基于图像和光谱信息融合的红茶萎凋程度量化判别
为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预...
        Saved in:
      
    
          | Published in | 农业工程学报 Vol. 32; no. 24; pp. 303 - 308 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600
    
        2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1002-6819 | 
| DOI | 10.11975/j.issn.1002-6819.2016.24.041 | 
Cover
| Abstract | 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预测结果较好。证明应用这两种方法能实现对红茶萎凋程度量化判别。 | 
    
|---|---|
| AbstractList | 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预测结果较好。证明应用这两种方法能实现对红茶萎凋程度量化判别。 TS272.7%S123; 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸比值定量预测研究。通过对图像进行主成分分析,筛选出5个特征波长和对应的光谱特征值,基于灰度共生矩阵提取5个特征波长图像的纹理特征值,并采用连续投影算法优选出14个纹理特征值,然后分别以光谱和纹理特征值融合数据建立红茶萎凋程度的线性判别模型和儿茶素与氨基酸比值的偏最小二乘预测模型。结果表明:采用所研究的方法和建立的模型对工夫红茶萎凋程度判别准确率达到94.64%,儿茶素与氨基酸比值预测相关系数为0.8765,预测均方根误差为0.434,预测结果较好。证明应用这两种方法能实现对红茶萎凋程度量化判别。  | 
    
| Abstract_FL | Withering is the first procedure and the key step in processing of black tea. It is crucial for the quality of black tea product. Usually, the judgment of the withering degree relies on the processor’s judgment, rather than a quantitative analysis by fast evaluation method. In order to develop the digitized discrimination on withering degrees, different degrees of withering samples were collected in our research. In this study, 168 samples provided by Jindong tea factory in Qimen County were investigated. All of the samples belonged to different withering degrees (55 samples of mild withering, 61 samples of moderate withering and 52 samples of excessive withering). The samples were randomly divided into two subsets at the ratio of 2:1. 112 samples were chosen as the calibration set and the remaining 56 samples were prediction set. The calibration set was used to develop the model, while the prediction set was applied to test the robustness of the model. The withering degree was nondestructively evaluated by hyperspectral imaging technology at the range of 908-1735 nm. It was suggested that the ratio of catechins/amino acids was correspondingly decreased with the development of withering degrees. Furthermore, the contents of catechins and amino acids of these samples were detected by high-performance liquid chromatography (HPLC). The characteristic spectra were extracted from the region of interest (ROI), and standard normal variate (SNV) method was preprocessed to reduce background noise. All of the hyperspectral images of tea samples with different withering degrees were analyzed by principal component analysis (PCA). The first two principal component (PC) images were selected because PC1 and PC2 contributed to 99.59% variance of the total. Therefore, the first two PC images were used for selecting dominate wavelengths. And five dominant wavelengths (1 040, 1 182, 1 249, 1 449 and 1 655 nm) were selected as spectral features. Textual features were collected by Grey level co-occurrence matrix (GLCM) from five dominant wavelengths of images. Fourteen dominant textual features were selected by successive projections algorithm (SPA). Subsequently, linear discriminant analysis (LDA), support vector machine (SVM) and extreme learning machine (ELM) classification models were developed based on spectral features, textural features and data fusion, respectively. Compared with the results of the models built with spectral features or textural features, the LDA, SVM and ELM models based on data fusion showed higher correct discrimination rate in prediction set. The correct discrimination rate of LDA, SVM and ELM based on data fusion were 94.64%, 91.07% and 92.86%, respectively. The results indicated that hyperspectral imaging combined with LDA was a potent tool in the discrimination of withering degrees. At the same time, catechins/amino acids ratio was also applied in the discrimination of withering degrees. The study showed that correlate coefficient of prediction set by catechins/amino acids ratio was 0.8765, and root mean square error of prediction was 0.434. The results in this study provide a new method with fast and scientific of digitized discrimination for withering degree during black tea processing. | 
    
| Author | 宁井铭 孙京京 朱小元 李姝寰 张正竹 黄财旺 | 
    
| AuthorAffiliation | 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥230036 安徽祁门金东茶厂,祁门245600 | 
    
| AuthorAffiliation_xml | – name: 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600 | 
    
| Author_FL | Li Shuhuan Zhu Xiaoyuan Sun Jingjing Huang Caiwang Zhang Zhengzhu Ning jingming  | 
    
| Author_FL_xml | – sequence: 1 fullname: Ning jingming – sequence: 2 fullname: Sun Jingjing – sequence: 3 fullname: Zhu Xiaoyuan – sequence: 4 fullname: Li Shuhuan – sequence: 5 fullname: Zhang Zhengzhu – sequence: 6 fullname: Huang Caiwang  | 
    
| Author_xml | – sequence: 1 fullname: 宁井铭 孙京京 朱小元 李姝寰 张正竹 黄财旺  | 
    
| BookMark | eNo9j79Lw0AcxW-oYK39JwRxSvzeXXKXG7X4Cwou3cslTWqKXrVBtKOoNNLaFgcHBUURERzUxSGD_jM9G_8LIxWnB-99eI83g3KqqXyE5jGYGAtuLzbMMIqUiQGIwRwsTAKYmcQywcI5lP_3p1ExikIXbEw5ZFkeLevbZJT09fWHPh7oi54-PUtf30afd19HL-nNuR7G46uTcXKf9t7TYV93uuOnrk4evzsD3bvU8YOOn2fRVCC3I7_4pwVUWV2plNaN8ubaRmmpbHi2wIZFhWS8JgE7gUVdX0pwAho4zBMBtyjUqOBgE-IzkB64FviOdCVm1CXgck5oAS1Mag-kCqSqVxvN_ZbKBquqXfcO3d_LxMpOZeTchPS2mqq-F2bsbivcka12lXEQArOs9gebnHHV | 
    
| ClassificationCodes | TS272.7%S123 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.11975/j.issn.1002-6819.2016.24.041 | 
    
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| DocumentTitleAlternate | Discriminant of withering quality of Keemun black tea based on information fusion of image and spectrum | 
    
| DocumentTitle_FL | Discriminant of withering quality of Keemun black tea based on information fusion of image and spectrum | 
    
| EndPage | 308 | 
    
| ExternalDocumentID | nygcxb201624041 670991616  | 
    
| GrantInformation_xml | – fundername: 国家重点研发计划; 国家现代农业(茶叶)产业体系 funderid: (2016YFD0200900); (CARS-23)  | 
    
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX  | 
    
| ID | FETCH-LOGICAL-c591-439a67da018f43beaa08f3f86c9f7430d3970522e60ac0b40e8aba163b20b7723 | 
    
| ISSN | 1002-6819 | 
    
| IngestDate | Thu May 29 04:04:20 EDT 2025 Wed Feb 14 10:07:20 EST 2024  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 24 | 
    
| Keywords | data fusion discriminant analysis 萎凋 image analysis 偏最小二乘法 withering 数据融合 红茶 儿茶素与氨基酸比值 判别分析方法 图像分析 partial least squares approximations black tea ratio of catechins to amino acids  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c591-439a67da018f43beaa08f3f86c9f7430d3970522e60ac0b40e8aba163b20b7723 | 
    
| Notes | 11-2047/S Withering is the first procedure and the key step in processing of black tea.It is crucial for the quality of black tea product.Usually,the judgment of the withering degree relies on the processor's judgment,rather than a quantitative analysis by fast evaluation method.In order to develop the digitized discrimination on withering degrees,different degrees of withering samples were collected in our research.In this study,168 samples provided by Jindong tea factory in Qimen County were investigated.All of the samples belonged to different withering degrees(55 samples of mild withering,61 samples of moderate withering and 52 samples of excessive withering).The samples were randomly divided into two subsets at the ratio of 2:1.112 samples were chosen as the calibration set and the remaining 56 samples were prediction set.The calibration set was used to develop the model,while the prediction set was applied to test the robustness of the model.The withering degree was nondestructively evaluated by hyperspe  | 
    
| PageCount | 6 | 
    
| ParticipantIDs | wanfang_journals_nygcxb201624041 chongqing_primary_670991616  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016 | 
    
| PublicationDateYYYYMMDD | 2016-01-01 | 
    
| PublicationDate_xml | – year: 2016 text: 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 农业工程学报 | 
    
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering | 
    
| PublicationYear | 2016 | 
    
| Publisher | 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600 | 
    
| Publisher_xml | – name: 安徽农业大学茶树生物学与资源利用国家重点实验室,合肥,230036%安徽祁门金东茶厂,祁门,245600 | 
    
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668  | 
    
| Score | 2.136374 | 
    
| Snippet | 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别及儿茶素与氨基酸... TS272.7%S123; 为了实现对红茶萎凋程度量化判别,该研究提出了一种将图像和光谱信息融合后分别与线性判别分析法和偏最小二乘法结合的技术,进行工夫红茶萎凋程度定性判别...  | 
    
| SourceID | wanfang chongqing  | 
    
| SourceType | Aggregation Database Publisher  | 
    
| StartPage | 303 | 
    
| SubjectTerms | 偏最小二乘法 儿茶素与氨基酸比值 判别分析方法 图像分析 数据融合 红茶 萎凋  | 
    
| Title | 基于图像和光谱信息融合的红茶萎凋程度量化判别 | 
    
| URI | http://lib.cqvip.com/qk/90712X/201624/670991616.html https://d.wanfangdata.com.cn/periodical/nygcxb201624041  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-lBdGD-Im1Kj2Y466Zj2STY2Z3liLoqUJvy8zszPa0at2C9iYqrbS2xYMHBUURETyoFw970H-mY9f_wvey2dlpXfyCYXgkL--9vF-Y5IXkDSGXRdtz2lmaVrhTiyt-xp2KTDJWySIvSjLfS5U5jHntuli44V9d4ktT073SqaXVXlxN1ibeK_kfVKEMcMVbsv-AbCEUCoAGfOENCMP7rzCmIaeqSQNNQx_fMjQlAQ0MIT0qm6bEpbJuSuBRNJQ0YDRwTKsm1UAIWFFS3cQqFVLZMK0YlZKGNapAso8EqNAu8oC0QBhmZpXKGpUB8mhpCG6YgUeZKmMGtFLCEJJqf0QE5fWxKRRU1Y1tElWjKBDLDwjXDSMczAYtfDRqTE2IXRn6Q3HUrzw6TjppGytlWXS9IMYsxgD0D0dHWePRnwdYGrbruoY0EgAFK2-jDO93miE_Mk0ZoSENGpO7Cn4BeeMeFr4WVDOqHIOHj6gDAdK0KjEbOWgUAMwNZsK4gY18rWxz8KMdKA1rWFBA1TCSXRooWwUDAqq0tmMISsBIt14aIhL5ASH8HxemHqIun9RfgyKCA5gYLIcalTPyQL3UX44dAbGo6JeGoMjHRXRpSsU5V0g7Mdo5d7ynvTq6RG9nUI95pcWYZ5J-TJjnVY2biR5VVAsVeFRTVF2_yobZ1A6lUu_e6yR3Y-SBdSxmu5hxcRdvmszooBE0x2GEgzslxTznYrYIMQ7LuePhTyGKo2R4kIKbUxXWjCOEjoy88jsTMZ_L8s1u5zasUs2lwW4WdTul9e3iCXLcBqbzeviVOUmm1pZPkWO6s2KT86SnSZC_6u_1t_MXX_MHO_nTrfzR48Gnz3vfXn-__3Hw8km-u7H__OF-_81g68tgdztf39x_v5n33_1Y38m3nuUbb_OND2fIYjNcrC9U7D9YKglXTgXClUjU2hFzJHy44zSKmMy8TIpEZRB7sDaEMwxCuFSwKGGxz1IZxRHEeODlGAJ37yyZ7t7spufIPM94LJWEgCdlfpurqMZiL0vajpPxtkjVLJkrnNG6NUy108LskhDAOmKWzFv3tOwH-E7rEJzn_8wyR44iPdxCvUCmeyur6UUIKnrxJTsGfgKJ79Pc | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%BE%E5%83%8F%E5%92%8C%E5%85%89%E8%B0%B1%E4%BF%A1%E6%81%AF%E8%9E%8D%E5%90%88%E7%9A%84%E7%BA%A2%E8%8C%B6%E8%90%8E%E5%87%8B%E7%A8%8B%E5%BA%A6%E9%87%8F%E5%8C%96%E5%88%A4%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AE%81%E4%BA%95%E9%93%AD&rft.au=%E5%AD%99%E4%BA%AC%E4%BA%AC&rft.au=%E6%9C%B1%E5%B0%8F%E5%85%83&rft.au=%E6%9D%8E%E5%A7%9D%E5%AF%B0&rft.date=2016&rft.pub=%E5%AE%89%E5%BE%BD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%8C%B6%E6%A0%91%E7%94%9F%E7%89%A9%E5%AD%A6%E4%B8%8E%E8%B5%84%E6%BA%90%E5%88%A9%E7%94%A8%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%90%88%E8%82%A5%2C230036%25%E5%AE%89%E5%BE%BD%E7%A5%81%E9%97%A8%E9%87%91%E4%B8%9C%E8%8C%B6%E5%8E%82%2C%E7%A5%81%E9%97%A8%2C245600&rft.issn=1002-6819&rft.volume=32&rft.issue=24&rft.spage=303&rft.epage=308&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.24.041&rft.externalDocID=nygcxb201624041 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg  |