基于机器学习算法的烤烟香型分类研究
为了探索烤烟香型判别分析的方法,采集了我国典型香型的烤烟样本,运用机器学习的方法对训练集和测试集的样本进行了模型拟合,结果表明:对于清香型、浓香型、中间香型拟合最好的机器学习算法为神经网络模型,就香型而言,该模型对于清香型、浓香型评价相对较好,中间香型整体判定效果较低;就数据集而言,在数据准备中分部位进行香型判别较为合理。在具体香型分析判别中,可首选神经网络机器学习算法,为烟草质量评价和卷烟产品研发等提供技术依据。...
Saved in:
Published in | 江西农业学报 Vol. 28; no. 2; pp. 43 - 48 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
安徽中烟工业有限责任公司 技术中心,安徽 合肥,230088%中国农业科学院 烟草研究所,山东 青岛,266101
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-8581 |
Cover
Abstract | 为了探索烤烟香型判别分析的方法,采集了我国典型香型的烤烟样本,运用机器学习的方法对训练集和测试集的样本进行了模型拟合,结果表明:对于清香型、浓香型、中间香型拟合最好的机器学习算法为神经网络模型,就香型而言,该模型对于清香型、浓香型评价相对较好,中间香型整体判定效果较低;就数据集而言,在数据准备中分部位进行香型判别较为合理。在具体香型分析判别中,可首选神经网络机器学习算法,为烟草质量评价和卷烟产品研发等提供技术依据。 |
---|---|
AbstractList | 为了探索烤烟香型判别分析的方法,采集了我国典型香型的烤烟样本,运用机器学习的方法对训练集和测试集的样本进行了模型拟合,结果表明:对于清香型、浓香型、中间香型拟合最好的机器学习算法为神经网络模型,就香型而言,该模型对于清香型、浓香型评价相对较好,中间香型整体判定效果较低;就数据集而言,在数据准备中分部位进行香型判别较为合理。在具体香型分析判别中,可首选神经网络机器学习算法,为烟草质量评价和卷烟产品研发等提供技术依据。 TP181; 为了探索烤烟香型判别分析的方法,采集了我国典型香型的烤烟样本,运用机器学习的方法对训练集和测试集的样本进行了模型拟合,结果表明:对于清香型、浓香型、中间香型拟合最好的机器学习算法为神经网络模型,就香型而言,该模型对于清香型、浓香型评价相对较好,中间香型整体判定效果较低;就数据集而言,在数据准备中分部位进行香型判别较为合理。在具体香型分析判别中,可首选神经网络机器学习算法,为烟草质量评价和卷烟产品研发等提供技术依据。 |
Abstract_FL | To explore the methods for flue-cured tobacco types classification, typical tobacco samples were collected from main tobacco-planted areas in China.These samples had been trained and tested by several machine learning methods to model fitting.The results showed that Neural Network algorithm could expressed best prediction from these machine learning methods to predict the flue-cured tobacco types, the Qing and Nong types were trained and tested best by the machine learning method, but the Zhong type was trained and tested worse by such methods, discriminant by vary part tobacco leaves was reasonable in the data preparation.So Neural Network algorithm could be used to predict the flue-cured tobacco types in tobacco quality evaluation and cigarette production. |
Author | 郭东锋 闫宁 胡海洲 刘非 邹鹏 窦玉青 张忠锋 舒俊生 |
AuthorAffiliation | 安徽中烟工业有限责任公司技术中心,安徽合肥230088 中国农业科学院烟草研究所,山东青岛266101 |
AuthorAffiliation_xml | – name: 安徽中烟工业有限责任公司 技术中心,安徽 合肥,230088%中国农业科学院 烟草研究所,山东 青岛,266101 |
Author_FL | YAN Ning SHU Jun-sheng ZOU Peng DOU Yu-qing HU Hai-zhou LIU Fei GUO Dong-feng ZHANG Zhong-feng |
Author_FL_xml | – sequence: 1 fullname: GUO Dong-feng – sequence: 2 fullname: YAN Ning – sequence: 3 fullname: HU Hai-zhou – sequence: 4 fullname: LIU Fei – sequence: 5 fullname: ZOU Peng – sequence: 6 fullname: DOU Yu-qing – sequence: 7 fullname: ZHANG Zhong-feng – sequence: 8 fullname: SHU Jun-sheng |
Author_xml | – sequence: 1 fullname: 郭东锋 闫宁 胡海洲 刘非 邹鹏 窦玉青 张忠锋 舒俊生 |
BookMark | eNotjj1Lw0AAhm-oYG37J1ycAveRu9yNUvyCgoPu4e5yqSl60QSxnSsiCE6KVKTtIEUHBREE499pevgvDNTlfZeH533XQM2m1tRAHUGIPE45WgWtPE8URIEfcEhFHZByUsyL28VTUY5eyrfZ_Hvq3h8Wn_fu8dINn91w8jsbleOb8vrKffy46Z17_WqClVge56b13w1wsL112N71Ovs7e-3NjqepgJ6QVBlGMYo0QTrwjeCRMEgzjqhgBkqsfB35TFbvuBaYxyLGShAVII2jmDTAxtJ6IW0sbTfspeeZrfbCXt8O-gpDxGAVsCLXl6Q-Sm33LKnY0yw5kdkgZIxjglkgyB9791_R |
ClassificationCodes | TP181 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Study on Classification of Flue-cured Tobacco Based on Machine Learning Methods |
DocumentTitle_FL | Study on Classification of Flue-cured Tobacco Based on Machine Learning Methods |
EndPage | 48 |
ExternalDocumentID | jxnyxb201602010 668232679 |
GrantInformation_xml | – fundername: 中国烟草总公司科技重点项目“烤烟生产结构优化效应及关键技术研究与应用”; 安徽中烟工业有限责任公司科技计划项目“皖南烟叶生产GAP 管理模式研究”; “皖南烟叶生产等级结构优化技术研究”。 funderid: (110201402007); (2014124); (2014125)。 |
GroupedDBID | -04 .3O 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 C~G DYU OZF TCJ TGD U1G U5N W95 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c590-9a5be6521dc31c74e98d9e1c681596e0a2b4cd46a1008c928f9f2b93b71c2df3 |
ISSN | 1001-8581 |
IngestDate | Thu May 29 04:10:54 EDT 2025 Wed Feb 14 10:20:42 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | 香型 机器学习 烤烟 Classification Machine learning Odor type 分类 Flue-cured tobacco |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c590-9a5be6521dc31c74e98d9e1c681596e0a2b4cd46a1008c928f9f2b93b71c2df3 |
Notes | 36-1124/S Flue-cured tobacco;Odor type;Classification;Machine learning To explore the methods for flue- cured tobacco types classification,typical tobacco samples were collected from main tobacco-planted areas in China. These samples had been trained and tested by several machine learning methods to model fitting. The results showed that Neural Network algorithm could expressed best prediction from these machine learning methods to predict the flue-cured tobacco types,the Qing and Nong types were trained and tested best by the machine learning method,but the Zhong type was trained and tested worse by such methods,discriminant by vary part tobacco leaves was reasonable in the data preparation. So Neural Network algorithm could be used to predict the flue-cured tobacco types in tobacco quality evaluation and cigarette production. GUO Dong-feng1 , YAN Ning2. , HU Hai-zhou2, LIU Fei, ZOU Peng1 , DOU Yu-qing2, ZHANG Zhong-feng2, SHU Jun-sheng1 (1. Technology Center of Anhui Cigarette Industrial Limited Company, Hefei |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jxnyxb201602010 chongqing_primary_668232679 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 江西农业学报 |
PublicationTitleAlternate | Acta Agriculturae Jiangxi |
PublicationYear | 2016 |
Publisher | 安徽中烟工业有限责任公司 技术中心,安徽 合肥,230088%中国农业科学院 烟草研究所,山东 青岛,266101 |
Publisher_xml | – name: 安徽中烟工业有限责任公司 技术中心,安徽 合肥,230088%中国农业科学院 烟草研究所,山东 青岛,266101 |
SSID | ssib017478059 ssj0027515 ssib001101297 ssib051373412 |
Score | 2.0478523 |
Snippet | ... TP181;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 43 |
SubjectTerms | 分类 机器学习 烤烟 香型 |
Title | 基于机器学习算法的烤烟香型分类研究 |
URI | http://lib.cqvip.com/qk/98155X/201602/668232679.html https://d.wanfangdata.com.cn/periodical/jxnyxb201602010 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdAg96UH8xFqVHJxTiOzn7JvjbLKhCHqxhXoKO_uR4iG1NYXaa0UEwZMiFbE9SNGDggiC8e80XfwXvje7SRYRUS_D4-XN-9zZfbuZ94axGzK1NN4bs7YEKslxYtGWcZK2c1uktpWKXJhamNt3xPKqd2vNX2s0itqupe2Rvpns_rau5H-iijiMK1XJ_kNkZ0wRgTDGF0eMMI5_FWMe-Vz2eKh45NEIEY8Elx2DwZ8kV0CA6nIlDA1iLB4FXEVcBkQculz6hJE43SMAXK6mADKPJM1FVsQw4hASAMBBEE1o8zA0DC0uzSwleSjqKa-RYhtWwJXPw57hYPQklYBEz5UUHBSSTS8Ekk8adae0HcKgKAhbBkKJRiW0COwWySBy20hFYaWRONVpVYpLMPO6aI3hAA65BQEcodcyNiijSkAOBTklLzmEHeNCYwcBc2XAcHeMoj2ygrzqoeH1LytlyWf1GKCNZuCXh8lMnxMO1NaDU7vpl32mqvSh7Bv6Sw9vIQAzVxFQoSlmhLT1sHtvdZ62UpO1-b-5Np1pUEt7fdsN3FpbNCfwzckcMy2pL8j6xnCwidmOKT4b5vFwUMuTVs6yM9ULTlOVV-s51thdP89Oq8FW1eQlu8DcycH4ePz85M14sv9-8vHo-Nth8enVyZeXxevHxd67Yu_gx9H-5O2zydMnxefvxeGL4sPXi-xuL1rpLLerwzvaiS8tXPC-zgTmhmni2kngZRJSmdmJAMyfRWbFjvaS1BMxNZdKpAO5zB0tXR3YiZPm7iW2MNwYZpdZM9Va544FGnLX8zOhvVhjlg-pwLdp3_MW2dLM-P6DskVLf-bwRdas3NGvFu7D_v2d4aMdTRG3aC_IlT8yWGKniLL86naVLYy2trNrmIeO9HUTxJ_XZ2Ob |
linkProvider | CAB International |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E7%9A%84%E7%83%A4%E7%83%9F%E9%A6%99%E5%9E%8B%E5%88%86%E7%B1%BB%E7%A0%94%E7%A9%B6&rft.jtitle=%E6%B1%9F%E8%A5%BF%E5%86%9C%E4%B8%9A%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%AD%E4%B8%9C%E9%94%8B+%E9%97%AB%E5%AE%81+%E8%83%A1%E6%B5%B7%E6%B4%B2+%E5%88%98%E9%9D%9E+%E9%82%B9%E9%B9%8F+%E7%AA%A6%E7%8E%89%E9%9D%92+%E5%BC%A0%E5%BF%A0%E9%94%8B+%E8%88%92%E4%BF%8A%E7%94%9F&rft.date=2016&rft.issn=1001-8581&rft.volume=28&rft.issue=2&rft.spage=43&rft.epage=48&rft.externalDocID=668232679 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F98155X%2F98155X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxnyxb%2Fjxnyxb.jpg |