SenPred: a single-cell RNA sequencing-based machine learning pipeline to classify deeply senescent dermal fibroblast cells for the detection of an in vivo senescent cell burden

Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent...

Full description

Saved in:
Bibliographic Details
Published inGenome medicine Vol. 17; no. 1; pp. 2 - 16
Main Authors Hughes, Bethany K., Davis, Andrew, Milligan, Deborah, Wallis, Ryan, Mossa, Federica, Philpott, Michael P., Wainwright, Linda J., Gunn, David A., Bishop, Cleo L.
Format Journal Article
LanguageEnglish
Published London BioMed Central 14.01.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1756-994X
1756-994X
DOI10.1186/s13073-024-01418-0

Cover

Abstract Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity. Methods Here we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D. Results Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo . This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin. Conclusions We position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities. All code for the SenPred pipeline is available at the following URL: https://github.com/bethk-h/SenPred_HDF .
AbstractList Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.BACKGROUNDSenescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.Here we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D.METHODSHere we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D.Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo. This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin.RESULTSUsing scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo. This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin.We position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities. All code for the SenPred pipeline is available at the following URL: https://github.com/bethk-h/SenPred_HDF .CONCLUSIONSWe position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities. All code for the SenPred pipeline is available at the following URL: https://github.com/bethk-h/SenPred_HDF .
Abstract Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity. Methods Here we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D. Results Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo. This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin. Conclusions We position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities. All code for the SenPred pipeline is available at the following URL: https://github.com/bethk-h/SenPred_HDF .
Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity. Here we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D. Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo. This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin. We position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities.
Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity. Methods Here we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D. Results Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo. This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin. Conclusions We position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities. All code for the SenPred pipeline is available at the following URL: Keywords: 3D organotypic culture, In vivo senescence detection, Living skin equivalent, Machine learning, scRNA-seq, Senescence
Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity. Methods Here we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D. Results Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo . This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin. Conclusions We position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities. All code for the SenPred pipeline is available at the following URL: https://github.com/bethk-h/SenPred_HDF .
BackgroundSenescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.MethodsHere we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D.ResultsUsing scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo. This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin.ConclusionsWe position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities.All code for the SenPred pipeline is available at the following URL: https://github.com/bethk-h/SenPred_HDF.
Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity. Here we present SenPred, a machine-learning pipeline which identifies fibroblast senescence based on single-cell transcriptomics from fibroblasts grown in 2D and 3D. Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental fibroblast senescence to a high degree of accuracy (> 99% true positives). Applying SenPred to in vivo whole skin scRNA-seq datasets reveals that cells grown in 2D cannot accurately detect fibroblast senescence in vivo. Importantly, utilising scRNA-seq from 3D deeply senescent fibroblasts refines our ML model leading to improved detection of senescent cells in vivo. This is context specific, with the SenPred pipeline proving effective when detecting senescent human dermal fibroblasts in vivo, but not the senescence of lung fibroblasts or whole skin. We position this as a proof-of-concept study based on currently available scRNA-seq datasets, with the intention to build a holistic model to detect multiple senescent triggers using future emerging datasets. The development of SenPred has allowed for the detection of an in vivo senescent fibroblast burden in human skin, which could have broader implications for the treatment of age-related morbidities. All code for the SenPred pipeline is available at the following URL: https://github.com/bethk-h/SenPred_HDF .
ArticleNumber 2
Audience Academic
Author Mossa, Federica
Philpott, Michael P.
Gunn, David A.
Wallis, Ryan
Wainwright, Linda J.
Davis, Andrew
Hughes, Bethany K.
Bishop, Cleo L.
Milligan, Deborah
Author_xml – sequence: 1
  givenname: Bethany K.
  surname: Hughes
  fullname: Hughes, Bethany K.
  organization: Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London
– sequence: 2
  givenname: Andrew
  surname: Davis
  fullname: Davis, Andrew
  organization: Unilever R&D
– sequence: 3
  givenname: Deborah
  surname: Milligan
  fullname: Milligan, Deborah
  organization: Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London
– sequence: 4
  givenname: Ryan
  surname: Wallis
  fullname: Wallis, Ryan
  organization: Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London
– sequence: 5
  givenname: Federica
  surname: Mossa
  fullname: Mossa, Federica
  organization: Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London
– sequence: 6
  givenname: Michael P.
  surname: Philpott
  fullname: Philpott, Michael P.
  organization: Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London
– sequence: 7
  givenname: Linda J.
  surname: Wainwright
  fullname: Wainwright, Linda J.
  organization: Unilever R&D
– sequence: 8
  givenname: David A.
  surname: Gunn
  fullname: Gunn, David A.
  organization: Unilever R&D
– sequence: 9
  givenname: Cleo L.
  surname: Bishop
  fullname: Bishop, Cleo L.
  email: c.l.bishop@qmul.ac.uk
  organization: Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39810225$$D View this record in MEDLINE/PubMed
BookMark eNqNUlmLFDEYbGTFPfQP-CABQXzpNUefvsiyeCwsKh7gW8jxZSZDJhmT7pX5V_5E0zPj7oyISD-kqVTVl1TltDjywUNRPCb4nJCueZEIwy0rMa1KTCrSlfhecULauin7vvp2tPd_XJymtMC4qWjVPiiOWd8RTGl9Uvz8DP5jBP0SCZSsnzkoFTiHPr2_QAm-j-BVRkspEmi0FGpuPSAHIvoMo5VdgZuQISDlRErWrJEGWLl1VntICvyQgbgUDhkrY5CZNaBpREImRDTMIe8PoAYbPAoGCY-sRzf2Juw5bI4kx6jBPyzuG-ESPNqtZ8XXN6-_XL4rrz-8vbq8uC5V3eOhlKo3fdMQonWHtVEtkS2rKBFUSgUArO0Nwwo0UZ0xVUVrAhUVuuoo01LU7Ky42vrqIBZ8Fe1SxDUPwvINEOKMizhY5YDXkpCmxhQLKapemR5TJRTBShKFDajsxbZeo1-J9Q_h3K0hwXzqkm-75LlLvumS46x6tVWtRrkEPQURhTs4yuGOt3M-CzfZsGWkYpPD851DDLnKNPClTVOWwkMYE2ekrluKa9pl6tM_qIswRp8T5oxi0uAWk_6ONRP53tabkAeryZRf5OAaTMhm7PlfWPnTsLQqv2FjM34geLYnmINwwzwFN05vIh0Sn-xHcpvF7_ecCXRLUDGkFMH8X9C7elIm-xnEu7v_Q_UL9XkY6A
Cites_doi 10.1186/s13059-019-1862-5
10.1073/pnas.93.24.13742
10.1038/s41581-022-00601-z
10.21203/rs.3.rs-1017512/v1
10.1016/j.celrep.2021.109441
10.1371/journal.pone.0004066
10.1038/s42003-020-0922-4
10.1152/physiol.00036.2016
10.1073/pnas.92.20.9363
10.1016/j.cell.2021.04.048
10.1038/s41514-020-0042-x
10.1007/s00441-023-03768-4
10.1177/2041731414557112
10.18632/aging.204072
10.1038/s41591-018-0092-9
10.1038/s41591-023-02327-2
10.1186/s13059-019-1874-1
10.1242/jcs.261255
10.1016/j.jid.2017.09.045
10.1038/s43587-022-00326-5
10.1101/2023.10.23.563515
10.1038/nmeth.4402
10.1038/s41467-023-39120-1
10.7554/eLife.70283
10.1016/j.ajpath.2021.07.005
10.1038/s41596-021-00505-5
10.1073/pnas.2313326120
10.18632/aging.102903
10.1093/gigascience/giy083
10.1016/j.tcb.2018.02.001
10.1186/s12874-019-0681-4
10.1111/j.1474-9726.2006.00231.x
10.1016/j.celrep.2019.03.104
10.1038/s41586-019-0969-x
10.1089/ten.tea.2015.0139
10.1111/febs.15570
10.1016/j.celrep.2023.112511
10.7554/eLife.70283.sa2
10.1038/nbt.2859
10.1038/s41467-022-32552-1
10.1016/j.cell.2019.05.031
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13073-024-01418-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-994X
EndPage 16
ExternalDocumentID oai_doaj_org_article_5b1165020aba49cf902cac10cb1c0fec
10.1186/s13073-024-01418-0
PMC11731430
A823601130
39810225
10_1186_s13073_024_01418_0
Genre Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/V509668/1; BB/N503629/1; BB/T008709/1
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: Barts Charity
  grantid: MGU0537
  funderid: http://dx.doi.org/10.13039/100015652
– fundername: Unilever
  grantid: MA; MA; MA
  funderid: http://dx.doi.org/10.13039/100007190
– fundername: Barts Charity
  grantid: MGU0537
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/T008709/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/V509668/1
– fundername: Unilever
  grantid: MA
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N503629/1
GroupedDBID ---
0R~
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACJQM
ACUHS
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIAM
BBNVY
BENPR
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
LK8
M1P
M7P
MK0
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
TUS
UKHRP
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
AHSBF
EJD
H13
HZ~
UNPAY
ID FETCH-LOGICAL-c590t-bc9f96611dd80dfc71b73421a2bbceee379f30ced1c8ff44251e42ad4823dba53
IEDL.DBID DOA
ISSN 1756-994X
IngestDate Tue Oct 14 15:13:31 EDT 2025
Sun Oct 26 04:10:16 EDT 2025
Tue Sep 30 17:06:27 EDT 2025
Fri Sep 05 09:14:37 EDT 2025
Tue Oct 14 14:11:11 EDT 2025
Mon Oct 20 22:43:07 EDT 2025
Mon Oct 20 16:54:46 EDT 2025
Thu May 22 21:23:37 EDT 2025
Mon Jul 21 05:58:11 EDT 2025
Wed Oct 01 04:36:39 EDT 2025
Sat Sep 06 07:28:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords In vivo senescence detection
Living skin equivalent
3D organotypic culture
scRNA-seq
Senescence
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-bc9f96611dd80dfc71b73421a2bbceee379f30ced1c8ff44251e42ad4823dba53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/5b1165020aba49cf902cac10cb1c0fec
PMID 39810225
PQID 3201607019
PQPubID 2040231
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_5b1165020aba49cf902cac10cb1c0fec
unpaywall_primary_10_1186_s13073_024_01418_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11731430
proquest_miscellaneous_3155720528
proquest_journals_3201607019
gale_infotracmisc_A823601130
gale_infotracacademiconefile_A823601130
gale_healthsolutions_A823601130
pubmed_primary_39810225
crossref_primary_10_1186_s13073_024_01418_0
springer_journals_10_1186_s13073_024_01418_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-14
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome medicine
PublicationTitleAbbrev Genome Med
PublicationTitleAlternate Genome Med
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References T Stuart (1418_CR26) 2019; 177
ML Idda (1418_CR39) 2020; 12
L Solé-Boldo (1418_CR20) 2020; 3
J Alquicira-Hernandez (1418_CR30) 2019; 20
YV Teo (1418_CR10) 2019; 27
Y Hao (1418_CR28) 2021; 184
C Trapnell (1418_CR33) 2014; 32
W Huang (1418_CR3) 2022; 18
D Saul (1418_CR8) 2022; 13
A Hernandez-Segura (1418_CR1) 2018; 28
F Jochems (1418_CR11) 2021; 36
1418_CR7
1418_CR21
X Qiu (1418_CR32) 2017; 14
S Khadirnaikar (1418_CR9) 2021; 191
1418_CR23
1418_CR25
1418_CR47
1418_CR48
V Smer-Barreto (1418_CR46) 2023; 14
DA Alcorta (1418_CR35) 1996; 93
M Xu (1418_CR36) 2018; 24
SenNet Consortium (1418_CR44) 2022; 2
BM Baker (1418_CR41) 2012; 125
C Ganier (1418_CR22) 2024; 121
AR Stabell (1418_CR15) 2023; 42
R Wallis (1418_CR34) 2022; 14
JAM Sidey-Gibbons (1418_CR6) 2019; 19
CMA Reijnders (1418_CR13) 2015; 21
M Chan (1418_CR16) 2022; 11
T Tabib (1418_CR19) 2018; 138
J Cao (1418_CR31) 2019; 566
JK Kular (1418_CR12) 2014; 5
GP Dimri (1418_CR37) 1995; 92
PB Petrov (1418_CR42) 2023; 136
L Zappia (1418_CR29) 2018; 7
J Kohli (1418_CR4) 2021; 16
S Mine (1418_CR43) 2008; 3
S Ressler (1418_CR38) 2006; 5
K Duval (1418_CR40) 2017; 32
K Demanelis (1418_CR45) 2020; 369
BK Hughes (1418_CR5) 2023; 394
C Hafemeister (1418_CR27) 2019; 20
1418_CR18
1418_CR17
E González-Gualda (1418_CR2) 2021; 288
R Weinmüllner (1418_CR14) 2020; 6
L Sikkema (1418_CR24) 2023; 29
References_xml – volume: 20
  start-page: 1
  year: 2019
  ident: 1418_CR30
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1862-5
– volume: 93
  start-page: 13742
  year: 1996
  ident: 1418_CR35
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.93.24.13742
– volume: 18
  start-page: 611
  year: 2022
  ident: 1418_CR3
  publication-title: Nat Rev Nephrol
  doi: 10.1038/s41581-022-00601-z
– ident: 1418_CR7
  doi: 10.21203/rs.3.rs-1017512/v1
– volume: 36
  start-page: 109441
  year: 2021
  ident: 1418_CR11
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109441
– volume: 3
  start-page: e4066
  year: 2008
  ident: 1418_CR43
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004066
– volume: 369
  start-page: eaaz6876
  year: 2020
  ident: 1418_CR45
  publication-title: Science (1979)
– ident: 1418_CR21
  doi: 10.1038/s42003-020-0922-4
– volume: 32
  start-page: 266
  year: 2017
  ident: 1418_CR40
  publication-title: Physiology
  doi: 10.1152/physiol.00036.2016
– volume: 92
  start-page: 9363
  year: 1995
  ident: 1418_CR37
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.92.20.9363
– volume: 184
  start-page: 3573
  year: 2021
  ident: 1418_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 6
  start-page: 4
  year: 2020
  ident: 1418_CR14
  publication-title: NPJ Aging Mech Dis
  doi: 10.1038/s41514-020-0042-x
– volume: 394
  start-page: 1
  year: 2023
  ident: 1418_CR5
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-023-03768-4
– volume: 5
  start-page: 204173141455711
  year: 2014
  ident: 1418_CR12
  publication-title: J Tissue Eng
  doi: 10.1177/2041731414557112
– volume: 14
  start-page: 4220
  year: 2022
  ident: 1418_CR34
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.204072
– volume: 24
  start-page: 1246
  year: 2018
  ident: 1418_CR36
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0092-9
– ident: 1418_CR25
  doi: 10.1038/s41591-023-02327-2
– volume: 20
  start-page: 296
  year: 2019
  ident: 1418_CR27
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1874-1
– volume: 136
  start-page: jcs261255
  year: 2023
  ident: 1418_CR42
  publication-title: J Cell Sci
  doi: 10.1242/jcs.261255
– volume: 138
  start-page: 802
  year: 2018
  ident: 1418_CR19
  publication-title: J Investig Dermatol
  doi: 10.1016/j.jid.2017.09.045
– volume: 3
  start-page: 1
  year: 2020
  ident: 1418_CR20
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-0922-4
– volume: 2
  start-page: 1090
  year: 2022
  ident: 1418_CR44
  publication-title: Nat Aging
  doi: 10.1038/s43587-022-00326-5
– ident: 1418_CR47
  doi: 10.1101/2023.10.23.563515
– volume: 14
  start-page: 979
  year: 2017
  ident: 1418_CR32
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4402
– volume: 14
  start-page: 3445
  year: 2023
  ident: 1418_CR46
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-39120-1
– volume: 11
  start-page: e70283
  year: 2022
  ident: 1418_CR16
  publication-title: Elife
  doi: 10.7554/eLife.70283
– volume: 191
  start-page: 1966
  year: 2021
  ident: 1418_CR9
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2021.07.005
– volume: 29
  start-page: 1563
  year: 2023
  ident: 1418_CR24
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02327-2
– ident: 1418_CR48
– volume: 16
  start-page: 2471
  year: 2021
  ident: 1418_CR4
  publication-title: Nat Protoc
  doi: 10.1038/s41596-021-00505-5
– ident: 1418_CR23
  doi: 10.1073/pnas.2313326120
– volume: 12
  start-page: 4052
  year: 2020
  ident: 1418_CR39
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102903
– volume: 121
  start-page: e2313326120
  year: 2024
  ident: 1418_CR22
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2313326120
– volume: 7
  start-page: giy083
  year: 2018
  ident: 1418_CR29
  publication-title: Gigascience
  doi: 10.1093/gigascience/giy083
– volume: 125
  start-page: 3015
  year: 2012
  ident: 1418_CR41
  publication-title: J Cell Sci
– volume: 28
  start-page: 436
  year: 2018
  ident: 1418_CR1
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2018.02.001
– volume: 19
  start-page: 1
  year: 2019
  ident: 1418_CR6
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-019-0681-4
– volume: 5
  start-page: 379
  year: 2006
  ident: 1418_CR38
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2006.00231.x
– ident: 1418_CR18
  doi: 10.1016/j.celrep.2019.03.104
– volume: 566
  start-page: 496
  year: 2019
  ident: 1418_CR31
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 21
  start-page: 2448
  year: 2015
  ident: 1418_CR13
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2015.0139
– volume: 288
  start-page: 56
  year: 2021
  ident: 1418_CR2
  publication-title: FEBS J
  doi: 10.1111/febs.15570
– volume: 27
  start-page: 997
  year: 2019
  ident: 1418_CR10
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.03.104
– volume: 42
  start-page: 112511
  year: 2023
  ident: 1418_CR15
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2023.112511
– ident: 1418_CR17
  doi: 10.7554/eLife.70283.sa2
– volume: 32
  start-page: 381
  year: 2014
  ident: 1418_CR33
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2859
– volume: 13
  start-page: 4827
  year: 2022
  ident: 1418_CR8
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-32552-1
– volume: 177
  start-page: 1888
  year: 2019
  ident: 1418_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
SSID ssj0064247
Score 2.4003766
Snippet Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple...
Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and...
Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple...
BackgroundSenescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple...
Abstract Background Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently,...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2
SubjectTerms 3D organotypic culture
Age
Analysis
Antibiotics
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell cycle
Cellular Senescence - genetics
Classification
Datasets
Fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Genomics
Human Genetics
Humans
Humidity
Immunofluorescence
In vivo senescence detection
Learning algorithms
Living skin equivalent
Machine Learning
Medicine/Public Health
Metabolomics
Morphology
Pipe lines
Pipelines
RNA
RNA sequencing
RNA-Seq
scRNA-seq
Senescence
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Skin
Skin - cytology
Systems Biology
Transcriptome
Transcriptomics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFlEfxLvRqiMIPtihM8lkkwgiW2kpgkupFvoW5pa6sCaxu1vZf-VP9JzJpRuF4utcMpmc2zeTcyHkjbSWK-1SpnXGmVSZYJkZc2akAJrYAmwsBjh_mY6PTuXns_hsi0y7WBh0q-x0olfUtjJ4R74XhT4XGiCSj_VPhlWj8O9qV0JDtaUV7AefYuwG2Q4xM9aIbO8fTI9POt0MYFsmXehMOt5bCGRxBnaKocNjyvjAPPks_v_q6g1j9bcjZf839Q65tSprtf6l5vMNg3V4j9xtkSadNKxxn2y58gG52dSeXD8kv7-68vjC2fdUUbwvmDuGl_j0ZDqhrX81tDK0cpb-8C6XjrY1Js5pPasxkN3RZUUNAvBZsabWuXq-htllkyMKGkDtz2kBR_JKw6glxSUWFIAyBeAJ_UvvCVbSqqCqpLOSXs4uq40n-FfSPtTiETk9PPj26Yi15RuYiTO-ZNpkBRymhLA2BaqbROgkkqFQodZgml2UZEXEjbPCpEUhQXkIJ0NlZRpGVqs4ekxGZVW6p4Q6BzjSpja0CEETQLVjJU0CWERpDUsE5F1HtbxusnTk_nSTjvOGxjnQOPc0znlA9pGw_UjMsO0bqovzvBXYPNaYmAjAtNJKZqbIeGiUEdxoYXjhTEBeIVvkTbhqryfyCVaQB6UZwTJv_QjUFMAdMLsJeIAtYc6twcidwUiQcDPs7lgvbzXMIr-Sh4C87rtxJnrNla5awRgQhiTkcZgG5EnDqf2moyzFw34ckHTAw4OvMuwpZ999_nEhkghgNrzXbsfuV-913Wff7UXiP6j07PpdPye3QyzFzAUTcoeMlhcr9wLw4VK_bIX-DxswZCo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9yIuqD-G311AiCD164pE2_fDsPj0PwEPXg3kK-qgtrutx2T_a_8k90Ju3WrYroazJp0s5k5jfNzISQ59I5ro2vmDE1Z1LXgtW24MxKATxxDdhYTHB-d1Icn8q3Z_nZUCYHc2G2z-9FVewvBQohA0vCMCSxYuCeXwYjVcSD2eJwo3UBRstykxTzx3ETwxPr8_-uhbfM0K8hkuM56XVydRUWev1Nz-dbpujoJrkxYEh60DP9Frnkw21ypb9Vcn2HfP_ow_tz715RTfFPwNwz_D1PP5wc0CFyGloZ2i9Hv8ZgSk-H2yM-08VsgSnqnnYttQitZ82aOu8X8zWMDn31J2gAhT6nDTjbrQGqjuIUSwoQmAKkhP4uxngF2jZUBzoL9GJ20W49IS7JxCSKu-T06M2nw2M2XMzAbF7zjhlbN-AmCeFcBfy0pTBlJlOhU2PA6PqsrJuMW--ErZpGgloQXqbaySrNnNF5do_shDb4B4R6DwjRVS51CC5LwKuFlrYElKGNgSkS8nLDNbXo62-o6LdUhep5rIDHKvJY8YS8RsaOlFg7OzaASKlhK6rcYMkhgMnaaFnbpuap1VZwa4TljbcJeYpiofpE1FEDqAO8Gx7UYQbTvIgUqANAOmB0n8oAr4TVtCaUuxNK2Lt22r0RPTXojqXK0lj1D7B3Qp6N3TgS4-GCb1dAAzCwTHmeVgm530vq-NJZXaEbnyekmsjw5KtMe8LsS6wsLkSZAYCGde1txP3nuv722ffGLfEPXHr4f09_RK6leOkyF0zIXbLTna_8Y0CCnXkSVcAPpGxWfg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamTgh44D4IDDASEg_MXZw4N94KYpqQKBNQqTxFvmVEZEnUpkPlV_ETOXaS0gyEQOLVPo5vx-d8js8FoadMKZcLHRMhEpcwnlCSyNAlklHYE5WBjjUOzm-n4fGMvZkH8x30rveFMZFJz3T_rjze9kEvWhcHk0JBLw5rlbUnPg4Pl9RwKgF1Q4zdYkzgDr8bBgDOR2h3Nj2ZfLJukUFIkoTNe9eZ3zYcqCcbxf9XWb2lrC4aUm5eU6-iy6uy5uuvvCi2FNbRdVT3U23tVL6MV40Yy28XokD-x7W4ga514BZPWm68iXZ0eQtdatNdrm-j7x90ebLQ6gXm2PyiKDQx7wb4_XSCO5NuKCVGsSp8Zq08Ne7SWpziOq-N77zGTYWlwfx5tsZK67pYQ-uyDUsFBaBpCpzlwmTK4csGmy6WGLA5BqwL9Y01PitxlWFe4rzE5_l5tfUFOyRhvTvuoNnR64-vjkmXMYLIIHEbImSSwf2NUqViYDQZURH5zKPcEwLQgPajJPNdqRWVcZYxkFdUM48rFnu-Ejzw99CorEp9D2GtAbqqWHnKoN4IgHTImYwA_nAhoAsHPe8ZJa3bwCCpvVDFYdruQQp7kNo9SF0HvTS8tKE0Qb1tQbU4TTsZkQbCxEIC_M4FZ4nMEteTXFJXCirdTEsHPTacmLYeshvRlE5M0nqQ0z5088xSGOEEXAKtWx8LmJIJ8zWg3B9QglCRw-qe29NOqC1T37PhCOFS4KAnm2rT0hjqlbpaAQ3g08hzAy920N32cGwm7Sex-b8QOCgeHJvBqgxryvyzDXlOaeQDsodxHfQn7Oe4_rTsB5tT-Be7dP_fyB-gK57JBu1SQtk-GjWLlX4IELURjzqx8wPCoIx_
  priority: 102
  providerName: Unpaywall
Title SenPred: a single-cell RNA sequencing-based machine learning pipeline to classify deeply senescent dermal fibroblast cells for the detection of an in vivo senescent cell burden
URI https://link.springer.com/article/10.1186/s13073-024-01418-0
https://www.ncbi.nlm.nih.gov/pubmed/39810225
https://www.proquest.com/docview/3201607019
https://www.proquest.com/docview/3155720528
https://pubmed.ncbi.nlm.nih.gov/PMC11731430
https://genomemedicine.biomedcentral.com/counter/pdf/10.1186/s13073-024-01418-0
https://doaj.org/article/5b1165020aba49cf902cac10cb1c0fec
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: AAJSJ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: C6C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgEQIOiDeBpRgJiQNrrZ04icOtW-2yQqKqFlYqJ8uvQKWSVNt2Uf8VP5Gxk4YGJODApVLtcf2YyczndB4IveTWUqWdIFoXlHBVMFKYjBLDGfDElmBjfYDz-3F2es7fTdPpTqkv7xPWpAduDu4w1T5BDIAapRUvTFnQ2CjDqNHM0NIZr32pKLaXqUYHA6jm-TZERmSHS-ZFmYA9It6xURDaM0MhW__vOnnHKP3qMNn9a3oL3VhXC7X5pubzHcN0cgfdbhElHjY7uYuuuOoeut7UmNzcR98_uGpy4ewbrLB_LzB3xL-sx2fjIW79qKGVeGtm8dfgWulwW0viM17MFj5g3eFVjY0H2rNyg61zi_kGRldNLihoAPU-xyVcvWsNVCvsp1hiAMQYACb0r4LHV4XrEqsKzyp8Obusd34hLEmHkIoH6Pzk-OPolLRlGohJC7oi2hQlXJoYs1YAd03OdJ7wmKlYazDBLsmLMqHGWWZEWXJQEszxWFku4sRqlSYP0V5VV-4xws4BXrTCxtZDzRzQa6a4yQFzKK1higi93nJNLppsHDLcYkQmGx5L4LEMPJY0QkeesR2lz6QdGkC-ZCtf8m_yFaHnXixkE5ba6QM59JXiQTkmMM2rQOE1AkgHjG4CG2BLPrdWj3K_RwlPsul3b0VPtppkKZM45AAEJB6hF123H-m94ypXr4EGQGEe0zQWEXrUSGq36aQQ_lKfRkj0ZLh3Kv2eavYl5BlnLE8ATsO6Drbi_nNdfzr2g-6R-AcuPfkfXHqKbsa-MDNlhPF9tLe6WLtngBZXeoCu5tN8gK4dHY8nZ_BtlI0GQVnA59spg57z8WT46QeHlm0q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4IxKAPxrurKDXR-CAN05nuzowJMYtCQGBDEBLeSm-Dm6wz6-4C2X_lL_C3eU5nZtnRhPjCay_Tds7pOV_bcyHkrbA2UNolTOs0YEKlnKWmEzAjONDEZqBj0cH5oNfZORFfT9unC-R37QuDZpW1TPSC2hYG78jXo9DHQgNE8mn4k2HWKHxdrVNoqCq1gt3wIcYqx449N72CI9x4Y_cL0PtdGG5vHX_eYVWWAWbaaTBh2qQZYH7OrU1gcibmOo5EyFWoNWgQF8VpFgXGWW6SLBPA49yJUFmRhJHVCrNGgApYEpFI4fC3tLnVOzyqdQGAexHXrjpJZ33McUsx0IsMDSwTFjTUoc8a8K9umFOOfxtuzl5v75Hli3yopldqMJhTkNsPyP0K2dJuyYoPyYLLH5E7Za7L6WPy65vLD0fOfqSK4v3EwDF8NKBHvS6t7LmhlKFWtfSHN_F0tMppcU6H_SE6zjs6KahBwN_PptQ6NxxMoXdexqSCAlAzA5r1NabJUeMJxSHGFIA5BaAL9RNveZbTIqMqp_2cXvYvi7kv-Clp79rxhJzcCiGfksW8yN1zQp0D3GoTG1qEvDGg6I4SJgbso7SGIVrkQ001OSyjgkh_mko6sqSxBBpLT2MZtMgmEnbWEiN6-4JidC4rASHbGgMhAXhXWonUZGkQGmV4YDQ3QeZMi6wiW8jSPXYml2QXM9aDkI5gmPe-BUom4A7oXTpYwJIwxlej5UqjJUgU06yuWU9WEm0sr_dfi7yZVWNPtNLLXXEBbWDzxWHQDpMWeVZy6mzRUZrg5UK7RZIGDzf-SrMm73_38c45jyOA9TCvtZrdr-d1029fm22J_6DSi5tXvUqWd44P9uX-bm_vJbkbYhpofxO3QhYnowv3CrDpRL-uBAAlZ7ctc_4A1jSisA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQEdcD4iZQqJGQeKBW48S5eFsWVuWqKqBS3yxfKSstTrSbLdp_xU9k7BxsACF4tcexkxnPfHbmQOgp0zoU0uREyiIkTBSUFCoNiWIUeKJLsLEuwPnDUXp4wt6eJqdbUfze273_JdnGNLgsTbY5qHXZbvE8PVhRJ5oE7Atxjoo5gUP7RQbWzdUwmKbTXhcDuGZZHyrzx3Ejc-Sz9v-um7eM06-Ok8Pf02voytrWYvNNLBZbBmp2A13vkCWetKJwE10w9ha61Naa3NxG3z8Ze7w0-gUW2N0PLAxxl_b449EEd_7U0EqcVdP4q3exNLirKXGG63ntAtcNbiqsHOCelxusjakXGxht25xQ0ABqfoFLOIJXEqga7KZYYQDGGIAm9Dfe88viqsTC4rnF5_PzausJfknSh1bcQSez15-nh6Qr10BUUoQNkaoo4fBEqdY5cFllVGYxi6iIpARTbOKsKONQGU1VXpYMlAU1LBKa5VGspUjiu2jHVtbcR9gYwI0615F2kDMDFJsKpjLAHkJKmCJAz3uu8brNysH9aSZPectjDjzmnsc8DNBLx9iB0mXU9g3V8ox3G5Qn0iUiAvAspGCFKoswUkLRUEmqwtKoAO05seBteOqgF_jEVYwHJRnDNM88hdMMIB0wug1wgFdyObZGlLsjStjRatzdix7vNMqKx5HPBQiIPEBPhm430nnJWVOtgQbAYRaFSZQH6F4rqcNLx0XuDvdJgPKRDI--yrjHzr_4fOOUZjHAaljXfi_uP9f1t8--P2yJf-DSg_97-h66fPxqxt-_OXr3EF2NXFXmkBLKdtFOs1ybRwAVG_nYa4Mf7NNhtA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamTgh44D4IDDASEg_MXZw4N94KYpqQKBNQqTxFvmVEZEnUpkPlV_ETOXaS0gyEQOLVPo5vx-d8js8FoadMKZcLHRMhEpcwnlCSyNAlklHYE5WBjjUOzm-n4fGMvZkH8x30rveFMZFJz3T_rjze9kEvWhcHk0JBLw5rlbUnPg4Pl9RwKgF1Q4zdYkzgDr8bBgDOR2h3Nj2ZfLJukUFIkoTNe9eZ3zYcqCcbxf9XWb2lrC4aUm5eU6-iy6uy5uuvvCi2FNbRdVT3U23tVL6MV40Yy28XokD-x7W4ga514BZPWm68iXZ0eQtdatNdrm-j7x90ebLQ6gXm2PyiKDQx7wb4_XSCO5NuKCVGsSp8Zq08Ne7SWpziOq-N77zGTYWlwfx5tsZK67pYQ-uyDUsFBaBpCpzlwmTK4csGmy6WGLA5BqwL9Y01PitxlWFe4rzE5_l5tfUFOyRhvTvuoNnR64-vjkmXMYLIIHEbImSSwf2NUqViYDQZURH5zKPcEwLQgPajJPNdqRWVcZYxkFdUM48rFnu-Ejzw99CorEp9D2GtAbqqWHnKoN4IgHTImYwA_nAhoAsHPe8ZJa3bwCCpvVDFYdruQQp7kNo9SF0HvTS8tKE0Qb1tQbU4TTsZkQbCxEIC_M4FZ4nMEteTXFJXCirdTEsHPTacmLYeshvRlE5M0nqQ0z5088xSGOEEXAKtWx8LmJIJ8zWg3B9QglCRw-qe29NOqC1T37PhCOFS4KAnm2rT0hjqlbpaAQ3g08hzAy920N32cGwm7Sex-b8QOCgeHJvBqgxryvyzDXlOaeQDsodxHfQn7Oe4_rTsB5tT-Be7dP_fyB-gK57JBu1SQtk-GjWLlX4IELURjzqx8wPCoIx_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SenPred%3A+a+single-cell+RNA+sequencing-based+machine+learning+pipeline+to+classify+deeply+senescent+dermal+fibroblast+cells+for+the+detection+of+an+in+vivo+senescent+cell+burden&rft.jtitle=Genome+medicine&rft.au=Bethany+K.+Hughes&rft.au=Andrew+Davis&rft.au=Deborah+Milligan&rft.au=Ryan+Wallis&rft.date=2025-01-14&rft.pub=BMC&rft.eissn=1756-994X&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs13073-024-01418-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b1165020aba49cf902cac10cb1c0fec
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-994X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-994X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-994X&client=summon