基于改进均值漂移算法的绿色作物图像分割方法

针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用Otsu方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 24; pp. 161 - 167
Main Author 伍艳莲 赵力 姜海燕 郭小清 黄芬
Format Journal Article
LanguageChinese
Published 南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095 2014
南京农业大学信息科学与技术学院,南京 210095
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.24.019

Cover

Abstract 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用Otsu方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法,作物图像的错分率均小于6.5%。
AbstractList S126%TP391.41; 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用 Otsu 方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法,作物图像的错分率均小于6.5%。
针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统的均值漂移分割方法需要人为地设定空域带宽和值域带宽这2个参数。该文首先根据绿色作物图像的颜色特点,提取图像的颜色指数;然后采用均值漂移算法,将图像的颜色信息与空间信息结合起来,根据作物图像颜色分布的丰富程度定义自适应空域带宽,采用渐近积分均方差来获得自适应值域带宽,对图像进行平滑滤波;最后采用Otsu方法将平滑后的图像分成两部分:绿色部分和背景部分。试验结果表明,该方法能够有效地分割出绿色作物,并在分割性能上明显优于常规的颜色指数方法,作物图像的错分率均小于6.5%。
Abstract_FL Digital image processing technology has received considerable attention in many aspects of agriculture, some typical examples including estimation physiological status of crops, disease and insect pest identification, vegetation-cover estimation, and quality detection for agricultural products. One of the most important and essential tasks is the crop image segmentation which separates the green crop material or region of interest from the background. In recent years, green crop image segmentation has been an important research topic and several methods have been proposed. However, green crop image segmentation is still a difficult problem since the green crop images usually involve complicated backgrounds. To deal with this problem, we propose in this paper a novel segmentation method based on Mean shift and color index. Mean shift is an iterative procedure that shifts each data point to the average of data points in its neighborhood. The performance of Mean shift depends heavily on the size of bandwidth which means that bandwidth selection is a key issue in mean shift-based image smoothing and segmentation. Classical Mean shift segmentation method needs spatial bandwidth and range bandwidth to be initialized, which usually leads to lower segmentation precision. We present an improved Mean shift algorithm by using adaptive spatial and range bandwidth. Firstly, color index was extracted according to the color feature of the green crop image in the RGB color space. Secondly, with the extracted color index, images were smoothed and segmented by Mean shift algorithm. The proposed improved Mean shift algorithm employs an adaptive bandwidth strategy where the adaptive spatial bandwidth is determined according to the color distribution of the images by combining color information and spatial information. It means that a small spatial bandwidth is suitable for images containing much more detailed information, while images containing large flat areas require a larger bandwidth. This approach smoothed the images without the loss of detailed information. In addition, adaptive range bandwidth can be obtained by Asymptotic Mean Integrated Square Error (AMISE). Finally, with Otsu method, the images were classified into two parts:green and non-green. In order to verify the performance of the proposed method, the comparison experiments have been carried out. Different test images containing green crops were utilized to compare the proposed method with the color index-based segmentation methods such as ExG and CIVE methods, which have been widely used recently. These test images were acquired under field conditions and natural light conditions, covering different crop and soil types. Experiments showed that the results of the proposed method were superior to that of ExG and CIVE. Compared to the ExG and CIVE methods, there are less small black and white regions and segmentation errors in the segmentation results of the proposed method, particularly for the images that included strongly shadowed parts and some crop straws. Experiment results also demonstrated that our method was more insensible to soil types and illuminant variations compared with the ExG and CIVE methods and that the average segmentation errors of green crop images were less than 6.5%. In summary, the proposed segmentation method in this paper can segment the green crop effectively and obtain better performance than the traditional color index methods.
Author 伍艳莲 赵力 姜海燕 郭小清 黄芬
AuthorAffiliation 南京农业大学信息科学与技术学院,南京210095 南京农业大学国家信息农业工程技术中心,南京210095
AuthorAffiliation_xml – name: 南京农业大学信息科学与技术学院,南京 210095; 南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095
Author_FL Huang Fen
Guo Xiaoqing
Zhao Li
Jiang Haiyan
Wu Yanlian
Author_FL_xml – sequence: 1
  fullname: Wu Yanlian
– sequence: 2
  fullname: Zhao Li
– sequence: 3
  fullname: Jiang Haiyan
– sequence: 4
  fullname: Guo Xiaoqing
– sequence: 5
  fullname: Huang Fen
Author_xml – sequence: 1
  fullname: 伍艳莲 赵力 姜海燕 郭小清 黄芬
BookMark eNo9j8tKw0AYhWdRwVr7EiK4SvznksnMSqR4g4Kb7sM0ZmqKTrVBtDtRUbvRjRewiktx46KuetG-TJP0MYxUXB04fJzLHMqZhgkQWsRgU8nlct0Oo8jYGIBYXGBpE8DMJswGLHMo_-_PomIUhVVwMHUBGM6jlfi1P-7fJHe9yagTv1zFp8NkeJa-DdKPx-TzPn26SAejSbs7_npO2-9x5zs-v42vL-N2N3noZcA8mtFqLwqKf1pAlfW1SmnTKm9vbJVWy5bvSLCEltp3FBZauy7njIIIXK4ZuJQHriA-k4Q5kpMqU2RHgMuYEo4MpAh0tlPTAlqaxh4ro5WpefXGUdNkhZ5p1fyT6u9fwoBARi5MSX-3YWqHYcYeNMN91Wx5nFOHAqdAfwDdGHAF
ClassificationCodes S126%TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2014.24.019
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Image segmentation method for green crops using improved mean shift
DocumentTitle_FL Image segmentation method for green crops using improved mean shift
EndPage 167
ExternalDocumentID nygcxb201424020
663530630
GrantInformation_xml – fundername: 国家自然科学基金; 国家863计划; 国家科技支撑计划
  funderid: (30971697); (2013AA100404); (2011BAD21B03)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c590-8f9fc5a18ff77664308e76f40736e782c49245962b4a2d80744a859e98ef004f3
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:36:23 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 24
Keywords 算法
algorithms
color index
mean shift
image segmentation
bandwidth
作物
图像分割
均值漂移
颜色指数
crops
带宽
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590-8f9fc5a18ff77664308e76f40736e782c49245962b4a2d80744a859e98ef004f3
Notes Digital image processing technology has received considerable attention in many aspects of agriculture, some typical examples including estimation physiological status of crops, disease and insect pest identification, vegetation-cover estimation, and quality detection for agricultural products. One of the most important and essential tasks is the crop image segmentation which separates the green crop material or region of interest from the background. In recent years, green crop image segmentation has been an important research topic and several methods have been proposed. However, green crop image segmentation is still a difficult problem since the green crop images usually involve complicated backgrounds. To deal with this problem, we propose in this paper a novel segmentation method based on Mean shift and color index. Mean shift is an iterative procedure that shifts each data point to the average of data points in its neighborhood. The performance of Mean shift depends heavily on the size of bandwidth whi
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201424020
chongqing_primary_663530630
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2014
Publisher 南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095
南京农业大学信息科学与技术学院,南京 210095
Publisher_xml – name: 南京农业大学国家信息农业工程技术中心,南京 210095%南京农业大学信息科学与技术学院,南京,210095
– name: 南京农业大学信息科学与技术学院,南京 210095
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0540552
Snippet 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑和分割的结果。传统...
S126%TP391.41; 针对绿色农作物图像背景复杂且分割难的问题,提出一种基于改进均值漂移算法的分割方法。采用均值漂移算法对图像进行平滑和分割时,带宽的选择直接影响平滑...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 161
SubjectTerms 作物
图像分割
均值漂移
带宽
算法
颜色指数
Title 基于改进均值漂移算法的绿色作物图像分割方法
URI http://lib.cqvip.com/qk/90712X/201424/663530630.html
https://d.wanfangdata.com.cn/periodical/nygcxb201424020
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVEJwQDxFKaAe2BNKiO31eveE1omtCglOReotil075ZJCaSXoCQECeoELD4mCOCIuHMqpD-ifqZP-DGbGzqMPQVspskbr8cw3M9bO7mY9y9gNK27Glh1HZSETrywgx5S168pyXIVcLGMVKTq15O49OXlf3Jl2p0dKD4Z2LS0uRJV46cDvSo4TVWiDuOJXskeIbF8oNAAN8YUrRBiuh4oxD1yuQ-4bHgi8qoAHkmugNQ8U90OufeKpc5jzA6Gq3K8hD1yVzQOPG4_7PhEB1x7dcrh2sUWDQIEEMIAoEKg0923SVee6hregxWhSATwBqXC4CokAfklE_hQAkwSsUDE8LCY2STJBuELV0OIDKkJiQBQZYurcSJSgDNzqvSz0EBhU72F0iAhA7YAF3OHiDzUZgDu446ITdO4WUop2eT2ExKLRLFCOoKpkn0SY-TFAvUUTa7BcSlrq5FAKjKkdbKERqHtgWO5H0gPx8CUxh9xYZLPFTXg4T5GDINgBceJTxFxYEKI1QUg-q-2HehPm5zAk5rZ7XDP2g6YXTVu7eVTxwu7F2ufRXMP7ZUM3cAASu5bjHEqrmHelKpJj3qPYYihvWnlF_mIIZuUntOzN7o6WmrI7yqz0ZeL-TFGxRaVayN9dP739tBU_iZAH_0isnmCjNi7dldio8et-OJg7WLg80k9uNpaIkIO5uGs5eBJEf_8Y7p5waStFAeMkdHw5xlv_Qog1XGbn2q1HMDKlDwXbabPdGhrTTp1lZ4rJ6ITJe5ZzbGRp9jw7bVrzRUGe5AK7nX1b315_23m_trO1kn19nT3b7Gw-737f6P781Pn1ofv5ZXdja2d5dfv3l-7yj2zlT_biXfbmVba82vm4BgwX2VQYTNUmy8WhK-XYxaoSqU5jt2mpNPXAfOFUVeLJVMBIADpzZcdC2wJP7IpE057BSlqiqVydaJWk4JTUucRK7bl2cplNuLYWOMNLU5UKy0uV0NKDoaGagceTSI2x8b4nGg_z2joNnAA5WAdwjE0UvmkUPe7jxp5QXvk_yzg7hXS-ZnqVlRbmF5NrMItYiK4X8f8LpcvMzA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E5%9D%87%E5%80%BC%E6%BC%82%E7%A7%BB%E7%AE%97%E6%B3%95%E7%9A%84%E7%BB%BF%E8%89%B2%E4%BD%9C%E7%89%A9%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E4%BC%8D%E8%89%B3%E8%8E%B2&rft.au=%E8%B5%B5%E5%8A%9B&rft.au=%E5%A7%9C%E6%B5%B7%E7%87%95&rft.au=%E9%83%AD%E5%B0%8F%E6%B8%85&rft.date=2014&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%9B%BD%E5%AE%B6%E4%BF%A1%E6%81%AF%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E4%B8%AD%E5%BF%83%EF%BC%8C%E5%8D%97%E4%BA%AC+210095%25%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C210095&rft.issn=1002-6819&rft.issue=24&rft.spage=161&rft.epage=167&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2014.24.019&rft.externalDocID=nygcxb201424020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg