 2011 ident: 10.1016/j.cmpb.2014.04.001_bib0085 article-title: Application of higher order spectra to identify epileptic EEG publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9433-z – volume: 32 start-page: 486 year: 1995 ident: 10.1016/j.cmpb.2014.04.001_bib0035 article-title: Dimensional analysis of resting human EEG II: surrogate-data testing indicates nonlinearity but not low-dimensional chaos publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1995.tb02100.x – volume: 119 start-page: 1747 year: 2008 ident: 10.1016/j.cmpb.2014.04.001_bib0095 article-title: Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.04.005 – volume: 104 start-page: 246 year: 2013 ident: 10.1016/j.cmpb.2014.04.001_bib0185 article-title: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2012.11.003 – volume: 105 start-page: 4972 year: 2008 ident: 10.1016/j.cmpb.2014.04.001_bib0115 article-title: From time series to complex networks: the visibility graph publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0709247105 – volume: 7 start-page: 401 year: 2012 ident: 10.1016/j.cmpb.2014.04.001_bib0070 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Cont. doi: 10.1016/j.bspc.2011.07.007 – volume: 390 start-page: 2421 year: 2011 ident: 10.1016/j.cmpb.2014.04.001_bib0175 article-title: A characterization of horizontal visibility graphs and combinatorics on words publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2011.02.031 – volume: 1559 start-page: 31 year: 2013 ident: 10.1016/j.cmpb.2014.04.001_bib0075 article-title: Epileptogenic focus detection in intracranial EEG based on delay permutation entropy publication-title: AIP Conf. Proc. doi: 10.1063/1.4824993 – volume: 82 start-page: 036120 year: 2010 ident: 10.1016/j.cmpb.2014.04.001_bib0200 article-title: Description of stochastic and chaotic series using visibility graphs publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.036120 – volume: 18 start-page: 213 year: 2008 ident: 10.1016/j.cmpb.2014.04.001_bib0150 article-title: Equipment review: seewave, a free modular tool for sound analysis and synthesis publication-title: Bioacoustics doi: 10.1080/09524622.2008.9753600 – volume: 10 start-page: 1229 year: 2013 ident: 10.1016/j.cmpb.2014.04.001_bib0170 article-title: Band selection for hyperspectral imagery: a new approach based on complex networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2236819 – volume: 22 start-page: 013109 year: 2012 ident: 10.1016/j.cmpb.2014.04.001_bib0190 article-title: Analytical properties of horizontal visibility graphs in the Feigenbaum scenario publication-title: Chaos: Interdisciplin. J. Nonlin. Sci. doi: 10.1063/1.3676686 – start-page: 432 year: 2012 ident: 10.1016/j.cmpb.2014.04.001_bib0105 article-title: Analysing epileptic EEGs with a visibility graph algorithm – volume: 13 start-page: 21 year: 1967 ident: 10.1016/j.cmpb.2014.04.001_bib0165 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1967.1053964 – volume: 45 start-page: 167 year: 2003 ident: 10.1016/j.cmpb.2014.04.001_bib0130 article-title: The structure and function of complex networks publication-title: SIAM Rev. doi: 10.1137/S003614450342480 – start-page: 1416 year: 2009 ident: 10.1016/j.cmpb.2014.04.001_bib0160 article-title: Comparison of different classification methods for EEG-based brain computer interfaces: a case study – volume: 29 start-page: 647 year: 2005 ident: 10.1016/j.cmpb.2014.04.001_bib0010 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst. doi: 10.1007/s10916-005-6133-1 – volume: vol. 7670 start-page: 185 year: 2012 ident: 10.1016/j.cmpb.2014.04.001_bib0125 article-title: An efficient visibility graph similarity algorithm and its application on sleep stages classification – volume: 6 start-page: 3 year: 1993 ident: 10.1016/j.cmpb.2014.04.001_bib0145 article-title: A heuristic improvement of the Bellman–Ford algorithm publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(93)90022-F – volume: 38 start-page: 13475 year: 2011 ident: 10.1016/j.cmpb.2014.04.001_bib0015 article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.149 – volume: 39 start-page: 202 year: 2012 ident: 10.1016/j.cmpb.2014.04.001_bib0060 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.008 – volume: 22 start-page: 807 year: 2004 ident: 10.1016/j.cmpb.2014.04.001_bib0195 article-title: Estimating measurement noise in a time series by exploiting nonstationarity publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.02.061 – volume: 96 year: 2010 ident: 10.1016/j.cmpb.2014.04.001_bib0120 article-title: Network analysis of human heartbeat dynamics publication-title: Appl. Phys. Lett. doi: 10.1063/1.3308505 – volume: 24 start-page: 5 year: 2007 ident: 10.1016/j.cmpb.2014.04.001_bib0055 article-title: The sample entropy and its application in EEG based epilepsy detection publication-title: J. Biomed. Eng. – volume: 34 start-page: 2039 year: 2008 ident: 10.1016/j.cmpb.2014.04.001_bib0030 article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.02.009 – volume: 44 start-page: 150 issue: March year: 2013 ident: 10.1016/j.cmpb.2014.04.001_bib0100 article-title: New approach to epileptic diagnosis using visibility graph of high-frequency signal publication-title: Clin. EEG Neurosci. doi: 10.1177/1550059412464449 – volume: 2 start-page: 267 year: 1985 ident: 10.1016/j.cmpb.2014.04.001_bib0180 article-title: Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review publication-title: J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. – volume: 74 start-page: 031916 year: 2006 ident: 10.1016/j.cmpb.2014.04.001_bib0020 article-title: Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.031916 – volume: 54 start-page: 205 year: 2007 ident: 10.1016/j.cmpb.2014.04.001_bib0045 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886855 – volume: 64 start-page: 061907 year: 2001 ident: 10.1016/j.cmpb.2014.04.001_bib0040 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – volume: 36 start-page: 1731 year: 2012 ident: 10.1016/j.cmpb.2014.04.001_bib0080 article-title: Classification of epilepsy using high-order spectra features and principle component analysis publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9633-6 – volume: 3 start-page: 556 year: 2010 ident: 10.1016/j.cmpb.2014.04.001_bib0065 article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2010.36078 – volume: vol. 3503 start-page: 606 year: 2005 ident: 10.1016/j.cmpb.2014.04.001_bib0140 article-title: Finding, counting and listing all triangles in large graphs an experimental study – volume: 278 start-page: H2039 issue: June year: 2000 ident: 10.1016/j.cmpb.2014.04.001_bib0155 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Phys. – Heart Circul. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 21 start-page: 403 year: 2011 ident: 10.1016/j.cmpb.2014.04.001_bib0050 article-title: Automatic detection of epileptic EEG signals using higher order cumulant features publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065711002912 – volume: 80 start-page: 046103 year: 2009 ident: 10.1016/j.cmpb.2014.04.001_bib0110 article-title: Horizontal visibility graphs: exact results for random time series publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.046103 – volume: 104 start-page: 358 year: 2011 ident: 10.1016/j.cmpb.2014.04.001_bib0205 article-title: Clustering technique-based least square support vector machine for EEG signal classification publication-title: Comput. Meth. Prog. Biomed. doi: 10.1016/j.cmpb.2010.11.014 – volume: 38 start-page: 10425 year: 2011 ident: 10.1016/j.cmpb.2014.04.001_bib0005 article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.118 – volume: 187 start-page: 1017 year: 2007 ident: 10.1016/j.cmpb.2014.04.001_bib0025 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.022 – volume: 21 start-page: 199 year: 2011 ident: 10.1016/j.cmpb.2014.04.001_bib0090 article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065711002808 – volume: 101 start-page: 3747 issue: March year: 2004 ident: 10.1016/j.cmpb.2014.04.001_bib0135 article-title: The architecture of complex weighted networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400087101 |
| SSID | ssj0002556 |
| Score | 2.4420118 |
| Snippet | •Developing a fast algorithm for constructing a network from a time series in linear time.•Discriminating between healthy and seizure EEG signals with 100%... Highlights • Developing a fast algorithm for constructing a network from a time series in linear time. • Discriminating between healthy and seizure EEG signals... This paper proposes a fast weighted horizontal visibility graph constructing algorithm (FWHVA) to identify seizure from EEG signals. The performance of the... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 64 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Biological and medical sciences Computational complexity Computer science; control theory; systems Computer Simulation Databases, Factual - statistics & numerical data Diagnosis, Computer-Assisted - methods Diagnosis, Computer-Assisted - statistics & numerical data Electrodiagnosis. Electric activity recording Electroencephalography - statistics & numerical data Epilepsy Epilepsy - diagnosis Exact sciences and technology Fourier Analysis Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Information retrieval. Graph Internal Medicine Investigative techniques, diagnostic techniques (general aspects) Mean degree Mean strength Medical sciences Nervous system Nervous system (semeiology, syndromes) Neurology Nonlinear Dynamics Other Theoretical computing Weighted horizontal visibility graph |
| Title | Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260714001266 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260714001266 https://dx.doi.org/10.1016/j.cmpb.2014.04.001 https://www.ncbi.nlm.nih.gov/pubmed/24768081 https://www.proquest.com/docview/1523407037 https://www.proquest.com/docview/1534827876 |
| Volume | 115 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhVIopelz02ZRobfirm2N7fUxhE23LcmlDeQmJFlKXBKvWXspySG_PTO2vCE03UKPNhKWR_Oy9c03jH1EIzAYptIg04UJII9soCmRcxaDX-KEhq5N59FxOj-Bb6fJ6RY7GGphCFbpfX_v0ztv7e9MvDQndVlOfhCPSEz0aEAxOyXabYCMuhh8vrmDeRDFVs_vnQc02hfO9Bgvc1lrgndBR3fqG8M8EJye1qpBkbm-18Xfk9EuKB0-Z898Nsn3-wXvsC1bvWCPj_x5-UumZjVaPXoFwxtbXq-Wlhe27dBXFS8rPpt9aThBOFAJOUHgz7jiTjUt_939MrUFP18sy-sF1UxyqkPvsLRXXF2c4f32_PIVOzmc_TyYB76pQmCSPGqDopgqlEloE51NAUQhhM1ULkwMU62cy13hhEgTjcFcCANpHBudKxQfGBBpIV6z7WpR2beMO0BnEOd2CgV-ZxihrKC-TRqSMDSRcyMWDdKUxjOOU-OLCzlAy35J2gFJOyBDIHzdiH1az6l7vo2No8WwSXKoJEXfJzEcbJyVPTTLNt58GxnJJpah_EPFRixZz7ynpf984vieBq1fjZKDJIvjEfswqJRE-6ZDG1XZxQqXksQCyC9nm8YQRRG6Xlzgm14f754AWdddZfc_l_6OPaGrHqH8nm23y5Xdwzys1ePO0Mbs0f7X7_PjW400L9U |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkQAJIV6F5VGMxA2FTfxINkdUbVmg2wut1JtlO3Yb1GajTVaIHvjtzCTOVhVlkbgmHtkZz8vxNzOEvAMlsOCm0igzhY1EnrjIYCDnHTg_6bkRXZvO-WE6OxZfTuTJFtkbcmEQVhlsf2_TO2sdnowDN8d1WY6_YR0RhuXRBPrsNL1FbgvJMjyBffh1hfPAGlt9ge88wuEhc6YHedmL2iC-S3T1TkNnmBu80_1aN8Az3ze7-Hs02nml_YfkQQgn6cd-xY_IlqsekzvzcGH-hOhpDWoPZsHSxpWXq6WjhWs7-FVFy4pOp58aihgOkEKKGPhTqqnXTUt_dP9MXUHPFsvycoFJkxQT0Tsw7U-qz0_heXt28ZQc70-P9mZR6KoQWZknbVQUEw08iZ002UQIXnDuMp1zy8TEaO9zX3jOU2nAm3NuRcqYNbkG9gkreFrwHbJdLSr3nFAvwBqw3E1EAQcNy7Xj2LjJCBnHNvF-RJKBm8qGkuPY-eJcDdiy7wp3QOEOqFggwG5E3q9p6r7gxsbRfNgkNaSSgvFT4A82UmU3Ubkm6G-jEtUwFas_ZGxE5Jrympj-c8bdaxK0_jSMDmTG2Ii8HURKgYLjrY2u3GIFS5GMCzTM2aYxWKMIbC8s8Fkvj1cziKxrr_LiP5f-htydHc0P1MHnw68vyT1808OVX5HtdrlyryEoa81up3S_AUxNMWo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+detection+in+EEGs+signals+using+a+fast+weighted+horizontal+visibility+algorithm&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Zhu%2C+Guohun&rft.au=Li%2C+Yan&rft.au=Wen%2C+Peng&rft.date=2014-07-01&rft.issn=0169-2607&rft.volume=115&rft.issue=2&rft.spage=64&rft.epage=75&rft_id=info:doi/10.1016%2Fj.cmpb.2014.04.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260714X00088%2Fcov150h.gif |