中高分辨率遥感协同反演冬小麦覆盖度

为了开展高精度、高时空分辨率的植被覆盖度(fraction vegetation cover,FVC)监测,该文以华北地区冬小麦地为研究对象,采用4期高分一号卫星多光谱(GF1-PMS)、多光谱宽幅(GF1-WFV)与环境一号卫星多光谱(HJ1-CCD)3种传感器同期影像数据集,基于像元二分法模型,研究多源中高分辨率遥感影像协同估算FVC方法。以基于高空间分辨率GF1-PMS影像反演的FVC作为检验数据,对单源直接获取法、多源全生育期法、多源分期法3种反演模型进行了分析比较。研究结果表明:HJ1-CCD、GF1-WFV数据与GF1-PMS数据的FVC直接反演结果具有较高的一致性,但在冬小麦的初...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 16; pp. 161 - 167
Main Author 孙中平 刘素红 姜俊 白雪琪 陈永辉 朱程浩 郭文婷
Format Journal Article
LanguageChinese
Published 遥感科学国家重点实验室,北京师范大学地理科学部,北京100875 2017
环境保护部卫星环境应用中心,北京100094%遥感科学国家重点实验室,北京师范大学地理科学部,北京100875%环境保护部卫星环境应用中心,北京,100094%北京林业大学精准林业北京市重点实验室,北京,100083
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.16.021

Cover

Abstract 为了开展高精度、高时空分辨率的植被覆盖度(fraction vegetation cover,FVC)监测,该文以华北地区冬小麦地为研究对象,采用4期高分一号卫星多光谱(GF1-PMS)、多光谱宽幅(GF1-WFV)与环境一号卫星多光谱(HJ1-CCD)3种传感器同期影像数据集,基于像元二分法模型,研究多源中高分辨率遥感影像协同估算FVC方法。以基于高空间分辨率GF1-PMS影像反演的FVC作为检验数据,对单源直接获取法、多源全生育期法、多源分期法3种反演模型进行了分析比较。研究结果表明:HJ1-CCD、GF1-WFV数据与GF1-PMS数据的FVC直接反演结果具有较高的一致性,但在冬小麦的初期生长阶段,受卫星观测角度效应的影响,GF1-WFV与HJ1-CCD的FVC结果偏高,偏差随冬小麦的成熟封垄而逐渐减弱;多源分期法的时空反演得到的FVC精度最高,GF1-WFV的决定系数为0.984,均方根误差为0.030;HJ1-CCD的决定系数为0.978,均方根误差为0.034;而在缺少GF1-PMS匹配数据时,可通过多源全生育期法提高GF1-WFV与HJ1-CCD数据的反演精度,GF1-WFV的决定系数为0.964,均方根误差为0.044;HJ1-CCD的决定系数为0.950,均方根误差为0.052。通过多传感器的联合反演获取时间序列的高精度的FVC数据,可为研究植被生长状况及生态环境动态变化提供数据基础。
AbstractList 为了开展高精度、高时空分辨率的植被覆盖度(fraction vegetation cover,FVC)监测,该文以华北地区冬小麦地为研究对象,采用4期高分一号卫星多光谱(GF1-PMS)、多光谱宽幅(GF1-WFV)与环境一号卫星多光谱(HJ1-CCD)3种传感器同期影像数据集,基于像元二分法模型,研究多源中高分辨率遥感影像协同估算FVC方法。以基于高空间分辨率GF1-PMS影像反演的FVC作为检验数据,对单源直接获取法、多源全生育期法、多源分期法3种反演模型进行了分析比较。研究结果表明:HJ1-CCD、GF1-WFV数据与GF1-PMS数据的FVC直接反演结果具有较高的一致性,但在冬小麦的初期生长阶段,受卫星观测角度效应的影响,GF1-WFV与HJ1-CCD的FVC结果偏高,偏差随冬小麦的成熟封垄而逐渐减弱;多源分期法的时空反演得到的FVC精度最高,GF1-WFV的决定系数为0.984,均方根误差为0.030;HJ1-CCD的决定系数为0.978,均方根误差为0.034;而在缺少GF1-PMS匹配数据时,可通过多源全生育期法提高GF1-WFV与HJ1-CCD数据的反演精度,GF1-WFV的决定系数为0.964,均方根误差为0.044;HJ1-CCD的决定系数为0.950,均方根误差为0.052。通过多传感器的联合反演获取时间序列的高精度的FVC数据,可为研究植被生长状况及生态环境动态变化提供数据基础。
TD865%TP79%S127; 为了开展高精度、高时空分辨率的植被覆盖度(fraction vegetation cover,FVC)监测,该文以华北地区冬小麦地为研究对象,采用4期高分一号卫星多光谱(GF1-PMS)、多光谱宽幅(GF1-WFV)与环境一号卫星多光谱(HJ1-CCD)3种传感器同期影像数据集,基于像元二分法模型,研究多源中高分辨率遥感影像协同估算FVC方法.以基于高空间分辨率GF1-PMS影像反演的FVC作为检验数据,对单源直接获取法、多源全生育期法、多源分期法3种反演模型进行了分析比较.研究结果表明:HJ1-CCD、GF1-WFV数据与GF1-PMS数据的FVC直接反演结果具有较高的一致性,但在冬小麦的初期生长阶段,受卫星观测角度效应的影响,GF1-WFV与HJ1-CCD的FVC结果偏高,偏差随冬小麦的成熟封垄而逐渐减弱;多源分期法的时空反演得到的FVC精度最高,GF1-WFV的决定系数为0.984,均方根误差为0.030;HJ1-CCD的决定系数为0.978,均方根误差为0.034;而在缺少GF1-PMS匹配数据时,可通过多源全生育期法提高GF1-WFV与HJ1-CCD数据的反演精度,GF1-WFV的决定系数为0.964,均方根误差为0.044;HJ1-CCD的决定系数为0.950,均方根误差为0.052.通过多传感器的联合反演获取时间序列的高精度的FVC数据,可为研究植被生长状况及生态环境动态变化提供数据基础.
Abstract_FL Fraction vegetation cover(FVC)can be used to indicate the growing status of vegetation,which is an important input for some ecological models,hydrological models,meteorological models,and so on.And FVC data set with high precision,high temporal resolution,and high spatial resolution is critical to global change monitoring.Unfortunately,current FVC products are produced using only one kind of remote sensing image,and thus their spatial coverage and temporal coverage are limited.Aiming at acquiring continuous FVC data in space and time,we explored the estimation methods of FVC of winter wheat in North China Plain using high and medium resolution images jointly.This study focused on dimidiate pixel model by combining multi-source images includingGF1-PMSimages with spatial resolution of 8m,GF 1-WFVwithspatial resolution of 16m,and HJ1-CCD with spatial resolution of 30 m.Four phases of remote sensing images of those 3 sensors were selected as data source to conduct the experiments,which covered 4 growth periods of the winter wheat,including turning green &rising stage(March 23,2015 and March 29,2015) and jointing & flowering stage(April 28,2014 and May 5,2014).Within the coincidence regions of those 3 kinds of images,we selected randomly 160 winter wheat sample areas (240 m × 240 m) as the regression samples,and chose randomly another 80 winter wheat sample areas (240 m× 240 m) as the checking samples to verify the performance of the methods.Using these regression samples,we developed multi-source whole-growth-period method (MWM) and multi-source single-growth-period method (MSM) based on the bottom-up method.We compared and analyzed the single-source inversion method (SIM),MWM and MSM based on the estimated FVC result using high spatial resolution GF1-PMS images.The results indicated that the FVC estimations of HJ1-CCD,and GF1-WFV images using SIM method were highly consistent with those of GF 1-PMS images,and their R2 values were both higher than 0.9.However,due to the observation angle effect of GF1-WFV and HJ1-CCD sensors,the estimated FVCs were a little higher in the early growing stages of winter wheat,and the bias decreased gradually with the closing of winter wheat canopy.Compared with SIM method,MWM method and MSM method both worked more effectively and generated higher accuracy.Among those two multi-source methods,MSM method showed the relatively higher accuracy,and its determinant coefficients R2 was 0.984 and the root mean square error(RMSE)was 0.030 using GF1-WFV images,while the R2was 0.978 and the RMSE was 0.034 using HJ1-CCD images.The R2 of MWM method was 0.964 and the RMSE was 0.044 using GF1-WFV images,and the R2 was 0.950 and the RMSE was 0.052 using HJ1-CCD images.Comparison indicated that MWM can be utilized to improve the FVC estimation accuracy using GF1-WFV and HJ1-CCD images when there are no matching GF1-PMS images over the same period.This research shows that the synergetic inversion method of winter wheat FVC with multi-source satellite images can generate long time series and high precision FVC products,which can provide the critical data set for vegetation growth monitoring,monitoring of ecological environment and global change detection.
Author 孙中平 刘素红 姜俊 白雪琪 陈永辉 朱程浩 郭文婷
AuthorAffiliation 遥感科学国家重点实验室,北京师范大学地理科学部,北京100875 环境保护部卫星环境应用中心,北京100094 北京林业大学精准林业北京市重点实验室,北京100083
AuthorAffiliation_xml – name: 遥感科学国家重点实验室,北京师范大学地理科学部,北京100875;环境保护部卫星环境应用中心,北京100094%遥感科学国家重点实验室,北京师范大学地理科学部,北京100875%环境保护部卫星环境应用中心,北京,100094%北京林业大学精准林业北京市重点实验室,北京,100083
Author_FL Guo Wenting
Bai Xueqi
Sun Zhongping
Liu Suhong
Chen Yonghui
Zhu Chenghao
Jiang Jun
Author_FL_xml – sequence: 1
  fullname: Sun Zhongping
– sequence: 2
  fullname: Liu Suhong
– sequence: 3
  fullname: Jiang Jun
– sequence: 4
  fullname: Bai Xueqi
– sequence: 5
  fullname: Chen Yonghui
– sequence: 6
  fullname: Zhu Chenghao
– sequence: 7
  fullname: Guo Wenting
Author_xml – sequence: 1
  fullname: 孙中平 刘素红 姜俊 白雪琪 陈永辉 朱程浩 郭文婷
BookMark eNo9j7tKA0EYhaeIYIx5CUGsdp1_rjulBG8QsEkfZnczcYNONItoSkGiReJaiAgWVgZBBUsJ4tM4ubyFKxGrA4ePc_iWUMG2bQOhVcA-gJJ8veUnaWp9wJh4IgDlEwzSB-FjAgVU_O8XUTlNkxBzoBJjBkVEvz_eZi_37qo3_XqeXF_Ozp_GF49ukLmbvssG489b13t179lsNJwOe5OHOzcaLqMFow_SRvkvS6i2tVmr7HjVve3dykbVi7gCL1Y40pqbQJtQxipklNMGBgNSahIBF4wpRrXGNNBgqMBaxUQAjbhhccAYLaG1-eyptkbbZr3VPunY_LBuu83oLPx1BJEb5uTKnIz227Z5nOTsUSc51J1uXUhKCFaC0x_pgWd9
ClassificationCodes TD865%TP79%S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.16.021
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Coordination inversion methods for vegetation cover of winter wheat by multi-source satellite images
DocumentTitle_FL Coordination inversion methods for vegetation cover of winter wheat by multi-source satellite images
EndPage 167
ExternalDocumentID nygcxb201716021
673220965
GrantInformation_xml – fundername: 国家重点研发计划
  funderid: (2016YFD0800903)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c591-d90caa5f8afb7d9b4353e01f177a2c15644943aa038a1f360a9d2613c5f4d8443
ISSN 1002-6819
IngestDate Thu May 29 04:08:34 EDT 2025
Wed Feb 14 09:57:01 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 16
Keywords GF-1
高分一号
multi-source
覆盖度
作物
remote sensing
遥感
crops
winter wheat
monitoring
监测
像元二分法
fraction vegetation cover
dimidiate pixel model
多源
冬小麦
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591-d90caa5f8afb7d9b4353e01f177a2c15644943aa038a1f360a9d2613c5f4d8443
Notes 11-2047/S
remote sensing; crops; monitoring; multi-source; fraction vegetation cover; winter wheat; dimidiate pixel model; GF-1
Fraction vegetation cover(FVC)can be used to indicate the growing status of vegetation,which is an important input for some ecological models,hydrological models,meteorological models,and so on.And FVC data set with high precision,high temporal resolution,and high spatial resolution is critical to global change monitoring.Unfortunately,current FVC products are produced using only one kind of remote sensing image,and thus their spatial coverage and temporal coverage are limited.Aiming at acquiring continuous FVC data in space and time,we explored the estimation methods of FVC of winter wheat in North China Plain using high and medium resolution images jointly.This study focused on dimidiate pixel model by combining multi-source images including GF1-PMSimages with spatial resolution of 8m,GF1-WFVwithspatial resolution of 16 m,and HJ1-CCD with spatial resolution of 30 m.Four phases of rem
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201716021
chongqing_primary_673220965
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 遥感科学国家重点实验室,北京师范大学地理科学部,北京100875
环境保护部卫星环境应用中心,北京100094%遥感科学国家重点实验室,北京师范大学地理科学部,北京100875%环境保护部卫星环境应用中心,北京,100094%北京林业大学精准林业北京市重点实验室,北京,100083
Publisher_xml – name: 环境保护部卫星环境应用中心,北京100094%遥感科学国家重点实验室,北京师范大学地理科学部,北京100875%环境保护部卫星环境应用中心,北京,100094%北京林业大学精准林业北京市重点实验室,北京,100083
– name: 遥感科学国家重点实验室,北京师范大学地理科学部,北京100875
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1800807
Snippet 为了开展高精度、高时空分辨率的植被覆盖度(fraction vegetation cover,FVC)监测,该文以华北地区冬小麦地为研究对象,采用4期高分一号卫星多光谱(GF1-PMS)、多光谱宽...
TD865%TP79%S127; 为了开展高精度、高时空分辨率的植被覆盖度(fraction vegetation cover,FVC)监测,该文以华北地区冬小麦地为研究对象,采用4期高分一号卫星多光...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 161
SubjectTerms 作物
像元二分法
冬小麦
多源
监测
覆盖度
遥感
高分一号
Title 中高分辨率遥感协同反演冬小麦覆盖度
URI http://lib.cqvip.com/qk/90712X/201716/673220965.html
https://d.wanfangdata.com.cn/periodical/nygcxb201716021
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMNQWRA_iJ9aq9GCOr2Z3k01yzL7uowh6qtBb2ezuez09tbagvQlSPVjrQUTw4MkiqOBRivgL_BluP_6FM9m897a1-HUJYTI7H5ndnZmQTAi5JmTGdClUq4DUCxIUyFnx4reWDm1ho6iwvMRE8eateO42v7EgFsaOfW_sWlpdsTP52pHnSv7HqgADu-Ip2X-w7JAoAKAP9oUWLAztX9mYppwmippZmmpqEqoVTQVViqqYpoomKTUAkVSlFHJ-wFEBNYKmMVWc6o5DnqXKdTSjqu0gHQQCTtKmmjtITI0bSphD1jQx1DgW0CIvSTVwjx0ODjVDXk9Bt7202jg06SSRKKFKEAJaIE0gCBTE4EXwI1o3dIWnQYSoiQI6a6dqwqlhrgNUwgNU5EAGUNCMRiQST9wUghLGOAiDTnNBpD756V7eo-ZROupBQw2BxBInrElpErunpJtZaEPUoB7SqTOe8bMPEMPhvXdKgQGkk9gMDKBQU5h3GFKRw-fI-gDfNtqpVqK2zWHZND4L834Ul8BdPtBwVejLYuUdjvdldVGRwTfb9ExBXfPeBzlBfQfKr_5TS-EcKLKYGbLALZC4EDnDwmAUOAy3c_Yf9vIHNnSllxhWdZgIJcR942TCJLNJZxSeB7gCMfQfIVZhiEfprggivGxhuEULNygIt1vBi3Gc0IGQ138nItZJWbrT792D6M8dxut3s36vETfOnyanfMI3beqv9wwZW1s6S06a3rIvelOeI9GPL5_2P7yunq7vfXu_-_zJ_qN3O4_fVhub1Ytn1ebGzteX1frH6vPm_vbW3tb67ptX1fbWeTLfSefbcy1_mUkrFzpoFZrlWSa6KutaWWgLWUpUsqAbSJmFOVZs4ppHWcYilQXdKGaZLkIItXPR5YXiPLpAxvt3-uVFMm2tiqJuZLkKS27z0oa5zQVjpcxlwcpskkwNtV-8W9eswe2bYYiVnibJtJ-PRf8nu794yH6X_owyRU5gv16LvEzGV5ZXyysQna_Yq97oPwHd_qdc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%AD%E9%AB%98%E5%88%86%E8%BE%A8%E7%8E%87%E9%81%A5%E6%84%9F%E5%8D%8F%E5%90%8C%E5%8F%8D%E6%BC%94%E5%86%AC%E5%B0%8F%E9%BA%A6%E8%A6%86%E7%9B%96%E5%BA%A6&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E4%B8%AD%E5%B9%B3&rft.au=%E5%88%98%E7%B4%A0%E7%BA%A2&rft.au=%E5%A7%9C%E4%BF%8A&rft.au=%E7%99%BD%E9%9B%AA%E7%90%AA&rft.date=2017&rft.pub=%E9%81%A5%E6%84%9F%E7%A7%91%E5%AD%A6%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%86%E7%A7%91%E5%AD%A6%E9%83%A8%2C%E5%8C%97%E4%BA%AC100875&rft.issn=1002-6819&rft.volume=33&rft.issue=16&rft.spage=161&rft.epage=167&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.16.021&rft.externalDocID=nygcxb201716021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg