Plasma Exosomes Protect the Myocardium From Ischemia-Reperfusion Injury
Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communi...
Saved in:
Published in | Journal of the American College of Cardiology Vol. 65; no. 15; pp. 1525 - 1536 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.04.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0735-1097 1558-3597 1558-3597 |
DOI | 10.1016/j.jacc.2015.02.026 |
Cover
Abstract | Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury.
This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved.
The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors.
Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection.
Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs. |
---|---|
AbstractList | AbstractBackgroundExosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. ObjectivesThis study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. MethodsThe exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. ResultsExosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. ConclusionsExosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs. Background Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. Objectives This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. Methods The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. Results Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. Conclusions Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs. Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs. Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs. Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury.BACKGROUNDExosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury.This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved.OBJECTIVESThis study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved.The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors.METHODSThe exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors.Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection.RESULTSExosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection.Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.CONCLUSIONSExosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs. |
Author | Vicencio, Jose M. Boi-Doku, Claire Riquelme, Jaime A. Sharma, Vikram Yellon, Derek M. Zheng, Ying Kearney, Jessica Hall, Andrew R. Multhoff, Gabriele Davidson, Sean M. Das, Debashish Sivaraman, Vivek Arjun, Sapna |
Author_xml | – sequence: 1 givenname: Jose M. surname: Vicencio fullname: Vicencio, Jose M. organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 2 givenname: Derek M. surname: Yellon fullname: Yellon, Derek M. email: d.yellon@ucl.ac.uk organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 3 givenname: Vivek surname: Sivaraman fullname: Sivaraman, Vivek organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 4 givenname: Debashish surname: Das fullname: Das, Debashish organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 5 givenname: Claire surname: Boi-Doku fullname: Boi-Doku, Claire organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 6 givenname: Sapna surname: Arjun fullname: Arjun, Sapna organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 7 givenname: Ying surname: Zheng fullname: Zheng, Ying organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 8 givenname: Jaime A. surname: Riquelme fullname: Riquelme, Jaime A. organization: Advanced Center for Chronic Diseases and Centro Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile – sequence: 9 givenname: Jessica surname: Kearney fullname: Kearney, Jessica organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 10 givenname: Vikram surname: Sharma fullname: Sharma, Vikram organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 11 givenname: Gabriele surname: Multhoff fullname: Multhoff, Gabriele organization: Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany – sequence: 12 givenname: Andrew R. surname: Hall fullname: Hall, Andrew R. organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom – sequence: 13 givenname: Sean M. surname: Davidson fullname: Davidson, Sean M. organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25881934$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEYhYNU7Lb6B7yQAW-8mTXJTL5EBCn9WKhY_LgOmcwbmnFmsiYz4v77ZtgWYcEqvJBcPOcNOeecoKMxjIDQS4LXBBP-tlt3xto1xYStMc3Dn6AVYUyWFVPiCK2wqFhJsBLH6CSlDmPMJVHP0DFlMl-qeoUub3qTBlOc_w4pDJCKmxgmsFMx3ULxaResia2fh-IihqHYJHsLgzflF9hCdHPyYSw2YzfH3XP01Jk-wYv78xR9vzj_dnZVXn--3Jx9vC4tk2oqrTSEgVAgnWuMYKLmgre8VY7j2hJQloOqHOdCqKphtXQNB2idA0OFa-rqFL3Z793G8HOGNOnBJwt9b0YIc9JECiorScV_oFzURKmKkIy-PkC7MMcxf2ShqMqIqDL16p6amwFavY1-MHGnH9zMgNwDNoaUIjht_WSm7NIUje81wXoJTnd6CU4vwWlM8_AspQfSh-2Pit7vRZAd_-Uh6mQ9jBZaH3OGug3-cfmHA7nt_eit6X_ADtIfC3TKAv11qdPSJsJykYhabHv39wX_ev0Oq4XYVw |
CitedBy_id | crossref_primary_10_18632_oncotarget_26537 crossref_primary_10_2174_1566524020666200610164743 crossref_primary_10_1002_adma_201504009 crossref_primary_10_1016_j_ijcha_2015_05_006 crossref_primary_10_1016_j_tcb_2020_09_009 crossref_primary_10_3389_fneur_2017_00057 crossref_primary_10_18632_aging_102837 crossref_primary_10_3389_fimmu_2023_1248056 crossref_primary_10_1038_s41598_018_34357_z crossref_primary_10_2217_rme_2022_0141 crossref_primary_10_1016_j_ymthe_2016_09_001 crossref_primary_10_1002_JPER_22_0035 crossref_primary_10_2174_1381612825666191105103417 crossref_primary_10_1155_2020_7298687 crossref_primary_10_1002_term_3155 crossref_primary_10_3389_fphys_2021_745328 crossref_primary_10_1007_s12265_018_9842_9 crossref_primary_10_1213_ANE_0000000000005655 crossref_primary_10_1007_s00395_017_0601_x crossref_primary_10_1039_D3FO04459A crossref_primary_10_1016_j_jare_2024_02_006 crossref_primary_10_3390_ijms241411700 crossref_primary_10_1016_j_transci_2016_07_015 crossref_primary_10_1002_path_5061 crossref_primary_10_3390_bioengineering12010092 crossref_primary_10_3390_metabo13101066 crossref_primary_10_1186_s12883_018_1196_z crossref_primary_10_1007_s00011_022_01612_z crossref_primary_10_1016_j_virusres_2020_198083 crossref_primary_10_1515_fzm_2024_0015 crossref_primary_10_1016_j_biopha_2024_117124 crossref_primary_10_1021_acsbiomaterials_4c00106 crossref_primary_10_1111_jcmm_18281 crossref_primary_10_1124_pharmrev_121_000348 crossref_primary_10_1097_TP_0000000000004514 crossref_primary_10_1536_ihj_23_500 crossref_primary_10_1161_CIRCRESAHA_116_310557 crossref_primary_10_18632_aging_102960 crossref_primary_10_1038_s41598_018_33862_5 crossref_primary_10_1172_jci_insight_134552 crossref_primary_10_3390_pharmaceutics15030891 crossref_primary_10_1080_14728222_2025_2454617 crossref_primary_10_3389_fphys_2018_01159 crossref_primary_10_1038_s41419_022_04701_3 crossref_primary_10_1016_j_ncrna_2018_05_004 crossref_primary_10_1016_j_tcm_2020_09_003 crossref_primary_10_2217_nnm_2020_0097 crossref_primary_10_3389_fimmu_2019_00648 crossref_primary_10_3390_antiox14010038 crossref_primary_10_1038_s41467_025_58260_0 crossref_primary_10_1530_JOE_16_0427 crossref_primary_10_3389_fphar_2019_01479 crossref_primary_10_1016_j_cca_2016_12_031 crossref_primary_10_1016_j_hlc_2016_11_006 crossref_primary_10_1038_s41569_025_01141_2 crossref_primary_10_3389_fcvm_2022_781753 crossref_primary_10_1016_j_dcmed_2021_09_008 crossref_primary_10_3390_ijms242115677 crossref_primary_10_1016_j_arr_2022_101769 crossref_primary_10_3389_fcell_2021_779936 crossref_primary_10_1186_s12967_023_04155_x crossref_primary_10_1152_ajpheart_00673_2016 crossref_primary_10_1016_j_ejca_2018_07_123 crossref_primary_10_1016_j_freeradbiomed_2024_11_022 crossref_primary_10_1007_s00395_018_0704_z crossref_primary_10_3390_ijms25179304 crossref_primary_10_1371_journal_pone_0228948 crossref_primary_10_1111_jcmm_13302 crossref_primary_10_1038_s41569_020_0403_y crossref_primary_10_1186_s12872_023_03043_y crossref_primary_10_1111_jcmm_14630 crossref_primary_10_1016_j_jacbts_2016_11_008 crossref_primary_10_1038_s42003_020_0830_7 crossref_primary_10_1155_2017_5785436 crossref_primary_10_3390_pharmaceutics13122056 crossref_primary_10_1016_j_mtbio_2021_100195 crossref_primary_10_1016_j_trim_2018_12_005 crossref_primary_10_1016_j_rvsc_2024_105141 crossref_primary_10_18632_aging_202520 crossref_primary_10_1016_j_trsl_2018_01_005 crossref_primary_10_1089_dna_2016_3496 crossref_primary_10_3390_biom14030330 crossref_primary_10_3390_biomedicines9091211 crossref_primary_10_3390_diagnostics10110943 crossref_primary_10_1016_j_tranon_2024_102121 crossref_primary_10_1016_j_yexcr_2019_01_022 crossref_primary_10_1093_function_zqae012 crossref_primary_10_1002_adbi_202300141 crossref_primary_10_1016_j_phrs_2023_106733 crossref_primary_10_15212_CVIA_2022_0020 crossref_primary_10_1093_eurheartj_ehw240 crossref_primary_10_1016_j_mtbio_2024_100957 crossref_primary_10_1007_s11357_020_00223_y crossref_primary_10_1016_j_biopha_2023_115801 crossref_primary_10_3390_ijms25094913 crossref_primary_10_1016_j_biopha_2021_112056 crossref_primary_10_1152_ajpheart_00718_2020 crossref_primary_10_1002_pmic_201800232 crossref_primary_10_3390_cells10051211 crossref_primary_10_2174_1381612825666191116125525 crossref_primary_10_3389_fcvm_2021_736226 crossref_primary_10_1016_j_molmed_2020_10_002 crossref_primary_10_3389_fcell_2019_00315 crossref_primary_10_3389_fphys_2023_1327402 crossref_primary_10_3390_biomedicines11071907 crossref_primary_10_1016_j_biochi_2021_10_009 crossref_primary_10_1126_scitranslmed_aaw6142 crossref_primary_10_1053_j_semtcvs_2019_12_004 crossref_primary_10_3389_fphys_2023_1190095 crossref_primary_10_1007_s12265_018_9836_7 crossref_primary_10_1007_s10616_017_0127_y crossref_primary_10_3389_fnins_2020_00848 crossref_primary_10_1126_scitranslmed_aax8005 crossref_primary_10_1007_s12265_018_9791_3 crossref_primary_10_1096_fj_202200528R crossref_primary_10_1002_JLB_3MIR0221_099R crossref_primary_10_1016_j_cca_2023_117374 crossref_primary_10_1016_j_nantod_2021_101159 crossref_primary_10_3389_fphys_2023_1241096 crossref_primary_10_1007_s10557_015_6621_6 crossref_primary_10_1177_09731296231207232 crossref_primary_10_1016_j_lfs_2025_123472 crossref_primary_10_3390_cells10081939 crossref_primary_10_1038_s41598_021_04512_0 crossref_primary_10_1016_j_bioactmat_2023_09_018 crossref_primary_10_1161_CIRCULATIONAHA_120_049254 crossref_primary_10_1007_s00395_021_00852_0 crossref_primary_10_3390_ijms24043061 crossref_primary_10_1002_mco2_161 crossref_primary_10_1016_j_pharmthera_2017_02_020 crossref_primary_10_1038_s41598_018_34879_6 crossref_primary_10_3390_medicines2040310 crossref_primary_10_3389_fimmu_2016_00171 crossref_primary_10_1096_fj_201801618RRR crossref_primary_10_1530_JOE_15_0201 crossref_primary_10_1016_j_jot_2024_09_007 crossref_primary_10_1016_j_biomaterials_2024_122544 crossref_primary_10_1111_febs_17164 crossref_primary_10_2147_IJN_S404925 crossref_primary_10_1002_jcp_26931 crossref_primary_10_1007_s00441_022_03605_0 crossref_primary_10_3389_fimmu_2016_00285 crossref_primary_10_1007_s11064_020_03179_9 crossref_primary_10_1016_j_mam_2017_11_004 crossref_primary_10_3390_ijms24043196 crossref_primary_10_3389_fcvm_2021_688702 crossref_primary_10_18705_2311_4495_2020_7_5_17_28 crossref_primary_10_1172_JCI128867 crossref_primary_10_1016_j_yjmcc_2019_04_023 crossref_primary_10_3390_cells10081959 crossref_primary_10_4070_kcj_2025_0022 crossref_primary_10_1093_pcmedi_pbaa007 crossref_primary_10_3390_ijms20061420 crossref_primary_10_1242_bio_045633 crossref_primary_10_12677_ACM_2019_97130 crossref_primary_10_1080_20013078_2018_1461505 crossref_primary_10_1161_CIRCRESAHA_116_309307 crossref_primary_10_1021_acsbiomaterials_0c01197 crossref_primary_10_3389_fphar_2021_636134 crossref_primary_10_3390_cells12101432 crossref_primary_10_1016_j_jcyt_2018_06_012 crossref_primary_10_1007_s12265_022_10246_9 crossref_primary_10_1093_burnst_tkac043 crossref_primary_10_2147_IJN_S488368 crossref_primary_10_1021_acsabm_1c01312 crossref_primary_10_3390_ijms22094413 crossref_primary_10_3390_life11111123 crossref_primary_10_1007_s00395_021_00856_w crossref_primary_10_18632_aging_101814 crossref_primary_10_1080_20013078_2017_1388731 crossref_primary_10_1002_jex2_86 crossref_primary_10_1155_2020_5424281 crossref_primary_10_3390_ijms18040711 crossref_primary_10_1016_j_addr_2021_114009 crossref_primary_10_1007_s12265_020_10040_5 crossref_primary_10_1016_j_biomaterials_2024_122502 crossref_primary_10_1021_acs_jproteome_0c01048 crossref_primary_10_1089_scd_2019_0194 crossref_primary_10_2139_ssrn_4128898 crossref_primary_10_3389_fphar_2020_532041 crossref_primary_10_1016_j_ymthe_2016_12_022 crossref_primary_10_1111_jcmm_16515 crossref_primary_10_1007_s11626_016_0039_8 crossref_primary_10_1016_j_tips_2015_06_004 crossref_primary_10_1016_j_addr_2021_05_011 crossref_primary_10_1016_j_repbio_2021_100593 crossref_primary_10_4252_wjsc_v10_i8_106 crossref_primary_10_1016_j_pharmthera_2021_108025 crossref_primary_10_1089_ten_tea_2016_0508 crossref_primary_10_1111_apha_13339 crossref_primary_10_1113_JP282048 crossref_primary_10_3389_fphar_2023_1063458 crossref_primary_10_1016_j_jconrel_2018_10_001 crossref_primary_10_3892_mmr_2024_13266 crossref_primary_10_3389_fcell_2022_996887 crossref_primary_10_1186_s12951_022_01445_2 crossref_primary_10_1016_j_biopha_2020_111148 crossref_primary_10_1161_CIRCULATIONAHA_115_016978 crossref_primary_10_1186_s13018_024_05355_x crossref_primary_10_1016_j_bioactmat_2024_02_021 crossref_primary_10_1016_j_bja_2022_08_040 crossref_primary_10_1016_j_freeradbiomed_2023_05_007 crossref_primary_10_1016_j_vph_2021_106873 crossref_primary_10_3389_fonc_2019_00197 crossref_primary_10_1038_s41569_020_0389_5 crossref_primary_10_1038_s41598_020_59225_7 crossref_primary_10_3390_ijms17010063 crossref_primary_10_1155_2017_7849851 crossref_primary_10_1016_j_yjmcc_2020_02_007 crossref_primary_10_3390_ph14080766 crossref_primary_10_1186_s12979_024_00472_x crossref_primary_10_31083_j_rcm2506222 crossref_primary_10_1186_s12933_017_0638_z crossref_primary_10_1007_s11033_024_09500_x crossref_primary_10_1002_mco2_454 crossref_primary_10_3390_nu16010071 crossref_primary_10_1016_j_phrs_2020_105162 crossref_primary_10_3390_ijms232214334 crossref_primary_10_1016_j_tibtech_2024_03_010 crossref_primary_10_3390_metabo13040479 crossref_primary_10_3390_pharmaceutics14091848 crossref_primary_10_1016_j_biopha_2022_112810 crossref_primary_10_1080_08820139_2024_2354268 crossref_primary_10_1007_s00395_018_0674_1 crossref_primary_10_1007_s12015_015_9602_z crossref_primary_10_1016_j_jacc_2021_01_017 crossref_primary_10_1007_s00395_022_00947_2 crossref_primary_10_1073_pnas_1721521115 crossref_primary_10_1016_j_yjmcc_2018_04_012 crossref_primary_10_1016_j_jare_2023_12_014 crossref_primary_10_3390_ijms20205024 crossref_primary_10_1007_s13105_024_01027_w crossref_primary_10_1016_j_gene_2015_08_067 crossref_primary_10_1093_cvr_cvy231 crossref_primary_10_1093_eurheartj_ehac517 crossref_primary_10_3390_biomedicines8070218 crossref_primary_10_1177_1756286418789326 crossref_primary_10_1111_jcmm_14014 crossref_primary_10_1016_j_repbio_2020_07_002 crossref_primary_10_1186_s40001_022_00868_9 crossref_primary_10_2174_1389203723666220817085941 crossref_primary_10_3389_fcvm_2022_906350 crossref_primary_10_1042_CS20190036 crossref_primary_10_1098_rstb_2016_0522 crossref_primary_10_3390_ijms24032344 crossref_primary_10_1186_s40824_023_00433_3 crossref_primary_10_1038_s41598_021_90470_6 crossref_primary_10_1161_CIRCRESAHA_115_307654 crossref_primary_10_1186_s13287_024_03983_y crossref_primary_10_1080_14728222_2018_1439015 crossref_primary_10_1111_jcmm_70050 crossref_primary_10_1016_j_dsx_2019_04_010 crossref_primary_10_1016_j_jacc_2015_02_028 crossref_primary_10_1016_j_plipres_2019_01_004 crossref_primary_10_3389_fphys_2020_00479 crossref_primary_10_3390_cells10123331 crossref_primary_10_1002_jcp_27964 crossref_primary_10_1007_s00424_016_1922_6 crossref_primary_10_1038_s41392_024_01735_1 crossref_primary_10_3389_fcell_2020_00367 crossref_primary_10_3389_fcvm_2024_1436764 crossref_primary_10_3390_ijms22158163 crossref_primary_10_1161_JAHA_117_007954 crossref_primary_10_3892_ol_2017_5824 crossref_primary_10_1080_20013078_2018_1560809 crossref_primary_10_1038_s41467_019_08895_7 crossref_primary_10_1242_dmm_045559 crossref_primary_10_3389_fchem_2023_1115440 crossref_primary_10_1074_jbc_M116_745653 crossref_primary_10_3390_cells11071165 crossref_primary_10_3390_cells9030724 crossref_primary_10_1038_s41551_020_00637_1 crossref_primary_10_1021_acsinfecdis_3c00348 crossref_primary_10_1155_2018_4971261 crossref_primary_10_1038_nrcardio_2017_7 crossref_primary_10_3389_fphar_2017_00775 crossref_primary_10_1016_j_freeradbiomed_2019_11_032 crossref_primary_10_1002_jcp_28704 crossref_primary_10_1093_cvr_cvx211 crossref_primary_10_1080_21691401_2018_1436555 crossref_primary_10_1093_cvr_cvac031 crossref_primary_10_1016_j_bcp_2022_115350 crossref_primary_10_1039_D2MO00257D crossref_primary_10_1016_j_ajps_2024_100965 crossref_primary_10_3390_biom11030388 crossref_primary_10_1002_sctm_17_0081 crossref_primary_10_1016_j_jacc_2015_12_002 crossref_primary_10_3390_ijms232315438 crossref_primary_10_3390_ijms22042193 crossref_primary_10_1161_CIRCRESAHA_118_314635 crossref_primary_10_1038_s41374_020_00515_z crossref_primary_10_1038_s41569_020_00499_9 crossref_primary_10_1093_cvr_cvy314 crossref_primary_10_1002_stem_3296 crossref_primary_10_1093_cvr_cvab054 crossref_primary_10_1016_j_bbrc_2018_06_075 crossref_primary_10_1111_jcmm_17689 crossref_primary_10_1186_s40580_024_00423_8 crossref_primary_10_1055_s_0042_1756705 crossref_primary_10_3390_pharmaceutics12121195 crossref_primary_10_1016_j_yjmcc_2017_08_002 crossref_primary_10_1007_s12012_021_09700_y crossref_primary_10_1371_journal_pone_0294060 crossref_primary_10_1038_s41420_019_0159_5 crossref_primary_10_1002_jev2_12164 crossref_primary_10_1007_s12265_018_9847_4 crossref_primary_10_1007_s10495_017_1355_5 crossref_primary_10_1016_j_chemphyslip_2019_104836 crossref_primary_10_1016_j_biopha_2019_109451 crossref_primary_10_1016_j_cmet_2025_02_009 crossref_primary_10_1111_jcmm_12923 crossref_primary_10_1007_s00018_021_03973_w crossref_primary_10_1292_jvms_19_0643 crossref_primary_10_3389_fphys_2018_00216 crossref_primary_10_3390_cells11091375 crossref_primary_10_1038_s41392_023_01377_9 crossref_primary_10_1155_2020_1241065 crossref_primary_10_1016_j_intimp_2021_107730 crossref_primary_10_1002_1873_3468_13487 crossref_primary_10_1016_j_retram_2021_103323 crossref_primary_10_3389_fphys_2017_00494 crossref_primary_10_3390_cells10061500 crossref_primary_10_1039_D2SD00010E crossref_primary_10_1016_j_ymthe_2018_04_024 crossref_primary_10_7717_peerj_11147 crossref_primary_10_1161_JAHA_124_036555 crossref_primary_10_1016_j_bcp_2023_115462 crossref_primary_10_3390_diagnostics10100843 crossref_primary_10_1111_febs_15557 crossref_primary_10_3390_ijms20133272 crossref_primary_10_1038_s41419_018_0274_x crossref_primary_10_3390_biomedicines12092119 crossref_primary_10_1002_jcp_27110 crossref_primary_10_1002_stem_3261 crossref_primary_10_1152_ajpheart_00100_2018 crossref_primary_10_1007_s11033_020_05453_z crossref_primary_10_3390_jpm13081263 crossref_primary_10_1186_s12951_022_01284_1 crossref_primary_10_3390_ijms23063334 crossref_primary_10_1007_s10557_016_6698_6 crossref_primary_10_3389_fgene_2022_847679 crossref_primary_10_1007_s00395_017_0628_z crossref_primary_10_1096_fj_202400371R crossref_primary_10_2174_0929867326666190129142604 crossref_primary_10_3389_fphys_2016_00125 crossref_primary_10_3389_fcell_2022_875376 crossref_primary_10_3389_fphys_2018_00348 crossref_primary_10_1152_ajpheart_00027_2018 crossref_primary_10_1093_cvr_cvab139 crossref_primary_10_1097_FJC_0000000000000507 crossref_primary_10_3390_cells9030592 crossref_primary_10_17816_pmj38476_84 crossref_primary_10_1152_ajpheart_00213_2017 crossref_primary_10_1038_srep21961 crossref_primary_10_1172_JCI135710 crossref_primary_10_3389_fphar_2023_1143888 crossref_primary_10_3390_ijms21155294 crossref_primary_10_3389_fcell_2021_802509 crossref_primary_10_1080_15548627_2020_1821547 crossref_primary_10_3390_ijms21207687 crossref_primary_10_1002_adtp_202200066 crossref_primary_10_1186_s13048_020_00735_3 crossref_primary_10_1016_j_jss_2018_06_066 crossref_primary_10_1016_j_vesic_2023_100031 crossref_primary_10_1161_HYPERTENSIONAHA_121_17574 crossref_primary_10_1016_j_phrs_2015_11_004 crossref_primary_10_1021_acs_analchem_1c04282 crossref_primary_10_1002_adfm_201803567 crossref_primary_10_1002_adtp_202400006 crossref_primary_10_1021_acsnano_3c07878 crossref_primary_10_1007_s11010_017_3160_4 crossref_primary_10_1186_s12916_019_1268_y crossref_primary_10_4103_1673_5374_303012 crossref_primary_10_2147_IJN_S338937 crossref_primary_10_14336_AD_2018_1020 crossref_primary_10_1007_s12265_018_9831_z crossref_primary_10_1080_20013078_2017_1390391 crossref_primary_10_1093_cvr_cvz209 crossref_primary_10_1096_fj_202101323R crossref_primary_10_1093_eurheartj_ehab323 crossref_primary_10_1016_j_expneurol_2018_06_007 crossref_primary_10_1093_eurheartj_ehw304 crossref_primary_10_1016_j_lfs_2023_121649 crossref_primary_10_1038_s41420_020_00305_y crossref_primary_10_1161_CIRCRESAHA_117_311215 crossref_primary_10_1080_14728222_2024_2421760 crossref_primary_10_1097_PRS_0000000000010389 crossref_primary_10_3390_cells9030675 crossref_primary_10_1007_s10974_019_09555_5 crossref_primary_10_1002_ctm2_262 crossref_primary_10_3390_ijms21239262 crossref_primary_10_1016_j_lfs_2020_117987 crossref_primary_10_1093_cvr_cvaa137 crossref_primary_10_1186_s10020_022_00575_5 crossref_primary_10_1042_EBC20170081 crossref_primary_10_1016_j_bios_2015_09_061 crossref_primary_10_1111_aas_13296 crossref_primary_10_1007_s11051_021_05289_z crossref_primary_10_2478_jtim_2020_0004 crossref_primary_10_1002_cbf_3578 crossref_primary_10_1002_jcp_28894 crossref_primary_10_1038_s41598_017_08250_0 crossref_primary_10_1177_0300060520957541 crossref_primary_10_1007_s10741_016_9561_8 crossref_primary_10_1111_jcmm_17162 crossref_primary_10_1038_s41390_020_0923_5 crossref_primary_10_3389_fonc_2021_675940 crossref_primary_10_1016_j_ijcard_2024_132104 crossref_primary_10_2217_nnm_16_7 crossref_primary_10_1007_s10616_024_00634_1 crossref_primary_10_3390_cells10112933 |
Cites_doi | 10.1093/intimm/dxh267 10.4049/jimmunol.1300052 10.3109/08820139809022710 10.1016/0022-2828(92)93148-D 10.1083/jcb.201211138 10.1007/s00395-004-0483-6 10.1016/j.yjmcc.2014.01.004 10.1152/physrev.00023.2010 10.1007/s00395-012-0277-1 10.1161/01.CIR.96.12.4343 10.1136/hrt.2003.028092 10.1016/j.ejheart.2006.03.004 10.1172/JCI68480 10.1172/JCI62874 10.1172/JCI117815 10.1161/CIRCRESAHA.111.253286 10.1161/01.CIR.96.5.1641 10.1152/ajpheart.00812.2013 10.1016/0014-5793(92)81216-9 10.1073/pnas.1016065108 10.1038/ncb1596 10.1152/ajpheart.00306.2009 10.1074/jbc.M502017200 10.1016/j.yjmcc.2010.10.021 10.1146/annurev.immunol.20.100301.064801 10.1097/SLA.0b013e3181bfda8c 10.1016/S0140-6736(12)60916-7 10.1016/j.scr.2009.12.003 10.1016/j.stemcr.2014.04.006 10.1161/CIRCRESAHA.113.300636 10.1007/s00395-013-0377-6 |
ContentType | Journal Article |
Copyright | 2015 American College of Cardiology Foundation American College of Cardiology Foundation Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Apr 21, 2015 |
Copyright_xml | – notice: 2015 American College of Cardiology Foundation – notice: American College of Cardiology Foundation – notice: Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Apr 21, 2015 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ 7X8 |
DOI | 10.1016/j.jacc.2015.02.026 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-3597 |
EndPage | 1536 |
ExternalDocumentID | 3653808511 25881934 10_1016_j_jacc_2015_02_026 S0735109715006191 1_s2_0_S0735109715006191 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/K002066/1 – fundername: British Heart Foundation grantid: RG/08/015/26411 – fundername: Department of Health’s National Institute for Health Research Biomedical Research Centres – fundername: National Institute for Health Research, University College London Hospitals/University College London Biomedical Research Centre |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 18M 1B1 1P~ 1~. 1~5 2WC 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ AABNK AABVL AAEDT AAEDW AAIKJ AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABLJU ABMAC ABMZM ABOCM ACGFO ACGFS ACIUM ACJTP ACPRK ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AEKER AENEX AEUPX AEVXI AEXQZ AFPUW AFRAH AFRHN AFTJW AGCQF AGHFR AGYEJ AHMBA AIGII AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BLXMC CS3 DIK DU5 E3Z EBS EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU G-Q GBLVA GX1 H13 HVGLF IHE IXB J1W K-O KQ8 L7B MO0 N9A O-L O9- OA. OAUVE OK1 OL~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 ROL RPZ SCC SDF SDG SDP SES SSZ TR2 UNMZH UV1 W8F WH7 WOQ WOW YYM YZZ Z5R .55 .GJ 0SF 1CY 29L 3O- 3V. 6I. 7RV AACTN AAFTH AAKUH AALRI AAQQT AAQXK AAYOK ABVKL ABWVN ABXDB ACRPL ADMUD ADNMO AFCTW AFETI AFFNX AJOXV AMFUW ASPBG AVWKF AZFZN BENPR BPHCQ FGOYB HX~ HZ~ J5H N4W NCXOZ QTD R2- RIG SEW T5K X7M XPP YYP ZGI ZXP AAIAV ABJNI EFLBG LCYCR NAHTW ZA5 AAYWO AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ 7X8 ~HD |
ID | FETCH-LOGICAL-c589t-c8a15e79e8ffba7574676d6d9f604c1e9c6e93f667793b548fb6eedffea27fb43 |
IEDL.DBID | .~1 |
ISSN | 0735-1097 1558-3597 |
IngestDate | Sun Sep 28 08:20:54 EDT 2025 Sat Sep 27 22:31:42 EDT 2025 Sat Jul 26 03:13:36 EDT 2025 Mon Jul 21 06:05:25 EDT 2025 Tue Jul 01 01:32:36 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Fri Feb 23 02:33:08 EST 2024 Sun Feb 23 10:18:57 EST 2025 Tue Aug 26 18:48:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | ischemia-reperfusion injury HSP exosomes cardioprotection miRNA heat shock protein toll-like receptor TLR RIC TEM microribonucleic acid remote ischemic pre-conditioning transmission electron microscopy |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-c8a15e79e8ffba7574676d6d9f604c1e9c6e93f667793b548fb6eedffea27fb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0735109715006191 |
PMID | 25881934 |
PQID | 1672911373 |
PQPubID | 2031078 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1872838274 proquest_miscellaneous_1674199311 proquest_journals_1672911373 pubmed_primary_25881934 crossref_citationtrail_10_1016_j_jacc_2015_02_026 crossref_primary_10_1016_j_jacc_2015_02_026 elsevier_sciencedirect_doi_10_1016_j_jacc_2015_02_026 elsevier_clinicalkeyesjournals_1_s2_0_S0735109715006191 elsevier_clinicalkey_doi_10_1016_j_jacc_2015_02_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-21 |
PublicationDateYYYYMMDD | 2015-04-21 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of the American College of Cardiology |
PublicationTitleAlternate | J Am Coll Cardiol |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Dybdahl, Slordahl, Waage, Kierulf, Espevik, Sundan (bib12) 2005; 91 Lancaster, Febbraio (bib30) 2005; 280 Davidson, Selvaraj, He (bib24) 2013; 108 Mymrikov, Seit-Nebi, Gusev (bib16) 2011; 91 Efthymiou, Mocanu, de Belleroche, Wells, Latchmann, Yellon (bib17) 2004; 99 Giricz, Varga, Baranyai (bib18) 2014; 68 Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (bib4) 2007; 9 Yellon, Davidson (bib1) 2014; 114 Pockley, Shepherd, Corton (bib29) 1998; 27 Heusch (bib21) 2013; 381 Dong, Vallejo, Tzeng, Thomas, Mann (bib15) 2010; 298 Zhang, Zhang, Shan, Hunt, Pandita, Lee (bib23) 2013; 191 Sahoo, Klychko, Thorne (bib3) 2011; 109 Varga, Zvara, Farago (bib26) 2014; 307 Srivastava (bib32) 2002; 20 Hausenloy, Yellon (bib8) 2013; 123 Martin, Mestril, Hilal-Dandan, Brunton, Dillmann (bib9) 1997; 96 Cai, Parajuli, Zheng, Becker (bib25) 2012; 107 Birnbaum, Hale, Kloner (bib22) 1997; 96 Stokoe, Engel, Campbell, Cohen, Gaestel (bib27) 1992; 313 Lai, Arslan, Lee (bib5) 2010; 4 Marber, Mestril, Chi, Sayen, Yellon, Dillmann (bib11) 1995; 95 Satoh, Shimoda, Akatsu, Ishikawa, Minami, Nakamura (bib13) 2006; 8 Caby, Lankar, Vincendeau-Scherrer, Raposo, Bonnerot (bib7) 2005; 17 Raposo, Stoorvogel (bib2) 2013; 200 Marber, Rose, Wang (bib28) 2011; 51 Ibrahim, Cheng, Marban (bib6) 2014; 2 Chalmin, Ladoire, Mignot (bib20) 2010; 120 Wang, Birch, He (bib14) 2010; 251 May, Kramarenko, Brandon (bib31) 2013; 123 Stangl, Gehrmann, Riegger (bib19) 2011; 108 Yellon, Latchman (bib10) 1992; 24 Ibrahim (10.1016/j.jacc.2015.02.026_bib6) 2014; 2 Mymrikov (10.1016/j.jacc.2015.02.026_bib16) 2011; 91 Lai (10.1016/j.jacc.2015.02.026_bib5) 2010; 4 Pockley (10.1016/j.jacc.2015.02.026_bib29) 1998; 27 Varga (10.1016/j.jacc.2015.02.026_bib26) 2014; 307 Davidson (10.1016/j.jacc.2015.02.026_bib24) 2013; 108 May (10.1016/j.jacc.2015.02.026_bib31) 2013; 123 Satoh (10.1016/j.jacc.2015.02.026_bib13) 2006; 8 Marber (10.1016/j.jacc.2015.02.026_bib11) 1995; 95 Heusch (10.1016/j.jacc.2015.02.026_bib21) 2013; 381 Wang (10.1016/j.jacc.2015.02.026_bib14) 2010; 251 Giricz (10.1016/j.jacc.2015.02.026_bib18) 2014; 68 Efthymiou (10.1016/j.jacc.2015.02.026_bib17) 2004; 99 Cai (10.1016/j.jacc.2015.02.026_bib25) 2012; 107 Srivastava (10.1016/j.jacc.2015.02.026_bib32) 2002; 20 Raposo (10.1016/j.jacc.2015.02.026_bib2) 2013; 200 Dybdahl (10.1016/j.jacc.2015.02.026_bib12) 2005; 91 Stangl (10.1016/j.jacc.2015.02.026_bib19) 2011; 108 Martin (10.1016/j.jacc.2015.02.026_bib9) 1997; 96 Caby (10.1016/j.jacc.2015.02.026_bib7) 2005; 17 Sahoo (10.1016/j.jacc.2015.02.026_bib3) 2011; 109 Dong (10.1016/j.jacc.2015.02.026_bib15) 2010; 298 Chalmin (10.1016/j.jacc.2015.02.026_bib20) 2010; 120 Valadi (10.1016/j.jacc.2015.02.026_bib4) 2007; 9 Zhang (10.1016/j.jacc.2015.02.026_bib23) 2013; 191 Yellon (10.1016/j.jacc.2015.02.026_bib1) 2014; 114 Birnbaum (10.1016/j.jacc.2015.02.026_bib22) 1997; 96 Yellon (10.1016/j.jacc.2015.02.026_bib10) 1992; 24 Stokoe (10.1016/j.jacc.2015.02.026_bib27) 1992; 313 Lancaster (10.1016/j.jacc.2015.02.026_bib30) 2005; 280 Hausenloy (10.1016/j.jacc.2015.02.026_bib8) 2013; 123 Marber (10.1016/j.jacc.2015.02.026_bib28) 2011; 51 25881935 - J Am Coll Cardiol. 2015 Apr 21;65(15):1537-8 |
References_xml | – volume: 51 start-page: 485 year: 2011 end-page: 490 ident: bib28 article-title: The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure publication-title: J Mol Cell Cardiol – volume: 280 start-page: 23349 year: 2005 end-page: 23355 ident: bib30 article-title: Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins publication-title: J Biol Chem – volume: 20 start-page: 395 year: 2002 end-page: 425 ident: bib32 article-title: Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses publication-title: Annu Rev Immunol – volume: 91 start-page: 299 year: 2005 end-page: 304 ident: bib12 article-title: Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction publication-title: Heart – volume: 99 start-page: 392 year: 2004 end-page: 394 ident: bib17 article-title: Heat shock protein 27 protects the heart against myocardial infarction publication-title: Basic Res Cardiol – volume: 120 start-page: 457 year: 2010 end-page: 471 ident: bib20 article-title: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells publication-title: J Clin Invest – volume: 251 start-page: 292 year: 2010 end-page: 299 ident: bib14 article-title: Remote ischemic preconditioning by hindlimb occlusion prevents liver ischemic/reperfusion injury: the role of High Mobility Group-Box 1 publication-title: Ann Surg – volume: 91 start-page: 1123 year: 2011 end-page: 1159 ident: bib16 article-title: Large potentials of small heat shock proteins publication-title: Physiol Rev – volume: 4 start-page: 214 year: 2010 end-page: 222 ident: bib5 article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury publication-title: Stem Cell Res – volume: 381 start-page: 166 year: 2013 end-page: 175 ident: bib21 article-title: Cardioprotection: chances and challenges of its translation to the clinic publication-title: Lancet – volume: 24 start-page: 113 year: 1992 end-page: 124 ident: bib10 article-title: Stress proteins and myocardial protection publication-title: J Mol Cell Cardiol – volume: 2 start-page: 606 year: 2014 end-page: 619 ident: bib6 article-title: Exosomes as critical agents of cardiac regeneration triggered by cell therapy publication-title: Stem Cell Reports – volume: 109 start-page: 724 year: 2011 end-page: 728 ident: bib3 article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity publication-title: Circ Res – volume: 298 start-page: H1079 year: 2010 end-page: H1087 ident: bib15 article-title: Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways publication-title: Am J Physiol Heart Circ Physiol – volume: 123 start-page: 3577 year: 2013 end-page: 3587 ident: bib31 article-title: Inner ear supporting cells protect hair cells by secreting HSP70 publication-title: J Clin Invest – volume: 307 start-page: H216 year: 2014 end-page: H227 ident: bib26 article-title: MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs publication-title: Am J Physiol Heart Circ Physiol – volume: 27 start-page: 367 year: 1998 end-page: 377 ident: bib29 article-title: Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals publication-title: Immunol Invest – volume: 108 start-page: 733 year: 2011 end-page: 738 ident: bib19 article-title: Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody publication-title: Proc Natl Acad Sci U S A – volume: 200 start-page: 373 year: 2013 end-page: 383 ident: bib2 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J Cell Biol – volume: 123 start-page: 92 year: 2013 end-page: 100 ident: bib8 article-title: Myocardial ischemia-reperfusion injury: a neglected therapeutic target publication-title: J Clin Invest – volume: 17 start-page: 879 year: 2005 end-page: 887 ident: bib7 article-title: Exosomal-like vesicles are present in human blood plasma publication-title: Int Immunol – volume: 108 start-page: 377 year: 2013 ident: bib24 article-title: Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis publication-title: Basic Res Cardiol – volume: 107 start-page: 277 year: 2012 ident: bib25 article-title: Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10 publication-title: Basic Res Cardiol – volume: 8 start-page: 810 year: 2006 end-page: 815 ident: bib13 article-title: Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction publication-title: Eur J Heart Fail – volume: 96 start-page: 1641 year: 1997 end-page: 1646 ident: bib22 article-title: Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit publication-title: Circulation – volume: 95 start-page: 1446 year: 1995 end-page: 1456 ident: bib11 article-title: Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury publication-title: J Clin Invest – volume: 96 start-page: 4343 year: 1997 end-page: 4348 ident: bib9 article-title: Small heat shock proteins and protection against ischemic injury in cardiac myocytes publication-title: Circulation – volume: 68 start-page: 75 year: 2014 end-page: 78 ident: bib18 article-title: Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles publication-title: J Mol Cell Cardiol – volume: 191 start-page: 1393 year: 2013 end-page: 1403 ident: bib23 article-title: A protective Hsp70-TLR4 pathway in lethal oxidant lung injury publication-title: J Immunol – volume: 9 start-page: 654 year: 2007 end-page: 659 ident: bib4 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat Cell Biol – volume: 313 start-page: 307 year: 1992 end-page: 313 ident: bib27 article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins publication-title: FEBS Lett – volume: 114 start-page: 325 year: 2014 end-page: 332 ident: bib1 article-title: Exosomes: nanoparticles involved in cardioprotection? publication-title: Circ Res – volume: 17 start-page: 879 year: 2005 ident: 10.1016/j.jacc.2015.02.026_bib7 article-title: Exosomal-like vesicles are present in human blood plasma publication-title: Int Immunol doi: 10.1093/intimm/dxh267 – volume: 191 start-page: 1393 year: 2013 ident: 10.1016/j.jacc.2015.02.026_bib23 article-title: A protective Hsp70-TLR4 pathway in lethal oxidant lung injury publication-title: J Immunol doi: 10.4049/jimmunol.1300052 – volume: 27 start-page: 367 year: 1998 ident: 10.1016/j.jacc.2015.02.026_bib29 article-title: Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals publication-title: Immunol Invest doi: 10.3109/08820139809022710 – volume: 24 start-page: 113 year: 1992 ident: 10.1016/j.jacc.2015.02.026_bib10 article-title: Stress proteins and myocardial protection publication-title: J Mol Cell Cardiol doi: 10.1016/0022-2828(92)93148-D – volume: 200 start-page: 373 year: 2013 ident: 10.1016/j.jacc.2015.02.026_bib2 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J Cell Biol doi: 10.1083/jcb.201211138 – volume: 120 start-page: 457 year: 2010 ident: 10.1016/j.jacc.2015.02.026_bib20 article-title: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells publication-title: J Clin Invest – volume: 99 start-page: 392 year: 2004 ident: 10.1016/j.jacc.2015.02.026_bib17 article-title: Heat shock protein 27 protects the heart against myocardial infarction publication-title: Basic Res Cardiol doi: 10.1007/s00395-004-0483-6 – volume: 68 start-page: 75 year: 2014 ident: 10.1016/j.jacc.2015.02.026_bib18 article-title: Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2014.01.004 – volume: 91 start-page: 1123 year: 2011 ident: 10.1016/j.jacc.2015.02.026_bib16 article-title: Large potentials of small heat shock proteins publication-title: Physiol Rev doi: 10.1152/physrev.00023.2010 – volume: 107 start-page: 277 year: 2012 ident: 10.1016/j.jacc.2015.02.026_bib25 article-title: Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10 publication-title: Basic Res Cardiol doi: 10.1007/s00395-012-0277-1 – volume: 96 start-page: 4343 year: 1997 ident: 10.1016/j.jacc.2015.02.026_bib9 article-title: Small heat shock proteins and protection against ischemic injury in cardiac myocytes publication-title: Circulation doi: 10.1161/01.CIR.96.12.4343 – volume: 91 start-page: 299 year: 2005 ident: 10.1016/j.jacc.2015.02.026_bib12 article-title: Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction publication-title: Heart doi: 10.1136/hrt.2003.028092 – volume: 8 start-page: 810 year: 2006 ident: 10.1016/j.jacc.2015.02.026_bib13 article-title: Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction publication-title: Eur J Heart Fail doi: 10.1016/j.ejheart.2006.03.004 – volume: 123 start-page: 3577 year: 2013 ident: 10.1016/j.jacc.2015.02.026_bib31 article-title: Inner ear supporting cells protect hair cells by secreting HSP70 publication-title: J Clin Invest doi: 10.1172/JCI68480 – volume: 123 start-page: 92 year: 2013 ident: 10.1016/j.jacc.2015.02.026_bib8 article-title: Myocardial ischemia-reperfusion injury: a neglected therapeutic target publication-title: J Clin Invest doi: 10.1172/JCI62874 – volume: 95 start-page: 1446 year: 1995 ident: 10.1016/j.jacc.2015.02.026_bib11 article-title: Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury publication-title: J Clin Invest doi: 10.1172/JCI117815 – volume: 109 start-page: 724 year: 2011 ident: 10.1016/j.jacc.2015.02.026_bib3 article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity publication-title: Circ Res doi: 10.1161/CIRCRESAHA.111.253286 – volume: 96 start-page: 1641 year: 1997 ident: 10.1016/j.jacc.2015.02.026_bib22 article-title: Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit publication-title: Circulation doi: 10.1161/01.CIR.96.5.1641 – volume: 307 start-page: H216 year: 2014 ident: 10.1016/j.jacc.2015.02.026_bib26 article-title: MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00812.2013 – volume: 313 start-page: 307 year: 1992 ident: 10.1016/j.jacc.2015.02.026_bib27 article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins publication-title: FEBS Lett doi: 10.1016/0014-5793(92)81216-9 – volume: 108 start-page: 733 year: 2011 ident: 10.1016/j.jacc.2015.02.026_bib19 article-title: Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1016065108 – volume: 9 start-page: 654 year: 2007 ident: 10.1016/j.jacc.2015.02.026_bib4 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat Cell Biol doi: 10.1038/ncb1596 – volume: 298 start-page: H1079 year: 2010 ident: 10.1016/j.jacc.2015.02.026_bib15 article-title: Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00306.2009 – volume: 280 start-page: 23349 year: 2005 ident: 10.1016/j.jacc.2015.02.026_bib30 article-title: Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins publication-title: J Biol Chem doi: 10.1074/jbc.M502017200 – volume: 51 start-page: 485 year: 2011 ident: 10.1016/j.jacc.2015.02.026_bib28 article-title: The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2010.10.021 – volume: 20 start-page: 395 year: 2002 ident: 10.1016/j.jacc.2015.02.026_bib32 article-title: Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.20.100301.064801 – volume: 251 start-page: 292 year: 2010 ident: 10.1016/j.jacc.2015.02.026_bib14 article-title: Remote ischemic preconditioning by hindlimb occlusion prevents liver ischemic/reperfusion injury: the role of High Mobility Group-Box 1 publication-title: Ann Surg doi: 10.1097/SLA.0b013e3181bfda8c – volume: 381 start-page: 166 year: 2013 ident: 10.1016/j.jacc.2015.02.026_bib21 article-title: Cardioprotection: chances and challenges of its translation to the clinic publication-title: Lancet doi: 10.1016/S0140-6736(12)60916-7 – volume: 4 start-page: 214 year: 2010 ident: 10.1016/j.jacc.2015.02.026_bib5 article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury publication-title: Stem Cell Res doi: 10.1016/j.scr.2009.12.003 – volume: 2 start-page: 606 year: 2014 ident: 10.1016/j.jacc.2015.02.026_bib6 article-title: Exosomes as critical agents of cardiac regeneration triggered by cell therapy publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2014.04.006 – volume: 114 start-page: 325 year: 2014 ident: 10.1016/j.jacc.2015.02.026_bib1 article-title: Exosomes: nanoparticles involved in cardioprotection? publication-title: Circ Res doi: 10.1161/CIRCRESAHA.113.300636 – volume: 108 start-page: 377 year: 2013 ident: 10.1016/j.jacc.2015.02.026_bib24 article-title: Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis publication-title: Basic Res Cardiol doi: 10.1007/s00395-013-0377-6 – reference: 25881935 - J Am Coll Cardiol. 2015 Apr 21;65(15):1537-8 |
SSID | ssj0006819 |
Score | 2.6310258 |
Snippet | Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart,... AbstractBackgroundExosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act... Background Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1525 |
SubjectTerms | Adult Animals Cardiology cardioprotection Cardiovascular exosomes Exosomes - metabolism Exosomes - pathology Healthy Volunteers heat shock protein HSP27 Heat-Shock Proteins - metabolism HSP70 Heat-Shock Proteins - metabolism Humans Immune system ischemia-reperfusion injury Kinases Male Microscopy, Electron Middle Aged Myocardial Reperfusion Injury - prevention & control Myocytes, Cardiac - cytology Plasma Rats, Sprague-Dawley Rodents Tetraspanin 28 - metabolism Tetraspanin 30 - metabolism toll-like receptor |
Title | Plasma Exosomes Protect the Myocardium From Ischemia-Reperfusion Injury |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0735109715006191 https://www.clinicalkey.es/playcontent/1-s2.0-S0735109715006191 https://dx.doi.org/10.1016/j.jacc.2015.02.026 https://www.ncbi.nlm.nih.gov/pubmed/25881934 https://www.proquest.com/docview/1672911373 https://www.proquest.com/docview/1674199311 https://www.proquest.com/docview/1872838274 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelD2MvY9_z1hUN9ja8RLKtj8euNGsGGYWtkDchKxIkzHaJE1hf-rf3zpZTRrsMBsZg-2SZ46e7n3ynEyEfwcdzoa1PAS06zV0IqWU6pAWTSD94KS1GdGffxfll_m1ezA_I6bAWBtMqo-3vbXpnreOdUdTm6Gq5HP0AcBYYP4V3glPqV7DnErH--eYuzUOobnMPFE5ROi6c6XO8VtZhGUNWdHU7scDCw87pb-Szc0KTp-RJZI_0pP_AZ-TA18_Jo1mMj78gXy-ADFeWnv1u2qbyLb3oyzBQoHl0dg1-C_Cwrehk3VR0ChNbXy1tCiTcr8MW_5vRab0CLb8kl5Ozn6fnadwqIXWF0pvUKcsKL7VXIZRWFriJiFiIhQ5inDvmtRNeZ0EICeOxhFlKKAV4xxC85TKUefaKHNZN7d8QCgxAKL0AEcnzhePKY8UWPy5L7pwMMiFs0JFxsY44bmfxywwJYyuDejWoVzPmcIiEfNq1ueqraOyVzgbVm2F9KFg0A0Z-byv5UCvfxkHZGmZakDT3gJOQYtfyD-z9s8ejARfmrhMB0xXGMpkl5MPuMYxZDMTY2jfbTibHxEnG9sgoCcxPcZkn5HWPuZ3qeKEA1Vn-9j8__B15jFcYFOPsiBxu1lv_HrjVpjzuBg-cp_Mvt0AhH8E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelg20vY9_z1m0a7G2IRLItyY9baZZsTSmshbwJWZEgobZLnMD63_fOX2Osy2DgJ-tkieOnu598pxMhH8HHC5lZzwAtGUtcCMzyLLCUK6QfIlcWI7rzMzm9TL4t0sUBOe7PwmBaZWf7W5veWOvuzajT5uh6tRr9AHCmGD-Fb4JTwhPs94ANjBHas8WXwRxL3dzugdIMxbuTM22S19o6rGPI06ZwJ1ZYuNs7_Y19Nl5o8pg86ugj_dzO8Ak58OVTcn_eBcifka_nwIYLS09-VnVV-Jqet3UYKPA8Or8BxwWA2BV0sqkKOoOdrS9WlgEL95uwwx9ndFauQc3PyeXk5OJ4yrq7EphLdbZlTlueepV5HUJuVYq3iMilXGZBjhPHfeakz-IgpYIFmcM2JeQS3GMI3goV8iR-QQ7LqvSvCAUKIHW2BBElkqUT2mPJFj_Oc-GcCioivNeRcV0hcbzP4sr0GWNrg3o1qFczFvDIiHwa-ly3ZTT2Sse96k1_QBRMmgErv7eXuquXr7tVWRtuapA0fyAnIunQ8zfw_XPEox4X5tcgEvYrnMcqjsiHoRkWLUZibOmrXSOTYOYk53tktALqp4VKIvKyxdygOpFqQHWcvP7Pib8nD6YX81NzOjv7_oY8xBaMkAl-RA63m51_C0Rrm79rFtItBHoh6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+exosomes+protect+the+myocardium+from+ischemia-reperfusion+injury&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Vicencio%2C+Jose+M&rft.au=Yellon%2C+Derek+M&rft.au=Sivaraman%2C+Vivek&rft.au=Das%2C+Debashish&rft.date=2015-04-21&rft.issn=1558-3597&rft.eissn=1558-3597&rft.volume=65&rft.issue=15&rft.spage=1525&rft_id=info:doi/10.1016%2Fj.jacc.2015.02.026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109714X00665%2Fcov150h.gif |