基于图像和光谱信息融合的红茶萎凋程度量化判别

为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 24; pp. 303 - 308
Main Author 宁井铭 孙京京 朱小元 李姝寰 张正竹 黄财旺
Format Journal Article
LanguageChinese
Published 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.24.041

Cover

Abstract 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预测结果较好。证明应用这两种方法能实现对红茶萎凋程度量化判别。
AbstractList 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预测结果较好。证明应用这两种方法能实现对红茶萎凋程度量化判别。
TS272.7%S123; 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预测结果较好。证明应用这两种方法能实现对红茶萎凋程度量化判别。
Abstract_FL Withering is the first procedure and the key step in processing of black tea. It is crucial for the quality of black tea product. Usually, the judgment of the withering degree relies on the processor’s judgment, rather than a quantitative analysis by fast evaluation method. In order to develop the digitized discrimination on withering degrees, different degrees of withering samples were collected in our research. In this study, 168 samples provided by Jindong tea factory in Qimen County were investigated. All of the samples belonged to different withering degrees (55 samples of mild withering, 61 samples of moderate withering and 52 samples of excessive withering). The samples were randomly divided into two subsets at the ratio of 2:1. 112 samples were chosen as the calibration set and the remaining 56 samples were prediction set. The calibration set was used to develop the model, while the prediction set was applied to test the robustness of the model. The withering degree was nondestructively evaluated by hyperspectral imaging technology at the range of 908-1735 nm. It was suggested that the ratio of catechins/amino acids was correspondingly decreased with the development of withering degrees. Furthermore, the contents of catechins and amino acids of these samples were detected by high-performance liquid chromatography (HPLC). The characteristic spectra were extracted from the region of interest (ROI), and standard normal variate (SNV) method was preprocessed to reduce background noise. All of the hyperspectral images of tea samples with different withering degrees were analyzed by principal component analysis (PCA). The first two principal component (PC) images were selected because PC1 and PC2 contributed to 99.59% variance of the total. Therefore, the first two PC images were used for selecting dominate wavelengths. And five dominant wavelengths (1 040, 1 182, 1 249, 1 449 and 1 655 nm) were selected as spectral features. Textual features were collected by Grey level co-occurrence matrix (GLCM) from five dominant wavelengths of images. Fourteen dominant textual features were selected by successive projections algorithm (SPA). Subsequently, linear discriminant analysis (LDA), support vector machine (SVM) and extreme learning machine (ELM) classification models were developed based on spectral features, textural features and data fusion, respectively. Compared with the results of the models built with spectral features or textural features, the LDA, SVM and ELM models based on data fusion showed higher correct discrimination rate in prediction set. The correct discrimination rate of LDA, SVM and ELM based on data fusion were 94.64%, 91.07% and 92.86%, respectively. The results indicated that hyperspectral imaging combined with LDA was a potent tool in the discrimination of withering degrees. At the same time, catechins/amino acids ratio was also applied in the discrimination of withering degrees. The study showed that correlate coefficient of prediction set by catechins/amino acids ratio was 0.8765, and root mean square error of prediction was 0.434. The results in this study provide a new method with fast and scientific of digitized discrimination for withering degree during black tea processing.
Author 宁井铭 孙京京 朱小元 李姝寰 张正竹 黄财旺
AuthorAffiliation 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥230036 安徽祁门金东茶厂,祁门245600
AuthorAffiliation_xml – name: 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600
Author_FL Li Shuhuan
Zhu Xiaoyuan
Sun Jingjing
Huang Caiwang
Zhang Zhengzhu
Ning jingming
Author_FL_xml – sequence: 1
  fullname: Ning jingming
– sequence: 2
  fullname: Sun Jingjing
– sequence: 3
  fullname: Zhu Xiaoyuan
– sequence: 4
  fullname: Li Shuhuan
– sequence: 5
  fullname: Zhang Zhengzhu
– sequence: 6
  fullname: Huang Caiwang
Author_xml – sequence: 1
  fullname: 宁井铭 孙京京 朱小元 李姝寰 张正竹 黄财旺
BookMark eNo9j79Lw0AcxW-oYK39JwRxSvzeXXKXG7X4Cwou3cslTWqKXrVBtKOoNNLaFgcHBUURERzUxSGD_jM9G_8LIxWnB-99eI83g3KqqXyE5jGYGAtuLzbMMIqUiQGIwRwsTAKYmcQywcI5lP_3p1ExikIXbEw5ZFkeLevbZJT09fWHPh7oi54-PUtf30afd19HL-nNuR7G46uTcXKf9t7TYV93uuOnrk4evzsD3bvU8YOOn2fRVCC3I7_4pwVUWV2plNaN8ubaRmmpbHi2wIZFhWS8JgE7gUVdX0pwAho4zBMBtyjUqOBgE-IzkB64FviOdCVm1CXgck5oAS1Mag-kCqSqVxvN_ZbKBquqXfcO3d_LxMpOZeTchPS2mqq-F2bsbivcka12lXEQArOs9gebnHHV
ClassificationCodes TS272.7%S123
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.24.041
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Discriminant of withering quality of Keemun black tea based on information fusion of image and spectrum
DocumentTitle_FL Discriminant of withering quality of Keemun black tea based on information fusion of image and spectrum
EndPage 308
ExternalDocumentID nygcxb201624041
670991616
GrantInformation_xml – fundername: 国家重点研发计划; 国家现代农业(茶叶)产业体系
  funderid: (2016YFD0200900); (CARS-23)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c591-439a67da018f43beaa08f3f86c9f7430d3970522e60ac0b40e8aba163b20b7723
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:07:20 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 24
Keywords data fusion
discriminant analysis
萎凋
image analysis
偏最小二乘法
withering
数据融合
红茶
儿茶素与氨基酸比值
判别分析方法
图像分析
partial least squares approximations
black tea
ratio of catechins to amino acids
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591-439a67da018f43beaa08f3f86c9f7430d3970522e60ac0b40e8aba163b20b7723
Notes 11-2047/S
Withering is the first procedure and the key step in processing of black tea.It is crucial for the quality of black tea product.Usually,the judgment of the withering degree relies on the processor's judgment,rather than a quantitative analysis by fast evaluation method.In order to develop the digitized discrimination on withering degrees,different degrees of withering samples were collected in our research.In this study,168 samples provided by Jindong tea factory in Qimen County were investigated.All of the samples belonged to different withering degrees(55 samples of mild withering,61 samples of moderate withering and 52 samples of excessive withering).The samples were randomly divided into two subsets at the ratio of 2:1.112 samples were chosen as the calibration set and the remaining 56 samples were prediction set.The calibration set was used to develop the model,while the prediction set was applied to test the robustness of the model.The withering degree was nondestructively evaluated by hyperspe
PageCount 6
ParticipantIDs wanfang_journals_nygcxb201624041
chongqing_primary_670991616
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600
Publisher_xml – name: 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.136374
Snippet 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸...
TS272.7%S123; 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 303
SubjectTerms 偏最小二乘法
儿茶素与氨基酸比值
判别分析方法
图像分析
数据融合
红茶
萎凋
Title 基于图像和光谱信息融合的红茶萎凋程度量化判别
URI http://lib.cqvip.com/qk/90712X/201624/670991616.html
https://d.wanfangdata.com.cn/periodical/nygcxb201624041
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-lBdGD-Im1Kj2Y466Zj2STY2Z3liLoqUJvy8zszPa0at2C9iYqrbS2xYMHBUURETyoFw970H-mY9f_wvey2dlpXfyCYXgkL--9vF-Y5IXkDSGXRdtz2lmaVrhTiyt-xp2KTDJWySIvSjLfS5U5jHntuli44V9d4ktT073SqaXVXlxN1ibeK_kfVKEMcMVbsv-AbCEUCoAGfOENCMP7rzCmIaeqSQNNQx_fMjQlAQ0MIT0qm6bEpbJuSuBRNJQ0YDRwTKsm1UAIWFFS3cQqFVLZMK0YlZKGNapAso8EqNAu8oC0QBhmZpXKGpUB8mhpCG6YgUeZKmMGtFLCEJJqf0QE5fWxKRRU1Y1tElWjKBDLDwjXDSMczAYtfDRqTE2IXRn6Q3HUrzw6TjppGytlWXS9IMYsxgD0D0dHWePRnwdYGrbruoY0EgAFK2-jDO93miE_Mk0ZoSENGpO7Cn4BeeMeFr4WVDOqHIOHj6gDAdK0KjEbOWgUAMwNZsK4gY18rWxz8KMdKA1rWFBA1TCSXRooWwUDAqq0tmMISsBIt14aIhL5ASH8HxemHqIun9RfgyKCA5gYLIcalTPyQL3UX44dAbGo6JeGoMjHRXRpSsU5V0g7Mdo5d7ynvTq6RG9nUI95pcWYZ5J-TJjnVY2biR5VVAsVeFRTVF2_yobZ1A6lUu_e6yR3Y-SBdSxmu5hxcRdvmszooBE0x2GEgzslxTznYrYIMQ7LuePhTyGKo2R4kIKbUxXWjCOEjoy88jsTMZ_L8s1u5zasUs2lwW4WdTul9e3iCXLcBqbzeviVOUmm1pZPkWO6s2KT86SnSZC_6u_1t_MXX_MHO_nTrfzR48Gnz3vfXn-__3Hw8km-u7H__OF-_81g68tgdztf39x_v5n33_1Y38m3nuUbb_OND2fIYjNcrC9U7D9YKglXTgXClUjU2hFzJHy44zSKmMy8TIpEZRB7sDaEMwxCuFSwKGGxz1IZxRHEeODlGAJ37yyZ7t7spufIPM94LJWEgCdlfpurqMZiL0vajpPxtkjVLJkrnNG6NUy108LskhDAOmKWzFv3tOwH-E7rEJzn_8wyR44iPdxCvUCmeyur6UUIKnrxJTsGfgKJ79Pc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%BE%E5%83%8F%E5%92%8C%E5%85%89%E8%B0%B1%E4%BF%A1%E6%81%AF%E8%9E%8D%E5%90%88%E7%9A%84%E7%BA%A2%E8%8C%B6%E8%90%8E%E5%87%8B%E7%A8%8B%E5%BA%A6%E9%87%8F%E5%8C%96%E5%88%A4%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AE%81%E4%BA%95%E9%93%AD&rft.au=%E5%AD%99%E4%BA%AC%E4%BA%AC&rft.au=%E6%9C%B1%E5%B0%8F%E5%85%83&rft.au=%E6%9D%8E%E5%A7%9D%E5%AF%B0&rft.date=2016&rft.pub=%E5%AE%89%E5%BE%BD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%8C%B6%E6%A0%91%E7%94%9F%E7%89%A9%E5%AD%A6%E4%B8%8E%E8%B5%84%E6%BA%90%E5%88%A9%E7%94%A8%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%90%88%E8%82%A5%2C230036%25%E5%AE%89%E5%BE%BD%E7%A5%81%E9%97%A8%E9%87%91%E4%B8%9C%E8%8C%B6%E5%8E%82%2C%E7%A5%81%E9%97%A8%2C245600&rft.issn=1002-6819&rft.volume=32&rft.issue=24&rft.spage=303&rft.epage=308&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.24.041&rft.externalDocID=nygcxb201624041
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg