基于RGB-D的室内场景实时三维重建算法

摘要:针对基于视觉的室内场景三维重建过程中存在三维点云匹配不准确、过程耗时和深度信息部分缺失的问题,提出一种带有深度约束和局部近邻约束的基于RGB-D的室内场景实时三维重建算法.该算法首先利用RGB-D相机采集到的RGB图像做哈里斯角点检测,再用SURF特征点描述方法对检测到的特征点生成64维特征描述子.接着利用特征点集合的深度信息和局部近邻特征点信息作为约束,初步筛选出相邻帧间正确的匹配点对,再结合随机抽样一致性(RANSAC)算法去除外点,以此得到相机的姿态估计.最后利用RGB-D的深度图像,在图优化方法(g2o)的基础上生成三维点云,实现室内场景的三维重建.实验中,RGB-D摄像头装载在...

Full description

Saved in:
Bibliographic Details
Published in东北大学学报(自然科学版) Vol. 38; no. 12; pp. 1764 - 1768
Main Author 胡正乙;谭庆昌;孙秋成
Format Journal Article
LanguageChinese
Published 吉林大学 机械科学与工程学院,吉林 长春 130022 2017
长春汽车工业高等专科学校,吉林 长春 130013%吉林大学 机械科学与工程学院,吉林 长春,130022%长春师范大学,吉林 长春,130032
Subjects
Online AccessGet full text
ISSN1005-3026
DOI10.12068/j.issn.1005-3026.2017.12.020

Cover

Abstract 摘要:针对基于视觉的室内场景三维重建过程中存在三维点云匹配不准确、过程耗时和深度信息部分缺失的问题,提出一种带有深度约束和局部近邻约束的基于RGB-D的室内场景实时三维重建算法.该算法首先利用RGB-D相机采集到的RGB图像做哈里斯角点检测,再用SURF特征点描述方法对检测到的特征点生成64维特征描述子.接着利用特征点集合的深度信息和局部近邻特征点信息作为约束,初步筛选出相邻帧间正确的匹配点对,再结合随机抽样一致性(RANSAC)算法去除外点,以此得到相机的姿态估计.最后利用RGB-D的深度图像,在图优化方法(g2o)的基础上生成三维点云,实现室内场景的三维重建.实验中,RGB-D摄像头装载在自主移动导航的小车上,实时重构的三维场景验证了所提算法的可行性和准确性.
AbstractList TP391.4; 针对基于视觉的室内场景三维重建过程中存在三维点云匹配不准确、过程耗时和深度信息部分缺失的问题,提出一种带有深度约束和局部近邻约束的基于RGB-D的室内场景实时三维重建算法.该算法首先利用RGB-D相机采集到的RGB图像做哈里斯角点检测,再用SURF特征点描述方法对检测到的特征点生成64维特征描述子.接着利用特征点集合的深度信息和局部近邻特征点信息作为约束,初步筛选出相邻帧间正确的匹配点对,再结合随机抽样一致性(RANSAC)算法去除外点,以此得到相机的姿态估计.最后利用RGB-D的深度图像,在图优化方法(g2o)的基础上生成三维点云,实现室内场景的三维重建.实验中,RGB-D摄像头装载在自主移动导航的小车上,实时重构的三维场景验证了所提算法的可行性和准确性.
摘要:针对基于视觉的室内场景三维重建过程中存在三维点云匹配不准确、过程耗时和深度信息部分缺失的问题,提出一种带有深度约束和局部近邻约束的基于RGB-D的室内场景实时三维重建算法.该算法首先利用RGB-D相机采集到的RGB图像做哈里斯角点检测,再用SURF特征点描述方法对检测到的特征点生成64维特征描述子.接着利用特征点集合的深度信息和局部近邻特征点信息作为约束,初步筛选出相邻帧间正确的匹配点对,再结合随机抽样一致性(RANSAC)算法去除外点,以此得到相机的姿态估计.最后利用RGB-D的深度图像,在图优化方法(g2o)的基础上生成三维点云,实现室内场景的三维重建.实验中,RGB-D摄像头装载在自主移动导航的小车上,实时重构的三维场景验证了所提算法的可行性和准确性.
Abstract_FL A novel RGB-D based feature point depth constraint and locality constraint integrated real-time indoor scene 3D reconstruction algorithm is proposed, which focusing to solve problems such as the inaccuracy of 3D point cloud matching, excessive time consuming and the loss of point depth. Firstly, the feature points are detected using Harris point detector, and then labeled with 64 dimensional vector using SURF descriptor. Secondly, the initial correct feature point pairs are selected between the successive frames with the depth information constraint and feature point locality constraint in addition to vector similarity constraint. Thirdly, the outliers are removed and the camera pose is estimated based on the random sample consensus ( RANSAC ) method. Eventually, 3D point clouds are determined using the general graph optimization ( g2o ) facilitating the indoor scene reconstruction. In the experiments, the RGB-D camera is fixed on the automatic guided vehicle to capture the indoor surrounding scenes. Experimental results validate that the proposed approach is feasible and effective.
Author 胡正乙;谭庆昌;孙秋成
AuthorAffiliation 吉林大学机械科学与工程学院,吉林长春130022;长春汽车工业高等专科学校,吉林长春130013;长春师范大学,吉林长春130032
AuthorAffiliation_xml – name: 吉林大学 机械科学与工程学院,吉林 长春 130022;长春汽车工业高等专科学校,吉林 长春 130013%吉林大学 机械科学与工程学院,吉林 长春,130022%长春师范大学,吉林 长春,130032
Author_FL TAN Qing-chang
SUN Qiu-cheng
HU Zheng-yi
Author_FL_xml – sequence: 1
  fullname: HU Zheng-yi
– sequence: 2
  fullname: TAN Qing-chang
– sequence: 3
  fullname: SUN Qiu-cheng
Author_xml – sequence: 1
  fullname: 胡正乙;谭庆昌;孙秋成
BookMark eNo9j0FLw0AUhPdQwVr7JwTxlPh2N7ubHLVqFQqC9B52N0lN0a0miPWuFQ96k6KIXjzHgyKS_p0mxX9hpOJpYOab95glVDMDEyK0isHGBLi73rfjNDU2BmAWBcJtAlhUmQ0Eaqj-7y-iZprGCgA8RzDi1REpXvJpfnfQ3rS2Zo-XRfZajK6Kp7x8eCuy53L8Of26mU0-vq9vi0k-y8bl-_0yWojkURo2_7SBujvb3dau1dlv77U2OpZmHlhEBlyJkHHhRYywiEVKYi24EzjaY4ILxojSJGDUFVpBSFwdiKqAdRRKrQRtoLX52XNpIml6fn9wlpjqoR-oYDhUvxOr9QQqcmVO6sOB6Z3GFXuSxMcyufC5oB5lQDH9ASOhZkk
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12068/j.issn.1005-3026.2017.12.020
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate RGB-D Based Indoor Scene Real-Time 3D Reconstruction Algorithm
DocumentTitle_FL RGB-D Based Indoor Scene Real-Time 3 D Reconstruction Algorithm
EndPage 1768
ExternalDocumentID dbdxxb201712020
673935031
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (51405184)
GroupedDBID -03
2B.
2C.
2RA
5XA
5XD
92E
92I
92L
ABDBF
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
CW9
EAD
EAP
EAS
EOJEC
ESX
OBODZ
TCJ
TGP
U1G
U5M
~WA
4A8
93N
ABJNI
ACUHS
PSX
ID FETCH-LOGICAL-c590-2ad6b7e5679f525f5fba1c764d4c95767552bc2d5387cb0e28cd7b7e1cfeacb73
ISSN 1005-3026
IngestDate Thu May 29 03:59:15 EDT 2025
Wed Feb 14 10:02:06 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords RGB-D
特征点深度约束
特征点局部近邻约束
feature point depth constraint
3 D reconstruction
feature point locality constraint
实时性
instantaneity
三维重建
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590-2ad6b7e5679f525f5fba1c764d4c95767552bc2d5387cb0e28cd7b7e1cfeacb73
Notes A novel RGB-D based feature point depth constraint and locality constraint integrated real-time indoor scene 3D reconstruction algorithm is proposed, which focusing to solve problems such as the inaccuracy of 3D point cloud matching, excessive time consuming and the loss o f point depth. Firstly, the feature points are detected using Harris point detector, and then labeled with 64 dimensional vector using SURF descriptor. Secondly,the initial correct feature point pairs are selected between the successive frames with the depth information constraint and feature point locality constraint in addition to vector similarity constraint. T h ird ly, the outliers are removed and the camera pose is estimated based on the random sample consensus ( R ANSAC) method. Eventually, 3D point clouds are determined using the general graph optimization ( g2o ) facilitating the indoor scene reconstruction. In the experiments, the RGB-D camera is fixed on the automatic guided vehicle to capture the indoor surrounding scenes. Exper
PageCount 5
ParticipantIDs wanfang_journals_dbdxxb201712020
chongqing_primary_673935031
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 东北大学学报(自然科学版)
PublicationTitleAlternate Journal of Northeastern University(Natural Science)
PublicationTitle_FL Journal of Northeastern University(Natural Science)
PublicationYear 2017
Publisher 吉林大学 机械科学与工程学院,吉林 长春 130022
长春汽车工业高等专科学校,吉林 长春 130013%吉林大学 机械科学与工程学院,吉林 长春,130022%长春师范大学,吉林 长春,130032
Publisher_xml – name: 长春汽车工业高等专科学校,吉林 长春 130013%吉林大学 机械科学与工程学院,吉林 长春,130022%长春师范大学,吉林 长春,130032
– name: 吉林大学 机械科学与工程学院,吉林 长春 130022
SSID ssib000947529
ssib051368049
ssib023167010
ssj0040330
ssib002039846
ssib004675270
ssib006703041
ssib002263414
ssib008679651
ssib001128993
Score 2.1294165
Snippet 摘要:针对基于视觉的室内场景三维重建过程中存在三维点云匹配不准确、过程耗时和深度信息部分缺失的问题,提出一种带有深度约束和局部近邻约束的基于RGB-D的室内场景实时三...
TP391.4; 针对基于视觉的室内场景三维重建过程中存在三维点云匹配不准确、过程耗时和深度信息部分缺失的问题,提出一种带有深度约束和局部近邻约束的基于RGB-D的室内场景实...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1764
SubjectTerms RGB-D
三维重建
实时性
特征点局部近邻约束
特征点深度约束
Title 基于RGB-D的室内场景实时三维重建算法
URI http://lib.cqvip.com/qk/90188A/201712/673935031.html
https://d.wanfangdata.com.cn/periodical/dbdxxb201712020
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  issn: 1005-3026
  databaseCode: ABDBF
  dateStart: 20150901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0040330
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0OpDQnBAPEUpoB7wqdqS2HFsH53dLBUSHFCReqsSJymnLY9WqnrmIQ5wQxUIwQWJWzmAENr-TrcVf8GMk901sOJ1sRx7xvOKMxPHnhByVQB3WSnKFjz_Q0yqDVOqLFjLcvDVLKoKa3FB_-atePlOdGNVrE5Nf_B2LW1t5kt2Z-K5kv-xKrSBXfGU7D9YdjQoNEAd7AslWBjKv7IxTQXVXZoYmkZYqvT29aTVoamkGq4i7DcpNa6iYqqEw2g7jJhqTU23gdGpa5E0id1giiqN4yQJTQBdUyWp6iAwthjsQiyJWAmn9S8sh1FuMwIQQrptByaQDVNXOtTEXgUYM9QAbyBKmypFU4XkjKMCUiBLEnF16GFJ5BCBa6zRgobD5tSEODDCcseOpvoHkCTATpTHoGpQeMBrj0EcIa0b0ipxfIJQgb9QUp8IdTe1U23g1BajOicJvej6hvo3DLmYIFqt_9RxJ51moFSOhxGMduZjMEV-JbzougG528hlxCJ-UGTeGm-IyWF5UCcSGDoprvzJyDyXE8o6DXwTvsClmugaWRAr5xuRyNKICO5ulG5FnAXjmGC0U7PIi-3tHGFgABZMk1mGC18zZNYknaTrReqRFF6kDWE8vMl7kWDAtfIz2bEY4if_iDSge64jRk_kReouL-T4AzbDBA7BOHIVIY-V-2BcB2FRwHmdiKQR8xihQyVc-50KMMXK3Y3e-n0IHN05vl6V9da9kHPlFDnZvCsumHrinyZTO3fPkBNeBtGzhA3e9Q_6L9y0P3r9aLD3fvDk8eBN__DVx8He28PdLwdfnx3tf_729Plgv3-0t3v46eU5stJNV9rLreY3KC0rdNBiWRHnshSggEowUYkqz0ILRi8iqwXmYhIst6yAyEXaPCiZsoUEhNBWEFTlkp8nM72NXnmBLAie2SKsKpvzKspkmcnQZlkZVFJmueLlHJkfCb92r852gxs_NRfg--fIQqOOteYZ-HDtp9vj4p9B5slxrNermJfIzOaDrfIyxPWb-ZXmnvoOqLizcQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ERGB-D%E7%9A%84%E5%AE%A4%E5%86%85%E5%9C%BA%E6%99%AF%E5%AE%9E%E6%97%B6%E4%B8%89%E7%BB%B4%E9%87%8D%E5%BB%BA%E7%AE%97%E6%B3%95&rft.jtitle=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%83%A1%E6%AD%A3%E4%B9%99&rft.au=%E8%B0%AD%E5%BA%86%E6%98%8C&rft.au=%E5%AD%99%E7%A7%8B%E6%88%90&rft.date=2017&rft.pub=%E5%90%89%E6%9E%97%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E6%A2%B0%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%90%89%E6%9E%97+%E9%95%BF%E6%98%A5+130022&rft.issn=1005-3026&rft.volume=38&rft.issue=12&rft.spage=1764&rft.epage=1768&rft_id=info:doi/10.12068%2Fj.issn.1005-3026.2017.12.020&rft.externalDocID=dbdxxb201712020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90188A%2F90188A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdbdxxb%2Fdbdxxb.jpg