作物生长模型与定量遥感参数结合研究进展与展望

作物生长模型与定量遥感参数的结合,不仅满足前者实现区域应用的需求,也有助于提高后者的反演精度,在生态、农业、资源调查与全球气候变化等研究上意义重大。该文从作物生长模型空间应用拓展的角度,对国内外主流作物生长模型、定量遥感参数以及两者结合的参数与方法进行了概述,分析了典型作物生长模型的主要模拟过程及其驱动、初始化、输出等参数,总结了当前定量遥感正反演结果可为作物生长模型区域应用提供的参数数据;建立了作物生长模型模拟过程与定量遥感参数的对应关系,对比分析了作物生长模型与定量遥感参数的不同结合方式。基于以上内容,对作物生长模型面应用的限制因素及其与定量遥感参数的关系、作物生长模型面应用时参数尺度效应...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 9; pp. 155 - 166
Main Author 吴蕾 柏军华 肖青 杜永明 柳钦火 徐丽萍
Format Journal Article
LanguageChinese
Published 中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101%石河子大学,石河子,832000 2017
石河子大学,石河子 832000%中国科学院遥感与数字地球研究所,北京 100101
中国科学院遥感与数字地球研究所,北京 100101
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.09.020

Cover

Abstract 作物生长模型与定量遥感参数的结合,不仅满足前者实现区域应用的需求,也有助于提高后者的反演精度,在生态、农业、资源调查与全球气候变化等研究上意义重大。该文从作物生长模型空间应用拓展的角度,对国内外主流作物生长模型、定量遥感参数以及两者结合的参数与方法进行了概述,分析了典型作物生长模型的主要模拟过程及其驱动、初始化、输出等参数,总结了当前定量遥感正反演结果可为作物生长模型区域应用提供的参数数据;建立了作物生长模型模拟过程与定量遥感参数的对应关系,对比分析了作物生长模型与定量遥感参数的不同结合方式。基于以上内容,对作物生长模型面应用的限制因素及其与定量遥感参数的关系、作物生长模型面应用时参数尺度效应的影响、作物生长模型与定量遥感参数耦合方法的发展3个方面展开了讨论,以期为作物生长模型与定量遥感参数开展更好的结合研究提供参考。
AbstractList TP79%S31; 作物生长模型与定量遥感参数的结合,不仅满足前者实现区域应用的需求,也有助于提高后者的反演精度,在生态、农业、资源调查与全球气候变化等研究上意义重大.该文从作物生长模型空间应用拓展的角度,对国内外主流作物生长模型、定量遥感参数以及两者结合的参数与方法进行了概述,分析了典型作物生长模型的主要模拟过程及其驱动、初始化、输出等参数,总结了当前定量遥感正反演结果可为作物生长模型区域应用提供的参数数据;建立了作物生长模型模拟过程与定量遥感参数的对应关系,对比分析了作物生长模型与定量遥感参数的不同结合方式.基于以上内容,对作物生长模型面应用的限制因素及其与定量遥感参数的关系、作物生长模型面应用时参数尺度效应的影响、作物生长模型与定量遥感参数耦合方法的发展3个方面展开了讨论,以期为作物生长模型与定量遥感参数开展更好的结合研究提供参考.
作物生长模型与定量遥感参数的结合,不仅满足前者实现区域应用的需求,也有助于提高后者的反演精度,在生态、农业、资源调查与全球气候变化等研究上意义重大。该文从作物生长模型空间应用拓展的角度,对国内外主流作物生长模型、定量遥感参数以及两者结合的参数与方法进行了概述,分析了典型作物生长模型的主要模拟过程及其驱动、初始化、输出等参数,总结了当前定量遥感正反演结果可为作物生长模型区域应用提供的参数数据;建立了作物生长模型模拟过程与定量遥感参数的对应关系,对比分析了作物生长模型与定量遥感参数的不同结合方式。基于以上内容,对作物生长模型面应用的限制因素及其与定量遥感参数的关系、作物生长模型面应用时参数尺度效应的影响、作物生长模型与定量遥感参数耦合方法的发展3个方面展开了讨论,以期为作物生长模型与定量遥感参数开展更好的结合研究提供参考。
Abstract_FL Combining the crop growth models with the remote sensing parameters, is important to realize the applications in the large spatial scale for the former, and also to improve the rationality and accuracy of inversion theory for the latter. Some research fields, such as the ecology, agriculture, resource investigation and global climate change, would use the data derived from the combination form. The overview includes 3 parts, i.e. the international crop growth model, the quantitative remote sensing parameters and the parametric methods. From the view of the spatial expansion for the application of the crop growth model, the development duration of crop growth models was divided into 3 stages: The construction of the mechanism models, the application in the point scale, and the application in the regional and global scale. In order to understand the situation and foundation of the inter-discipline combination from the crop growth simulation and the quantitative remote sensing, the paper describes 3 important contents. The first is overviewing the main simulation processes and the input and output parameters for the typical crop growth models. The second is summarizing the remote sensing inversion parameters which can be used as the initialization and driving data for the application of crop growth simulation models in the regional and global scale, establishing the corresponding relation between the simulation process of crop growth model and the parameters from the quantitative remote sensing. And the third is comparing 3 kinds of combination methods between the crop growth model and the parameters derived from the quantitative remote sensing, and emphasizing the differences, advantages and disadvantages for the 3 combination methods. Based on the contents mentioned above, 3 topics for discussion are proposed. The first topic is the application limitations of crop growth models in the large spatial scale and its relationship with quantitative remote sensing parameters. The second one is the influence of the scale effect from the input parameters when the crop growth model is used to simulate the crop growth in the larger region. And the third one is to discuss the development direction of combination methods. It is hopeful to provide a kind of thinking for combining the crop growth models with the parameters from the quantitative remote sensing through the overview, summary and discussion. And it is clearly concluded that the data from the quantitative remote sensing can provide initialization data for crop growth models to some extent in the regional and global scale, and the application in a large space scale is the direction of crop growth model. The conclusion shows further that it is important to pay attention to the scale problem of the model parameters, and that the data dis-matching for the same parameter from the crop growth and remote sensing can result in the huge error of estimation on the output data due to the difference of physical meaning from the 2 disciplines. Understanding that the data from the quantitative remote sensing could enhance the ability of simulating the crop conditions and yield at the large scale was also helpful to understand that the remote sensing had the ability of deriving the biochemical and biophysical information from the ground surface exactly. And furthermore, it is expected that the correct combination parameters should be chosen to deduce the propagation of error and uncertainty, the assimilation methods would still preserve the mainstream style for the combination, and following the increasing accuracy of data from the remote sensing and crop model, the fusion model for the model of crop growth and remote sensing can be constructed to play a greater application value in the environmental monitoring and agricultural production.
Author 吴蕾 柏军华 肖青 杜永明 柳钦火 徐丽萍
AuthorAffiliation 中国科学院遥感与数字地球研究所,北京100101 石河子大学,石河子832000 中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京100101
AuthorAffiliation_xml – name: 中国科学院遥感与数字地球研究所,北京 100101;石河子大学,石河子 832000%中国科学院遥感与数字地球研究所,北京 100101;中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101%石河子大学,石河子,832000
Author_FL Wu Lei
Xu Liping
Xiao Qing
Bai Junhua
Du Yongming
Liu Qinhuo
Author_FL_xml – sequence: 1
  fullname: Wu Lei
– sequence: 2
  fullname: Bai Junhua
– sequence: 3
  fullname: Xiao Qing
– sequence: 4
  fullname: Du Yongming
– sequence: 5
  fullname: Liu Qinhuo
– sequence: 6
  fullname: Xu Liping
Author_xml – sequence: 1
  fullname: 吴蕾 柏军华 肖青 杜永明 柳钦火 徐丽萍
BookMark eNo9j81Kw0AYRWdRwVr7EoK4SvwmyWQySy3-QcFN9yUzydQUnWqDaJeKoCJYwWZji9WFYDdiNyKI9GWaxL6FKRVXFy6HezkLKKcaykdoGYOOMaNkta4HYah0DGBotoOZbgCmOjAdDMih_H8_j4phGHAg2KQAFs6j9fF3L70epJ3-JBolr8_x48348zZ-e5hctidnL8lFP26fJ9F7-nUf312lT5108PEz6sbDaIoNo6TXXURz0t0P_eJfFlBlc6NS2tbKu1s7pbWyJggDDfvClI7l2oRxboPglmCSSGAe9ywuGPE59Zjgri-x7RmSE8N3iOQUXGpQic0CWpnNnrhKuqpWrTeOmyo7rKpWTZzyqTKwTDgjl2ak2Guo2lGQsYfN4MBttqo2NSxiYsc0fwHmxnRH
ClassificationCodes TP79%S31
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.09.020
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Research progress and prospect on combining crop growth models with parameters derived from quantitative remote sensing
DocumentTitle_FL Research progress and prospect on combining crop growth models with parameters derived from quantitative remote sensing
EndPage 166
ExternalDocumentID nygcxb201709020
672453183
GrantInformation_xml – fundername: 国家重点基础研究发展计划课题"复杂地表遥感辐射/散射机理及动态建模"(2013CB733401); 国家自然基金"多尺度观测与作物生长模型相结合的辐射传输一体化模拟研究"; 国家自然基金"基于能量平衡的作物冠层热辐射方向性模型"; 国家科技基础平台建设项目"测绘地物波谱本底数据库建设"
  funderid: (973计划)课题"复杂地表遥感辐射/散射机理及动态建模"(2013CB733401); (41671366); (41571359); (2014FY210800)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c590-1ec3f84a659bb60cb4c9f5f09dbd4bc95eb7d9cbaef16d2fb52e85fb70a727f13
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:00:07 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords models
作物生长
development
模型
remote sensing
vegetation
遥感
quantitative remote sensing
crop growth
发展
植被
定量遥感
结合
combination
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590-1ec3f84a659bb60cb4c9f5f09dbd4bc95eb7d9cbaef16d2fb52e85fb70a727f13
Notes remote sensing; models; vegetation; crop growth; quantitative remote sensing; combination; development
11-2047/S
Wu Lei1,2, Bai Junhua1,3, Xiao Qing1,3, Du Yongming1,3, Liu Qinhuo1,3, Xu Liping2 (1. Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing 100101, China; 2. Shihezi University, Shihezi 832000, China; 3. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing 100101, China)
Combining the crop growth models with the remote sensing parameters, is important to realize the applications in the large spatial scale for the former, and also to improve the rationality and accuracy of inversion theory for the latter. Some research fields, such as the ecology, agriculture, resource investigation and global climate change, would use the data derived from the combination form. The overview includes 3 parts, i.e. the international crop growth model, the quantitative remote sensing parameters and the parametric me
PageCount 12
ParticipantIDs wanfang_journals_nygcxb201709020
chongqing_primary_672453183
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101%石河子大学,石河子,832000
石河子大学,石河子 832000%中国科学院遥感与数字地球研究所,北京 100101
中国科学院遥感与数字地球研究所,北京 100101
Publisher_xml – name: 中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101%石河子大学,石河子,832000
– name: 中国科学院遥感与数字地球研究所,北京 100101
– name: 石河子大学,石河子 832000%中国科学院遥感与数字地球研究所,北京 100101
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1803784
Snippet ...
TP79%S31;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 155
SubjectTerms 作物生长
发展
定量遥感
植被
模型
结合
遥感
Title 作物生长模型与定量遥感参数结合研究进展与展望
URI http://lib.cqvip.com/qk/90712X/201709/672453183.html
https://d.wanfangdata.com.cn/periodical/nygcxb201709020
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_tFkQP4ifW-tGDOZWpM5lJJjlOurMUQU8Vels2szPb01brFrQ3RVARrGD3YovVg2AvYi8iiPSf6e66_4V5STq7oBT1MoS3L-_98t5O3suQvCB0A2oohc2MeYWKcy_SMcJTOY-8sAmVWMIiZgwOJ9--wxbvRreW6fLE5PWxXUvrHTWfbfzxXMn_eFXTtF_hlOw_eLYUqgm6rf2rn9rD-vlXPsZphGUViwWcxpgLnAhoiAiLGk4FFhRL3WA44TgJcEqxSDGXphfHPAVKkmKRADPXEkwvHuCEQi9u5VCgcwIUEOiDCimxCI1AH3MOlMQHvdAQWDKcclAtJPDIADqOK3UUBsiFHM-PjTpDt_yATfPHBlIMA-FGZlLFCTMgE_3T0b_GIZIR6Aew6ZzRUjNDs5JNd17VSOaASw9MMGMsbUdi2a1FGYxVQwAKt-xGlAwNOzEAYmMuOWdQpqDc4tZeAQjaOtXx7yr2AKkLAhAlGHdTuYsStlyHexvE2JQf2DLDLnsI7B0yvwcmEVMTmUDDfKkB9hbGptAu8UcRudwnyWISUZh1J9EU0a8NqaCpRFZlbZTxBrCoL6fkAK5DCEZHoQkUOmCjFSUNQrjPoNwFBXsAqNkQ4ACdQPgI7s3jwEIpkpXVduu-TrDMebd20Wi3xlKzpTPotFtTzSb2BTmLJjZWzqFTSWvN1ZXJzyN5-GNn8GJvsLU77B70P33ovXt5-O1V7_Pb4bPN4eOP_ae7vc0n_e6Xwfc3vdfPB--3Bntffx5s9_a7wLbf7e9sX0BLtXRpYdFz14d4GRW-F-RZWPCowahQivmZijJR0MIXTdWMVCZoruKmyFQjLwLWJIWiJOdUT1l-Q-f0RRBeRJX2aju_hGZ1Dh9RwogWVkQNAhWO8jzghV76hIoUxTSaKY1Rv2erxNRL302jWWeeups7HtTbj1rZQwX2hH3R_uVjBcygk8BpP_xdQZXO2np-VafCHXXN_R1-Adleif0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%BD%9C%E7%89%A9%E7%94%9F%E9%95%BF%E6%A8%A1%E5%9E%8B%E4%B8%8E%E5%AE%9A%E9%87%8F%E9%81%A5%E6%84%9F%E5%8F%82%E6%95%B0%E7%BB%93%E5%90%88%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95%E4%B8%8E%E5%B1%95%E6%9C%9B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%90%B4%E8%95%BE+%E6%9F%8F%E5%86%9B%E5%8D%8E+%E8%82%96%E9%9D%92+%E6%9D%9C%E6%B0%B8%E6%98%8E+%E6%9F%B3%E9%92%A6%E7%81%AB+%E5%BE%90%E4%B8%BD%E8%90%8D&rft.date=2017&rft.issn=1002-6819&rft.volume=33&rft.issue=9&rft.spage=155&rft.epage=166&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.09.020&rft.externalDocID=672453183
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg