高标准基本农田建设区域土壤重金属含量的高光谱反演

为快速高效的获取高标准基本农田建设区域土壤重金属信息,以新郑市高标准基本农田建设区域为研究对象,共采集154个土壤样品,在室内利用ASD Field Spec3型地物光谱仪获得土壤高光谱数据,对土壤样品在400-2 400 nm的光谱反射率进行多元散射校正(multiplicative scatter correction,MSC)和Savitzky-Golay(SG)平滑后,进行一阶微分(first order differential reflectance,FDR)和二阶微分(second order differential reflectance,SDR)变换,并与Cr、Cd、Zn、...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 12; pp. 230 - 239
Main Author 张秋霞 张合兵 刘文锴 赵素霞
Format Journal Article
LanguageChinese
Published 河南理工大学测绘与国土信息工程学院,焦作,454000%河南理工大学测绘与国土信息工程学院,焦作 454000 2017
华北水利水电大学资源与环境学院,郑州 450046
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.12.030

Cover

Abstract 为快速高效的获取高标准基本农田建设区域土壤重金属信息,以新郑市高标准基本农田建设区域为研究对象,共采集154个土壤样品,在室内利用ASD Field Spec3型地物光谱仪获得土壤高光谱数据,对土壤样品在400-2 400 nm的光谱反射率进行多元散射校正(multiplicative scatter correction,MSC)和Savitzky-Golay(SG)平滑后,进行一阶微分(first order differential reflectance,FDR)和二阶微分(second order differential reflectance,SDR)变换,并与Cr、Cd、Zn、Cu、Pb 5种重金属含量进行相关性分析,遴选出通过P=0.01显著性检验的高光谱特征波段作为反演模型的自变量,采用116个建模集样本构建偏最小二乘模型(partial least square regress,PLSR),通过精度检验筛选每个土壤重金属的最佳反演模型,并采用最佳地统计插值方法对高标准基本农田建设区域土壤重金属进行空间插值。结果表明:Cr的SDR-PLSR模型为最佳反演模型(R2=0.88,RPD=1.68),Cd的R-PLSR模型为最佳反演模型(R2=0.70,RPD=1.50),Zn的R-PLSR模型为最佳反演模型(R2=0.88,RPD=2.05),Cu的R-PLSR模型为最佳反演模型(R2=0.99,RPD=3.36),Pb的SDR-PLSR模型为最佳反演模型(R2=0.93,RPD=3.16);采用构建的土壤重金属的最佳模型,对土壤重金属含量进行空间插值,结合高标准农田建设标准可知Zn含量符合土壤环境质量Ⅱ类标准且均低于土壤背景值,Cr、Cd、Cu和Pb符合土壤环境质量Ⅱ类标准,但是部分区域超过了土壤背景值。该研究为高光谱反演模型用于高标准基本农田建设区域土壤基础信息的实时监测提供了参考。
AbstractList 为快速高效的获取高标准基本农田建设区域土壤重金属信息,以新郑市高标准基本农田建设区域为研究对象,共采集154个土壤样品,在室内利用ASD Field Spec3型地物光谱仪获得土壤高光谱数据,对土壤样品在400-2 400 nm的光谱反射率进行多元散射校正(multiplicative scatter correction,MSC)和Savitzky-Golay(SG)平滑后,进行一阶微分(first order differential reflectance,FDR)和二阶微分(second order differential reflectance,SDR)变换,并与Cr、Cd、Zn、Cu、Pb 5种重金属含量进行相关性分析,遴选出通过P=0.01显著性检验的高光谱特征波段作为反演模型的自变量,采用116个建模集样本构建偏最小二乘模型(partial least square regress,PLSR),通过精度检验筛选每个土壤重金属的最佳反演模型,并采用最佳地统计插值方法对高标准基本农田建设区域土壤重金属进行空间插值。结果表明:Cr的SDR-PLSR模型为最佳反演模型(R2=0.88,RPD=1.68),Cd的R-PLSR模型为最佳反演模型(R2=0.70,RPD=1.50),Zn的R-PLSR模型为最佳反演模型(R2=0.88,RPD=2.05),Cu的R-PLSR模型为最佳反演模型(R2=0.99,RPD=3.36),Pb的SDR-PLSR模型为最佳反演模型(R2=0.93,RPD=3.16);采用构建的土壤重金属的最佳模型,对土壤重金属含量进行空间插值,结合高标准农田建设标准可知Zn含量符合土壤环境质量Ⅱ类标准且均低于土壤背景值,Cr、Cd、Cu和Pb符合土壤环境质量Ⅱ类标准,但是部分区域超过了土壤背景值。该研究为高光谱反演模型用于高标准基本农田建设区域土壤基础信息的实时监测提供了参考。
S127; 为快速高效的获取高标准基本农田建设区域土壤重金属信息,以新郑市高标准基本农田建设区域为研究对象,共采集154个土壤样品,在室内利用ASD Field Spec3型地物光谱仪获得土壤高光谱数据,对土壤样品在400~2400 nm的光谱反射率进行多元散射校正(multiplicative scatter correction,MSC)和Savitzky-Golay(SG)平滑后,进行一阶微分(first order differential reflectance,FDR)和二阶微分(second order differential reflectance,SDR)变换,并与Cr、Cd、Zn、Cu、Pb 5种重金属含量进行相关性分析,遴选出通过P=0.01显著性检验的高光谱特征波段作为反演模型的自变量,采用116个建模集样本构建偏最小二乘模型(partial least square regress,PLSR),通过精度检验筛选每个土壤重金属的最佳反演模型,并采用最佳地统计插值方法对高标准基本农田建设区域土壤重金属进行空间插值.结果表明:Cr的SDR-PLSR模型为最佳反演模型(R 2=0.88,RPD=1.68),Cd的R-PLSR模型为最佳反演模型(R 2=0.70,RPD=1.50),Zn的R-PLSR模型为最佳反演模型(R 2=0.88,RPD=2.05),Cu的R-PLSR模型为最佳反演模型(R 2=0.99,RPD=3.36),Pb的SDR-PLSR模型为最佳反演模型(R 2=0.93,RPD=3.16);采用构建的土壤重金属的最佳模型,对土壤重金属含量进行空间插值,结合高标准农田建设标准可知Zn含量符合土壤环境质量Ⅱ类标准且均低于土壤背景值,Cr、Cd、Cu和Pb符合土壤环境质量Ⅱ类标准,但是部分区域超过了土壤背景值.该研究为高光谱反演模型用于高标准基本农田建设区域土壤基础信息的实时监测提供了参考.
Abstract_FL Hyperspectral reflectance provides an alternative method to soil's physical and chemical analysis in laboratory for the estimation of soil properties in large range. In order to achieve rapid measurement of the soil heavy metal content in well-facilitied capital farmland construction areas, 154 soil samples at 0-30 cm depth were collected as research objects, which were from well-facilitied capital farmland construction areas in Xinzheng City, Henan Province. The raw hyperspectral reflectance of soil samples was measured by the standard procedure with a spectrometer of ASD Field Spec3 equipped with a high intensity contact probe under the laboratory conditions. Meanwhile, the contents of Cr, Cd, Zn, Cu, and Pb in these soil samples were analyzed. The 116 samples were used for building hyperspectral estimation models and the other 38 samples were used for model validation. In the next, the raw spectral reflectance of 400-2400 nm after multiplicative scatter correction and Savitzky-Golay was transformed to 2 spectral indices, i.e. first order differential reflectance(FDR) and second order differential reflectance(SDR). The correlation coefficient between the 3 kinds of spectral indices and Cr, Cd, Zn, Cu, Pb content was analyzed by Pearson correlation analysis. Then, the correlation coefficients (P<0.01) of the 3 spectral indices were got in significant test, which could be used to extract significant bands. At last, we used partial least squares regression (PLSR) method to build quantitative inversion models of soil heavy metal content based on significant bands for this study area, respectively. The prediction accuracies of these models were assessed by comparing determination coefficients (R2), root mean squared error (RMSE) and relative percent deviation (RPD) between the prediction and validation values. Based on these, the optimal models were selected. The spatial distribution map of Cr, Cd, Zn, Cu and Pb content was made by geographical interpolation. The results showed that, conducting the first order differential reflectance and second order differential reflectance transformation on raw soil spectral data, could highlight the hidden spectral reflectivity characteristics effectively. Among all of the 3 spectral indices based on PLSR model, the model of second order differential reflectance about Cr could obtain more robust prediction accuracies, its values ofR2 was 0.88,its values of RPD was 1.68; the model of the raw spectral reflectance (R) of 400-2400 nm after multiplicative scatter correction(MSC)and Savitzky-Golay(SG)about Cd、Zn and Cu could obtain more robust prediction accuracies, their values ofR2 were 0.70, 0.88 and 0.99, their values of RPD were 1.50, 2.05 and 3.36 respectively; Pb could obtain more robust prediction accuracies, their values ofR2was 0.93,its values of RPD was 3.16. The optimum model of soil heavy metal was used to interpolate the soil heavy metal content; the content of Zn was in accordance with the standard of soil environmental quality, and the contents of Cr, Cd, Cu and Pb met the soil environmental quality standardⅡ, but the contents in some well-facilitied capital farmland construction areas were more than the soil background value. This study provides a reference for the real-time monitoring of soil basic information in well-facilitied capital farmland construction areas by hyperspectral inversion model.
Author 张秋霞 张合兵 刘文锴 赵素霞
AuthorAffiliation 河南理工大学测绘与国土信息工程学院,焦作454000 华北水利水电大学资源与环境学院,郑州450046
AuthorAffiliation_xml – name: 河南理工大学测绘与国土信息工程学院,焦作,454000%河南理工大学测绘与国土信息工程学院,焦作 454000;华北水利水电大学资源与环境学院,郑州 450046
Author_FL Zhang Qiuxia
Zhang Hebing
Zhao Suxia
Liu Wenkai
Author_FL_xml – sequence: 1
  fullname: Zhang Qiuxia
– sequence: 2
  fullname: Zhang Hebing
– sequence: 3
  fullname: Liu Wenkai
– sequence: 4
  fullname: Zhao Suxia
Author_xml – sequence: 1
  fullname: 张秋霞 张合兵 刘文锴 赵素霞
BookMark eNo9j0FLAkEcxedgkJlfIohOu_1ndmdn5xhSGQhdvMs6O2srNZZLlPdyCRQLPERIG9TNCL1a9G1G3W_RhtHpweP33uNtoJxqKYnQNgYTY87obtMMo0iZGIAYjou5SQAzExMTLMih_L-_jopRFNaBYosB2DiPyun4cf4S67irk9l89K67o8Vwoj9ny49v3ZvpJNGjRL--pXE_jR_09Fnfj9N4sHi6yYL69m45mepBf_413ERrgXcayeKfFlD1YL9aKhuV48Oj0l7FEJSD4TokwC4jvi-oIwUXTApfCJ9IAqSOA26TAGwigLvMIUJQSzBfci5tZju-B1YB7axqrzwVeKpRa7Yu2yobrKlOQ1zXf49jkt3OyK0VKU5aqnERZux5Ozzz2p2awwh1Kadg_QDk7XdL
ClassificationCodes S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.12.030
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Inversion of heavy metals content with hyperspectral reflectance in soil of well-facilitied capital farmland construction areas
DocumentTitle_FL Inversion of heavy metals content with hyperspectral reflectance in soil of well-facilitied capital farmland construction areas
EndPage 239
ExternalDocumentID nygcxb201712030
672585950
GrantInformation_xml – fundername: 国土资源部公益性行业科研专项; 国家自然科学基金项目; 河南省高校科技创新团队
  funderid: (201411022); (41641057); (18IRTSTHN008)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c590-862f1872ddc56ec9c7ecdccd2e202b1f942f042c098762cc53c7de99e4746da03
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:00:08 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords heavy metals
partial least square regression (PLSR)
高标准基本农田
hyperspectral
反演
土壤
重金属
高光谱
spectrum analysis
inversion
well-facilitied capital farmland
光谱分析
soils
偏最小二乘回归
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590-862f1872ddc56ec9c7ecdccd2e202b1f942f042c098762cc53c7de99e4746da03
Notes soils; spectrum analysis; heavy metals; hyperspectral; inversion; partial least square regression (PLSR); well-facilitied capital farmland
11-2047/S
Hyperspectral reflectance provides an alternative method to soil's physical and chemical analysis in laboratory for the estimation of soil properties in large range. In order to achieve rapid measurement of the soil heavy metal content in well-facilitied capital farmland construction areas, 154 soil samples at 0-30 cm depth were collected as research objects, which were from well-facilitied capital farmland construction areas in Xinzheng City, Henan Province. The raw hyperspectral reflectance of soil samples was measured by the standard procedure with a spectrometer of ASD Field Spec3 equipped with a high intensity contact probe under the laboratory conditions. Meanwhile, the contents of Cr, Cd, Zn, Cu, and Pb in these soil samples were analyzed. The 116 samples were used for building hyperspectral estimation models and the other 38 samples were used for model vali
PageCount 10
ParticipantIDs wanfang_journals_nygcxb201712030
chongqing_primary_672585950
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 河南理工大学测绘与国土信息工程学院,焦作,454000%河南理工大学测绘与国土信息工程学院,焦作 454000
华北水利水电大学资源与环境学院,郑州 450046
Publisher_xml – name: 河南理工大学测绘与国土信息工程学院,焦作,454000%河南理工大学测绘与国土信息工程学院,焦作 454000
– name: 华北水利水电大学资源与环境学院,郑州 450046
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1802397
Snippet 为快速高效的获取高标准基本农田建设区域土壤重金属信息,以新郑市高标准基本农田建设区域为研究对象,共采集154个土壤样品,在室内利用ASD Field Spec3型地物光谱仪获得土壤...
S127; 为快速高效的获取高标准基本农田建设区域土壤重金属信息,以新郑市高标准基本农田建设区域为研究对象,共采集154个土壤样品,在室内利用ASD Field Spec3型地物光谱仪获...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 230
SubjectTerms 偏最小二乘回归
光谱分析
反演
土壤
重金属
高光谱
高标准基本农田
Title 高标准基本农田建设区域土壤重金属含量的高光谱反演
URI http://lib.cqvip.com/qk/90712X/201712/672585950.html
https://d.wanfangdata.com.cn/periodical/nygcxb201712030
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFB_qFkQP4ifWqvTgnGRrMklmMsfJbpYi6KlCb8tmkt2etlpb0J61i2CpQg8ixRX0VpH2WsX_Jtvuf-F7k9ltKqV-3IQQZmfevPeb9zZ5b5KZF0LutL3U1ZqnELmlQdUHj1xNnJZbTZIW-FeYZDscNzg_eMjnHvn3F4KFiUq_tGppdSWZ1Wsn7iv5F6tCHdgVd8n-hWXHTKECymBfOIOF4fxHNqaxpCqiMqQxp8qhMLGPAzyHHAuyQSOFTbJGVc00mXIsqPRp5GBNFBmakKqYRrGhqZka0x0OLNRsQXlU-SgURdRtQbqGj0ul6S4dhGRpGkaWoqFfggoi4JAoFDBEpjtQIkNOI5DllyPmEmzAHCI3FCeoCpC5CmkYGWx1qjhyCBU0jf5HhraGukFaYWilGVB8AolBH44gRse4QHWhZ8mNnqXRoX9EAqPBPigo8g27siD7YKXYQWouAjNaRiPPcK9TKYyyHGs8O8IANa7EsRGCEByHQOMhJqOXsNA-mLNeshk0NahyjV5cqhqn6g7wgpEYXHXYCjbDSh8ZAjdWwyyK-E3v4P9CfrfAXfK-6J55aH2odc9FnpTRbYiVna19o5fZX_LkkECKwMQEKGJ2LAJXdQrzJmDE5VjW9e7zjn6WII3LgOIMmWQCQtkKmVRRPWoczThcfKgydokME0vwoxl84Hr4_YjxqjNccxGYBRgWxllCRyDvnQYRU78sLnU7TyCgNfsLu-1Wt1MKhecvkgt2DjujihvSJTKxtniZnFedZZvHJ7tC5oY77wYfe3lvPe_vD7a_5OvbB1u7-bf9w68_8tf7eb-fb_fzT5-HvY1h722-9yF_szPsbR68fwEd85evDnf38s2Nwfetq2S-Ec_X5qr2oy1VHWBWCs7abihYmuqAZ1pqkelU65RlzGGJ25Y-a0OcoB2JYZjWgadFmkmZ-cLnacvxrpFKd6mbXSczImzxkItMYDJ9xlsygQBEe5lMZQLTUj5FpscqaT4ucvM0uWABpmx0psiMVVLT3rGfNn8x6o3fk0yTc1gunrneJJWV5dXsFsxCVpLb9p_wE-e-4NI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%AB%98%E6%A0%87%E5%87%86%E5%9F%BA%E6%9C%AC%E5%86%9C%E7%94%B0%E5%BB%BA%E8%AE%BE%E5%8C%BA%E5%9F%9F%E5%9C%9F%E5%A3%A4%E9%87%8D%E9%87%91%E5%B1%9E%E5%90%AB%E9%87%8F%E7%9A%84%E9%AB%98%E5%85%89%E8%B0%B1%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E7%A7%8B%E9%9C%9E&rft.au=%E5%BC%A0%E5%90%88%E5%85%B5&rft.au=%E5%88%98%E6%96%87%E9%94%B4&rft.au=%E8%B5%B5%E7%B4%A0%E9%9C%9E&rft.date=2017&rft.pub=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E4%B8%8E%E5%9B%BD%E5%9C%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E7%84%A6%E4%BD%9C%2C454000%25%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E4%B8%8E%E5%9B%BD%E5%9C%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E7%84%A6%E4%BD%9C+454000&rft.issn=1002-6819&rft.volume=33&rft.issue=12&rft.spage=230&rft.epage=239&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.12.030&rft.externalDocID=nygcxb201712030
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg