基于遥感的黄土高原植被物候监测及其对气候变化的响应

为了分析黄土高原地区植被物候特征,该文基于AVHRR传感器获取的陆地长期数据记录(land long term data record,LTDR)V4 NDVI数据,对黄土高原1982-2011年间植被物候的时空变化进行分析,并借助偏相关分析方法对物候与气温和降雨的关系进行量化分析。结果表明:黄土高原近30 a间春季物候提前显著(0.54 d/a,P〈0.001),主要集中在北部草地和灌木植被;秋季物候推迟显著(0.74 d/a,P〈0.001),主要分布在甘肃、陕北、内蒙古和山西北部等地。不同植被的春秋物候稍有差异,稀疏灌木林春季物候提前趋势最多(1.31 d/a),常绿针叶林最小(0.19...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 31; no. 15; pp. 153 - 160
Main Author 谢宝妮 秦占飞 王洋 常庆瑞
Format Journal Article
LanguageChinese
Published 西北农林科技大学资源环境学院,杨凌,712100 2015
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2015.15.021

Cover

Abstract 为了分析黄土高原地区植被物候特征,该文基于AVHRR传感器获取的陆地长期数据记录(land long term data record,LTDR)V4 NDVI数据,对黄土高原1982-2011年间植被物候的时空变化进行分析,并借助偏相关分析方法对物候与气温和降雨的关系进行量化分析。结果表明:黄土高原近30 a间春季物候提前显著(0.54 d/a,P〈0.001),主要集中在北部草地和灌木植被;秋季物候推迟显著(0.74 d/a,P〈0.001),主要分布在甘肃、陕北、内蒙古和山西北部等地。不同植被的春秋物候稍有差异,稀疏灌木林春季物候提前趋势最多(1.31 d/a),常绿针叶林最小(0.19 d/a);秋季物候推迟最多的为乔木园地(1.18 d/a),最少的是水田(0.17 d/a)。黄土高原植被物候主要受气温影响,降雨的变化也会对物候产生一定影响。冬季和前年秋季气温上升是春季物候提前的主要驱动因子;夏季和秋季降雨则对秋季物候休眠期延迟起着重要作用。该研究可为黄土高原生态环境评价及气候变化预测模型提供一定依据。
AbstractList TP79%S127%S161; 为了分析黄土高原地区植被物候特征,该文基于AVHRR传感器获取的陆地长期数据记录(land long term data record,LTDR)V4 NDVI数据,对黄土高原1982-2011年间植被物候的时空变化进行分析,并借助偏相关分析方法对物候与气温和降雨的关系进行量化分析。结果表明:黄土高原近30 a间春季物候提前显著(0.54 d/a,P<0.001),主要集中在北部草地和灌木植被;秋季物候推迟显著(0.74 d/a,P<0.001),主要分布在甘肃、陕北、内蒙古和山西北部等地。不同植被的春秋物候稍有差异,稀疏灌木林春季物候提前趋势最多(1.31 d/a),常绿针叶林最小(0.19 d/a);秋季物候推迟最多的为乔木园地(1.18 d/a),最少的是水田(0.17 d/a)。黄土高原植被物候主要受气温影响,降雨的变化也会对物候产生一定影响。冬季和前年秋季气温上升是春季物候提前的主要驱动因子;夏季和秋季降雨则对秋季物候休眠期延迟起着重要作用。该研究可为黄土高原生态环境评价及气候变化预测模型提供一定依据。
为了分析黄土高原地区植被物候特征,该文基于AVHRR传感器获取的陆地长期数据记录(land long term data record,LTDR)V4 NDVI数据,对黄土高原1982-2011年间植被物候的时空变化进行分析,并借助偏相关分析方法对物候与气温和降雨的关系进行量化分析。结果表明:黄土高原近30 a间春季物候提前显著(0.54 d/a,P〈0.001),主要集中在北部草地和灌木植被;秋季物候推迟显著(0.74 d/a,P〈0.001),主要分布在甘肃、陕北、内蒙古和山西北部等地。不同植被的春秋物候稍有差异,稀疏灌木林春季物候提前趋势最多(1.31 d/a),常绿针叶林最小(0.19 d/a);秋季物候推迟最多的为乔木园地(1.18 d/a),最少的是水田(0.17 d/a)。黄土高原植被物候主要受气温影响,降雨的变化也会对物候产生一定影响。冬季和前年秋季气温上升是春季物候提前的主要驱动因子;夏季和秋季降雨则对秋季物候休眠期延迟起着重要作用。该研究可为黄土高原生态环境评价及气候变化预测模型提供一定依据。
Abstract_FL It is crucial to understand vegetation phenology changes and their relationship with climate change at biome-level when projecting regional ecosystem carbon exchange and climate-biosphere interactions. To further understand the relationship between vegetation growth and climatic factors, in this study, we investigated the variation in vegetation phenology and its linkage with climate change on the Chinese Loess Plateau through analyzing the Land Long Term Data Record (LTDR) NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) and concurrent temperature and precipitation during 1982-2011. Firstly, the maximum value composite (MVC) method was used to composite the 10 d LTDR NDVI dataset in order to reduce effects of atmospheric and cloud noise. The Harmonic Analysis of Time Series (HANTS) method of HANTS software was used to filter points which were still affected by cloud noise after the MVC was used composite and reconstruct the NDVI time series datasets. Secondly, the 30-year average seasonal NDVI curves for the whole study area and each vegetation type were calculated. Pixels with yearly mean values below 0.1 were excluded from the analysis to ensure the inclusion of sparsely vegetated areas in the analysis. The relative change ratio of NDVI was then calculated from the 30-year average NDVI seasonal curves. We then used the maximum and minimum values for relative change ratio of NDVI as the threshold for the onset dates of vegetation green-up (the beginning of growing season, BGS) and dormancy (the end of growing season, EGS). Finally, linear least square regression was employed to estimate the trends of phenology. Partial correlation analysis was performed between the EGS/ BGS and mean monthly temperature and total monthly precipitation. The results showed that vegetation phenology in the study area generally commenced on Julian day 96-150 for natural vegetation and 72-112 for artificial vegetation. The vegetation dormancy usually began on Julian day 283-305 for natural vegetation and 291-323 for artificially planted vegetation. Over the study period, the growing season was increased by 39 days across the Chinese Loess Plateau. In spring, sixty six percent of the study area showed an advance in the vegetation green-up while only 39% of the study area experienced an apparent advance. These areas were mainly covered by grass and shrub. In autumn, areas subject to a significant delayed vegetation dormancy occupied 62% of the study region, being located in Gansu, Northern Shaanxi, Inner Mongolia and Northern Shanxi. The BGS and EGS varied with vegetation types. The highest and lowest advances in the advances in the BGS occurred in open shrub land (1.31 d/a) and evergreen needle-leaf forest (0.19 d/a), respectively. The EGS was delayed to a highest degree in Orchard (1.18 d/a) and to a lowest degree in paddy land (0.17 d/a). Across the whole Loess Plateau, changing temperature was the dominating factor driving the vegetation phenology. A warming winter (February) and pre-autumn (September-November) could trigger an earlier onset of spring green-up and a warming in late spring and early summer (May-June) could result in a delayed onset of autumn dormancy. Results also suggested that summer and autumn precipitation played an important role in autumn vegetation dormancy. At biome level, the climate warming may be responsible for the earlier onset spring green-up for open forest, deciduous broadleaf shrub (DBS), meadow, steppe and herbosa. Decreased precipitation may be the major reason for delayed onset green-up in paddy land. In mixed forestry land, a warming winter (December and January) could lead to a delayed spring green-up. The delay of EGS in DBS and herbosa could also be partly explained by the climate warming in spring and early summer. The precipitation in summer and autumn may be responsible for the delay of EGS for meadow, sparse grassland and dry land. The correlations between deciduous broadleaf forest, evergreen needle-leaf forest and climate were not statistically significant either for BGS or EGS, indicating that these two vegetation types may be not sensitive to climate change. This study provided a useful reference for evaluation and protection of ecological environment and establishment of climate models.
Author 谢宝妮 秦占飞 王洋 常庆瑞
AuthorAffiliation 西北农林科技大学资源环境学院,杨凌712100
AuthorAffiliation_xml – name: 西北农林科技大学资源环境学院,杨凌,712100
Author_FL Qin Zhanfei
Chang Qingrui
Xie Baoni
Wang Yang
Author_FL_xml – sequence: 1
  fullname: Xie Baoni
– sequence: 2
  fullname: Qin Zhanfei
– sequence: 3
  fullname: Wang Yang
– sequence: 4
  fullname: Chang Qingrui
Author_xml – sequence: 1
  fullname: 谢宝妮 秦占飞 王洋 常庆瑞
BookMark eNo9j0tLw0AUhWdRwVr7JwRxlTg3yUwmSym-sOCm-zKZJjVFp9og2p1CXfhoi1ikPiAgupAudKNg_TtOav-FIxXhwoHDd87lzKCMrMsAoXnAJoDnksWaGcWxNAFjy6AMPNPCQEx92IIMyv770ygfx5GPCdguxg5k0YZKhl_Dzvj4KW0lo9vW-LOl7pPxoK86SfrY_n4YjE6f1dHN6O4yfTtX3TN18q5ePtLXnjZVt68urnVKXbXVsDeLpkK-HQf5P82h0spyqbBmFDdX1wtLRUMQDwzPpYQFIcfMAj9wfVLB2HdsQQNfECICSoAxm1OHMwg5c0PBKtxiYSAwDcF17BxamNQecBlyWS3X6vsNqR-WZbMqDv3f7UD0ck3OTUixVZfVvUizu41ohzeaZUqJ52DbZvYPqSZ40g
ClassificationCodes TP79%S127%S161
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2015.15.021
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Monitoring vegetation phenology and their response to climate change on Chinese Loess Plateau based on remote sensing
DocumentTitle_FL Monitoring vegetation phenology and their response to climate change on Chinese Loess Plateau based on remote sensing
EndPage 160
ExternalDocumentID nygcxb201515021
665940338
GrantInformation_xml – fundername: 863计划; 博士点基金; 国家自然科学基金
  funderid: (2013AA102401-2); (20120204110013); (30872073)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c591-97658efa0821be7b5d00b43c6ebc55ce651883a64a81fa87fc8da28fec06f1743
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:28:39 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 15
Keywords LTDR(land long term data record)
植被
黄土高原
phenology
Chinese Loess Plateau
vegetation
remote sensing
遥感
气候变化
物候
陆地长期数据记录
climate change
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591-97658efa0821be7b5d00b43c6ebc55ce651883a64a81fa87fc8da28fec06f1743
Notes 11-2047/S
vegetation; remote sensing; climate change; phenology; LTDR(land long term data record); Chinese Loess Plateau
Xie Baoni, Qin Zhanfei, Wang Yang, Chang Qingrui (College of Natural Resources and Environment, Northwest A &F University, Yangling 712100, China)
It is crucial to understand vegetation phenology changes and their relationship with climate change at biome-level when projecting regional ecosystem carbon exchange and climate-biosphere interactions. To further understand the relationship between vegetation growth and climatic factors, in this study, we investigated the variation in vegetation phenology and its linkage with climate change on the Chinese Loess Plateau through analyzing the Land Long Term Data Record(LTDR) NOAA/AVHRR Normalized Difference Vegetation Index(NDVI) and concurrent temperature and precipitation during 1982-2011. Firstly, the maximum value composite(MVC) method was used to composite the 10 d LTDR NDVI dataset in order to reduce effects of atmospheric and cloud noise. The H
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201515021
chongqing_primary_665940338
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2015
Publisher 西北农林科技大学资源环境学院,杨凌,712100
Publisher_xml – name: 西北农林科技大学资源环境学院,杨凌,712100
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0975642
Snippet 为了分析黄土高原地区植被物候特征,该文基于AVHRR传感器获取的陆地长期数据记录(land long term data record,LTDR)V4 NDVI数据,对黄土高原1982-2011年间植被物候的时空...
TP79%S127%S161; 为了分析黄土高原地区植被物候特征,该文基于AVHRR传感器获取的陆地长期数据记录(land long term data record,LTDR)V4 NDVI数据,对黄土高...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 153
SubjectTerms 植被
气候变化
物候
遥感
陆地长期数据记录
黄土高原
Title 基于遥感的黄土高原植被物候监测及其对气候变化的响应
URI http://lib.cqvip.com/qk/90712X/201515/665940338.html
https://d.wanfangdata.com.cn/periodical/nygcxb201515021
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMPQDRAXxE2tVejCnsnW_kk2O2XYfRdFThd4e-5XX06vWFrQnhXrwoy1ikfoBD0QP0oNeFKx_x321_8KZbPr6UClWWELIzGRmMrvJJJtMCLmSlpnWgZc7vs5cJ_TSzMlYJJ1ClyEMP4WOzIL-jZt8-lZ4bZbNDgwe79u1tLSYTeTLfz1X8j9WhTKwK56SPYRle5VCAeTBvpCChSH9JxvThFHZoLGiSYipSGgiwTekitGEUxEiNImoVJgHUBybDFBNGpCkKqZSYAnQYgmnCrzLKZoIqnyEArkANGlwXCqlqRCoPESOoTA2oAYVymQYjTlmFAgmDQ5QhX3kBtkyBTF4n4QgWGC4M1Snvpd4z3U2-BwlR2UFkiBaZJSFVFhJ1BRV3KivALT3QqFCIAjohCigq2ECiCoZN-SRoWLIXbmmZQIqaxg0DVYNmkDTxOOGrcCnFlPUGniA3r-GUp8ftR0-jghc2G7bjgh2XLJvPuvr3706srF1Fbz6KoQ_RyEZMTMMIYuJHgvcSMgm4HHrQ-G_BfrmnMnQDQIxSIb9CPymITKs4qm4se_eejiD7_W_Ht594O2fe_YxqgHfnz4yL8DLC3pbnvCHPzN__61ARwjdE_fqQcJi3JG5-XbrDnhT5nBbW6ftVp8fNnOSnLATqDFVfw2nyMDy3GlyTLUWbBCZ8gy5XnW2f2yv7T780F3p7Lxe2f2-Ur3t7G5tVmud7vvVn--2dh5_rB682nnzvPvlabX-pHr0tfr0rft5Awqr9c3q2Uugql6sVtsbZ8lMI5mZnHbspSFOzqTngHfNRKlT8Gy9rIwyVrhuFgY5L7OcsbzkGIAwSHmYCk-nItK5KFJf6DJ3ucbZ-Tky1J5vl-fJmC4CnruF5lpEYZrLDKYmRciLIJSpr0U2QkZ7rdK8XceGafaMOELGbDs1bY9xt9m-38rvZdiwMA3zvQsHVjBKjiJmvdx3kQwtLiyVl8ABXswu2_fiFwiNjKE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%81%A5%E6%84%9F%E7%9A%84%E9%BB%84%E5%9C%9F%E9%AB%98%E5%8E%9F%E6%A4%8D%E8%A2%AB%E7%89%A9%E5%80%99%E7%9B%91%E6%B5%8B%E5%8F%8A%E5%85%B6%E5%AF%B9%E6%B0%94%E5%80%99%E5%8F%98%E5%8C%96%E7%9A%84%E5%93%8D%E5%BA%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E8%B0%A2%E5%AE%9D%E5%A6%AE+%E7%A7%A6%E5%8D%A0%E9%A3%9E+%E7%8E%8B%E6%B4%8B+%E5%B8%B8%E5%BA%86%E7%91%9E&rft.date=2015&rft.issn=1002-6819&rft.volume=31&rft.issue=15&rft.spage=153&rft.epage=160&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2015.15.021&rft.externalDocID=665940338
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg