基于改进均值漂移算法的绿色作物图像分割方法
针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用Otsu方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法...
Saved in:
| Published in | 农业工程学报 Vol. 30; no. 24; pp. 161 - 167 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095
2014
南京农业大学信息科学与技术学院,南京 210095 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.3969/j.issn.1002-6819.2014.24.019 |
Cover
| Abstract | 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用Otsu方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法,作物图像的错分率均小于6.5%。 |
|---|---|
| AbstractList | S126%TP391.41; 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用 Otsu 方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法,作物图像的错分率均小于6.5%。 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用Otsu方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法,作物图像的错分率均小于6.5%。 |
| Abstract_FL | Digital image processing technology has received considerable attention in many aspects of agriculture, some typical examples including estimation physiological status of crops, disease and insect pest identification, vegetation-cover estimation, and quality detection for agricultural products. One of the most important and essential tasks is the crop image segmentation which separates the green crop material or region of interest from the background. In recent years, green crop image segmentation has been an important research topic and several methods have been proposed. However, green crop image segmentation is still a difficult problem since the green crop images usually involve complicated backgrounds. To deal with this problem, we propose in this paper a novel segmentation method based on Mean shift and color index. Mean shift is an iterative procedure that shifts each data point to the average of data points in its neighborhood. The performance of Mean shift depends heavily on the size of bandwidth which means that bandwidth selection is a key issue in mean shift-based image smoothing and segmentation. Classical Mean shift segmentation method needs spatial bandwidth and range bandwidth to be initialized, which usually leads to lower segmentation precision. We present an improved Mean shift algorithm by using adaptive spatial and range bandwidth. Firstly, color index was extracted according to the color feature of the green crop image in the RGB color space. Secondly, with the extracted color index, images were smoothed and segmented by Mean shift algorithm. The proposed improved Mean shift algorithm employs an adaptive bandwidth strategy where the adaptive spatial bandwidth is determined according to the color distribution of the images by combining color information and spatial information. It means that a small spatial bandwidth is suitable for images containing much more detailed information, while images containing large flat areas require a larger bandwidth. This approach smoothed the images without the loss of detailed information. In addition, adaptive range bandwidth can be obtained by Asymptotic Mean Integrated Square Error (AMISE). Finally, with Otsu method, the images were classified into two parts:green and non-green. In order to verify the performance of the proposed method, the comparison experiments have been carried out. Different test images containing green crops were utilized to compare the proposed method with the color index-based segmentation methods such as ExG and CIVE methods, which have been widely used recently. These test images were acquired under field conditions and natural light conditions, covering different crop and soil types. Experiments showed that the results of the proposed method were superior to that of ExG and CIVE. Compared to the ExG and CIVE methods, there are less small black and white regions and segmentation errors in the segmentation results of the proposed method, particularly for the images that included strongly shadowed parts and some crop straws. Experiment results also demonstrated that our method was more insensible to soil types and illuminant variations compared with the ExG and CIVE methods and that the average segmentation errors of green crop images were less than 6.5%. In summary, the proposed segmentation method in this paper can segment the green crop effectively and obtain better performance than the traditional color index methods. |
| Author | 伍艳莲 赵力 姜海燕 郭小清 黄芬 |
| AuthorAffiliation | 南京农业大学信息科学与技术学院,南京210095 南京农业大学国家信息农业工程技术中心,南京210095 |
| AuthorAffiliation_xml | – name: 南京农业大学信息科学与技术学院,南京 210095; 南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095 |
| Author_FL | Huang Fen Guo Xiaoqing Zhao Li Jiang Haiyan Wu Yanlian |
| Author_FL_xml | – sequence: 1 fullname: Wu Yanlian – sequence: 2 fullname: Zhao Li – sequence: 3 fullname: Jiang Haiyan – sequence: 4 fullname: Guo Xiaoqing – sequence: 5 fullname: Huang Fen |
| Author_xml | – sequence: 1 fullname: 伍艳莲 赵力 姜海燕 郭小清 黄芬 |
| BookMark | eNo9j8tKw0AYhWdRwVr7EiK4SvznksnMSqR4g4Kb7sM0ZmqKTrVBtDtRUbvRjRewiktx46KuetG-TJP0MYxUXB04fJzLHMqZhgkQWsRgU8nlct0Oo8jYGIBYXGBpE8DMJswGLHMo_-_PomIUhVVwMHUBGM6jlfi1P-7fJHe9yagTv1zFp8NkeJa-DdKPx-TzPn26SAejSbs7_npO2-9x5zs-v42vL-N2N3noZcA8mtFqLwqKf1pAlfW1SmnTKm9vbJVWy5bvSLCEltp3FBZauy7njIIIXK4ZuJQHriA-k4Q5kpMqU2RHgMuYEo4MpAh0tlPTAlqaxh4ro5WpefXGUdNkhZ5p1fyT6u9fwoBARi5MSX-3YWqHYcYeNMN91Wx5nFOHAqdAfwDdGHAF |
| ClassificationCodes | S126%TP391.41 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1002-6819.2014.24.019 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitleAlternate | Image segmentation method for green crops using improved mean shift |
| DocumentTitle_FL | Image segmentation method for green crops using improved mean shift |
| EndPage | 167 |
| ExternalDocumentID | nygcxb201424020 663530630 |
| GrantInformation_xml | – fundername: 国家自然科学基金; 国家863计划; 国家科技支撑计划 funderid: (30971697); (2013AA100404); (2011BAD21B03) |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
| ID | FETCH-LOGICAL-c590-8f9fc5a18ff77664308e76f40736e782c49245962b4a2d80744a859e98ef004f3 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:04:18 EDT 2025 Wed Feb 14 10:36:23 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 24 |
| Keywords | 算法 algorithms color index mean shift image segmentation bandwidth 作物 图像分割 均值漂移 颜色指数 crops 带宽 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c590-8f9fc5a18ff77664308e76f40736e782c49245962b4a2d80744a859e98ef004f3 |
| Notes | Digital image processing technology has received considerable attention in many aspects of agriculture, some typical examples including estimation physiological status of crops, disease and insect pest identification, vegetation-cover estimation, and quality detection for agricultural products. One of the most important and essential tasks is the crop image segmentation which separates the green crop material or region of interest from the background. In recent years, green crop image segmentation has been an important research topic and several methods have been proposed. However, green crop image segmentation is still a difficult problem since the green crop images usually involve complicated backgrounds. To deal with this problem, we propose in this paper a novel segmentation method based on Mean shift and color index. Mean shift is an iterative procedure that shifts each data point to the average of data points in its neighborhood. The performance of Mean shift depends heavily on the size of bandwidth whi |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_nygcxb201424020 chongqing_primary_663530630 |
| PublicationCentury | 2000 |
| PublicationDate | 2014 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – year: 2014 text: 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | 农业工程学报 |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2014 |
| Publisher | 南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095 南京农业大学信息科学与技术学院,南京 210095 |
| Publisher_xml | – name: 南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095 – name: 南京农业大学信息科学与技术学院,南京 210095 |
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.0540552 |
| Snippet | 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统... S126%TP391.41; 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 161 |
| SubjectTerms | 作物 图像分割 均值漂移 带宽 算法 颜色指数 |
| Title | 基于改进均值漂移算法的绿色作物图像分割方法 |
| URI | http://lib.cqvip.com/qk/90712X/201424/663530630.html https://d.wanfangdata.com.cn/periodical/nygcxb201424020 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals issn: 1002-6819 databaseCode: FIJ dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 20151231 titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 omitProxy: true ssIdentifier: ssj0041925 providerName: Ingenta |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVEJwQDxFKaAe2BNKiO31eveE1omtCglOReotil075ZJCaSXoCQECeoELD4mCOCIuHMqpD-ifqZP-DGbGzqMPQVspskbr8cw3M9bO7mY9y9gNK27Glh1HZSETrywgx5S168pyXIVcLGMVKTq15O49OXlf3Jl2p0dKD4Z2LS0uRJV46cDvSo4TVWiDuOJXskeIbF8oNAAN8YUrRBiuh4oxD1yuQ-4bHgi8qoAHkmugNQ8U90OufeKpc5jzA6Gq3K8hD1yVzQOPG4_7PhEB1x7dcrh2sUWDQIEEMIAoEKg0923SVee6hregxWhSATwBqXC4CokAfklE_hQAkwSsUDE8LCY2STJBuELV0OIDKkJiQBQZYurcSJSgDNzqvSz0EBhU72F0iAhA7YAF3OHiDzUZgDu446ITdO4WUop2eT2ExKLRLFCOoKpkn0SY-TFAvUUTa7BcSlrq5FAKjKkdbKERqHtgWO5H0gPx8CUxh9xYZLPFTXg4T5GDINgBceJTxFxYEKI1QUg-q-2HehPm5zAk5rZ7XDP2g6YXTVu7eVTxwu7F2ufRXMP7ZUM3cAASu5bjHEqrmHelKpJj3qPYYihvWnlF_mIIZuUntOzN7o6WmrI7yqz0ZeL-TFGxRaVayN9dP739tBU_iZAH_0isnmCjNi7dldio8et-OJg7WLg80k9uNpaIkIO5uGs5eBJEf_8Y7p5waStFAeMkdHw5xlv_Qog1XGbn2q1HMDKlDwXbabPdGhrTTp1lZ4rJ6ITJe5ZzbGRp9jw7bVrzRUGe5AK7nX1b315_23m_trO1kn19nT3b7Gw-737f6P781Pn1ofv5ZXdja2d5dfv3l-7yj2zlT_biXfbmVba82vm4BgwX2VQYTNUmy8WhK-XYxaoSqU5jt2mpNPXAfOFUVeLJVMBIADpzZcdC2wJP7IpE057BSlqiqVydaJWk4JTUucRK7bl2cplNuLYWOMNLU5UKy0uV0NKDoaGagceTSI2x8b4nGg_z2joNnAA5WAdwjE0UvmkUPe7jxp5QXvk_yzg7hXS-ZnqVlRbmF5NrMItYiK4X8f8LpcvMzA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E5%9D%87%E5%80%BC%E6%BC%82%E7%A7%BB%E7%AE%97%E6%B3%95%E7%9A%84%E7%BB%BF%E8%89%B2%E4%BD%9C%E7%89%A9%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E4%BC%8D%E8%89%B3%E8%8E%B2&rft.au=%E8%B5%B5%E5%8A%9B&rft.au=%E5%A7%9C%E6%B5%B7%E7%87%95&rft.au=%E9%83%AD%E5%B0%8F%E6%B8%85&rft.date=2014&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%9B%BD%E5%AE%B6%E4%BF%A1%E6%81%AF%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E4%B8%AD%E5%BF%83%EF%BC%8C%E5%8D%97%E4%BA%AC+210095%25%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C210095&rft.issn=1002-6819&rft.issue=24&rft.spage=161&rft.epage=167&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2014.24.019&rft.externalDocID=nygcxb201424020 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |