Plasma Exosomes Protect the Myocardium From Ischemia-Reperfusion Injury

Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 65; no. 15; pp. 1525 - 1536
Main Authors Vicencio, Jose M., Yellon, Derek M., Sivaraman, Vivek, Das, Debashish, Boi-Doku, Claire, Arjun, Sapna, Zheng, Ying, Riquelme, Jaime A., Kearney, Jessica, Sharma, Vikram, Multhoff, Gabriele, Hall, Andrew R., Davidson, Sean M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.04.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0735-1097
1558-3597
1558-3597
DOI10.1016/j.jacc.2015.02.026

Cover

Abstract Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.
AbstractList AbstractBackgroundExosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. ObjectivesThis study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. MethodsThe exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. ResultsExosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. ConclusionsExosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.
Background Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. Objectives This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. Methods The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. Results Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. Conclusions Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.
Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes’ composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.
Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury. This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved. The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors. Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection. Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.
Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury.BACKGROUNDExosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury.This study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved.OBJECTIVESThis study sought to isolate and characterize exosomes from rats and healthy volunteers, evaluate their cardioprotective actions, and identify the molecular mechanisms involved.The exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors.METHODSThe exosome-rich fraction was isolated from the blood of adult rats and human volunteers and was analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. This was then used in ex vivo, in vivo, and in vitro settings of ischemia-reperfusion, with the protective signaling pathways activated on cardiomyocytes identified using Western blot analyses and chemical inhibitors.Exosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection.RESULTSExosomes exhibited the expected size and expressed marker proteins CD63, CD81, and heat shock protein (HSP) 70. The exosome-rich fraction was powerfully cardioprotective in all tested models of cardiac ischemia-reperfusion injury. We identified a pro-survival signaling pathway activated in cardiomyocytes involving toll-like receptor (TLR) 4 and various kinases, leading to activation of the cardioprotective HSP27. Cardioprotection was prevented by a neutralizing antibody against a conserved HSP70 epitope expressed on the exosome surface and by blocking TLR4 in cardiomyocytes, identifying the HSP70/TLR4 communication axis as a critical component in exosome-mediated cardioprotection.Exosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.CONCLUSIONSExosomes deliver endogenous protective signals to the myocardium by a pathway involving TLR4 and classic cardioprotective HSPs.
Author Vicencio, Jose M.
Boi-Doku, Claire
Riquelme, Jaime A.
Sharma, Vikram
Yellon, Derek M.
Zheng, Ying
Kearney, Jessica
Hall, Andrew R.
Multhoff, Gabriele
Davidson, Sean M.
Das, Debashish
Sivaraman, Vivek
Arjun, Sapna
Author_xml – sequence: 1
  givenname: Jose M.
  surname: Vicencio
  fullname: Vicencio, Jose M.
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 2
  givenname: Derek M.
  surname: Yellon
  fullname: Yellon, Derek M.
  email: d.yellon@ucl.ac.uk
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 3
  givenname: Vivek
  surname: Sivaraman
  fullname: Sivaraman, Vivek
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 4
  givenname: Debashish
  surname: Das
  fullname: Das, Debashish
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 5
  givenname: Claire
  surname: Boi-Doku
  fullname: Boi-Doku, Claire
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 6
  givenname: Sapna
  surname: Arjun
  fullname: Arjun, Sapna
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 7
  givenname: Ying
  surname: Zheng
  fullname: Zheng, Ying
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 8
  givenname: Jaime A.
  surname: Riquelme
  fullname: Riquelme, Jaime A.
  organization: Advanced Center for Chronic Diseases and Centro Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
– sequence: 9
  givenname: Jessica
  surname: Kearney
  fullname: Kearney, Jessica
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 10
  givenname: Vikram
  surname: Sharma
  fullname: Sharma, Vikram
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 11
  givenname: Gabriele
  surname: Multhoff
  fullname: Multhoff, Gabriele
  organization: Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany
– sequence: 12
  givenname: Andrew R.
  surname: Hall
  fullname: Hall, Andrew R.
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
– sequence: 13
  givenname: Sean M.
  surname: Davidson
  fullname: Davidson, Sean M.
  organization: The Hatter Cardiovascular Institute, University College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25881934$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEYhYNU7Lb6B7yQAW-8mTXJTL5EBCn9WKhY_LgOmcwbmnFmsiYz4v77ZtgWYcEqvJBcPOcNOeecoKMxjIDQS4LXBBP-tlt3xto1xYStMc3Dn6AVYUyWFVPiCK2wqFhJsBLH6CSlDmPMJVHP0DFlMl-qeoUub3qTBlOc_w4pDJCKmxgmsFMx3ULxaResia2fh-IihqHYJHsLgzflF9hCdHPyYSw2YzfH3XP01Jk-wYv78xR9vzj_dnZVXn--3Jx9vC4tk2oqrTSEgVAgnWuMYKLmgre8VY7j2hJQloOqHOdCqKphtXQNB2idA0OFa-rqFL3Z793G8HOGNOnBJwt9b0YIc9JECiorScV_oFzURKmKkIy-PkC7MMcxf2ShqMqIqDL16p6amwFavY1-MHGnH9zMgNwDNoaUIjht_WSm7NIUje81wXoJTnd6CU4vwWlM8_AspQfSh-2Pit7vRZAd_-Uh6mQ9jBZaH3OGug3-cfmHA7nt_eit6X_ADtIfC3TKAv11qdPSJsJykYhabHv39wX_ev0Oq4XYVw
CitedBy_id crossref_primary_10_18632_oncotarget_26537
crossref_primary_10_2174_1566524020666200610164743
crossref_primary_10_1002_adma_201504009
crossref_primary_10_1016_j_ijcha_2015_05_006
crossref_primary_10_1016_j_tcb_2020_09_009
crossref_primary_10_3389_fneur_2017_00057
crossref_primary_10_18632_aging_102837
crossref_primary_10_3389_fimmu_2023_1248056
crossref_primary_10_1038_s41598_018_34357_z
crossref_primary_10_2217_rme_2022_0141
crossref_primary_10_1016_j_ymthe_2016_09_001
crossref_primary_10_1002_JPER_22_0035
crossref_primary_10_2174_1381612825666191105103417
crossref_primary_10_1155_2020_7298687
crossref_primary_10_1002_term_3155
crossref_primary_10_3389_fphys_2021_745328
crossref_primary_10_1007_s12265_018_9842_9
crossref_primary_10_1213_ANE_0000000000005655
crossref_primary_10_1007_s00395_017_0601_x
crossref_primary_10_1039_D3FO04459A
crossref_primary_10_1016_j_jare_2024_02_006
crossref_primary_10_3390_ijms241411700
crossref_primary_10_1016_j_transci_2016_07_015
crossref_primary_10_1002_path_5061
crossref_primary_10_3390_bioengineering12010092
crossref_primary_10_3390_metabo13101066
crossref_primary_10_1186_s12883_018_1196_z
crossref_primary_10_1007_s00011_022_01612_z
crossref_primary_10_1016_j_virusres_2020_198083
crossref_primary_10_1515_fzm_2024_0015
crossref_primary_10_1016_j_biopha_2024_117124
crossref_primary_10_1021_acsbiomaterials_4c00106
crossref_primary_10_1111_jcmm_18281
crossref_primary_10_1124_pharmrev_121_000348
crossref_primary_10_1097_TP_0000000000004514
crossref_primary_10_1536_ihj_23_500
crossref_primary_10_1161_CIRCRESAHA_116_310557
crossref_primary_10_18632_aging_102960
crossref_primary_10_1038_s41598_018_33862_5
crossref_primary_10_1172_jci_insight_134552
crossref_primary_10_3390_pharmaceutics15030891
crossref_primary_10_1080_14728222_2025_2454617
crossref_primary_10_3389_fphys_2018_01159
crossref_primary_10_1038_s41419_022_04701_3
crossref_primary_10_1016_j_ncrna_2018_05_004
crossref_primary_10_1016_j_tcm_2020_09_003
crossref_primary_10_2217_nnm_2020_0097
crossref_primary_10_3389_fimmu_2019_00648
crossref_primary_10_3390_antiox14010038
crossref_primary_10_1038_s41467_025_58260_0
crossref_primary_10_1530_JOE_16_0427
crossref_primary_10_3389_fphar_2019_01479
crossref_primary_10_1016_j_cca_2016_12_031
crossref_primary_10_1016_j_hlc_2016_11_006
crossref_primary_10_1038_s41569_025_01141_2
crossref_primary_10_3389_fcvm_2022_781753
crossref_primary_10_1016_j_dcmed_2021_09_008
crossref_primary_10_3390_ijms242115677
crossref_primary_10_1016_j_arr_2022_101769
crossref_primary_10_3389_fcell_2021_779936
crossref_primary_10_1186_s12967_023_04155_x
crossref_primary_10_1152_ajpheart_00673_2016
crossref_primary_10_1016_j_ejca_2018_07_123
crossref_primary_10_1016_j_freeradbiomed_2024_11_022
crossref_primary_10_1007_s00395_018_0704_z
crossref_primary_10_3390_ijms25179304
crossref_primary_10_1371_journal_pone_0228948
crossref_primary_10_1111_jcmm_13302
crossref_primary_10_1038_s41569_020_0403_y
crossref_primary_10_1186_s12872_023_03043_y
crossref_primary_10_1111_jcmm_14630
crossref_primary_10_1016_j_jacbts_2016_11_008
crossref_primary_10_1038_s42003_020_0830_7
crossref_primary_10_1155_2017_5785436
crossref_primary_10_3390_pharmaceutics13122056
crossref_primary_10_1016_j_mtbio_2021_100195
crossref_primary_10_1016_j_trim_2018_12_005
crossref_primary_10_1016_j_rvsc_2024_105141
crossref_primary_10_18632_aging_202520
crossref_primary_10_1016_j_trsl_2018_01_005
crossref_primary_10_1089_dna_2016_3496
crossref_primary_10_3390_biom14030330
crossref_primary_10_3390_biomedicines9091211
crossref_primary_10_3390_diagnostics10110943
crossref_primary_10_1016_j_tranon_2024_102121
crossref_primary_10_1016_j_yexcr_2019_01_022
crossref_primary_10_1093_function_zqae012
crossref_primary_10_1002_adbi_202300141
crossref_primary_10_1016_j_phrs_2023_106733
crossref_primary_10_15212_CVIA_2022_0020
crossref_primary_10_1093_eurheartj_ehw240
crossref_primary_10_1016_j_mtbio_2024_100957
crossref_primary_10_1007_s11357_020_00223_y
crossref_primary_10_1016_j_biopha_2023_115801
crossref_primary_10_3390_ijms25094913
crossref_primary_10_1016_j_biopha_2021_112056
crossref_primary_10_1152_ajpheart_00718_2020
crossref_primary_10_1002_pmic_201800232
crossref_primary_10_3390_cells10051211
crossref_primary_10_2174_1381612825666191116125525
crossref_primary_10_3389_fcvm_2021_736226
crossref_primary_10_1016_j_molmed_2020_10_002
crossref_primary_10_3389_fcell_2019_00315
crossref_primary_10_3389_fphys_2023_1327402
crossref_primary_10_3390_biomedicines11071907
crossref_primary_10_1016_j_biochi_2021_10_009
crossref_primary_10_1126_scitranslmed_aaw6142
crossref_primary_10_1053_j_semtcvs_2019_12_004
crossref_primary_10_3389_fphys_2023_1190095
crossref_primary_10_1007_s12265_018_9836_7
crossref_primary_10_1007_s10616_017_0127_y
crossref_primary_10_3389_fnins_2020_00848
crossref_primary_10_1126_scitranslmed_aax8005
crossref_primary_10_1007_s12265_018_9791_3
crossref_primary_10_1096_fj_202200528R
crossref_primary_10_1002_JLB_3MIR0221_099R
crossref_primary_10_1016_j_cca_2023_117374
crossref_primary_10_1016_j_nantod_2021_101159
crossref_primary_10_3389_fphys_2023_1241096
crossref_primary_10_1007_s10557_015_6621_6
crossref_primary_10_1177_09731296231207232
crossref_primary_10_1016_j_lfs_2025_123472
crossref_primary_10_3390_cells10081939
crossref_primary_10_1038_s41598_021_04512_0
crossref_primary_10_1016_j_bioactmat_2023_09_018
crossref_primary_10_1161_CIRCULATIONAHA_120_049254
crossref_primary_10_1007_s00395_021_00852_0
crossref_primary_10_3390_ijms24043061
crossref_primary_10_1002_mco2_161
crossref_primary_10_1016_j_pharmthera_2017_02_020
crossref_primary_10_1038_s41598_018_34879_6
crossref_primary_10_3390_medicines2040310
crossref_primary_10_3389_fimmu_2016_00171
crossref_primary_10_1096_fj_201801618RRR
crossref_primary_10_1530_JOE_15_0201
crossref_primary_10_1016_j_jot_2024_09_007
crossref_primary_10_1016_j_biomaterials_2024_122544
crossref_primary_10_1111_febs_17164
crossref_primary_10_2147_IJN_S404925
crossref_primary_10_1002_jcp_26931
crossref_primary_10_1007_s00441_022_03605_0
crossref_primary_10_3389_fimmu_2016_00285
crossref_primary_10_1007_s11064_020_03179_9
crossref_primary_10_1016_j_mam_2017_11_004
crossref_primary_10_3390_ijms24043196
crossref_primary_10_3389_fcvm_2021_688702
crossref_primary_10_18705_2311_4495_2020_7_5_17_28
crossref_primary_10_1172_JCI128867
crossref_primary_10_1016_j_yjmcc_2019_04_023
crossref_primary_10_3390_cells10081959
crossref_primary_10_4070_kcj_2025_0022
crossref_primary_10_1093_pcmedi_pbaa007
crossref_primary_10_3390_ijms20061420
crossref_primary_10_1242_bio_045633
crossref_primary_10_12677_ACM_2019_97130
crossref_primary_10_1080_20013078_2018_1461505
crossref_primary_10_1161_CIRCRESAHA_116_309307
crossref_primary_10_1021_acsbiomaterials_0c01197
crossref_primary_10_3389_fphar_2021_636134
crossref_primary_10_3390_cells12101432
crossref_primary_10_1016_j_jcyt_2018_06_012
crossref_primary_10_1007_s12265_022_10246_9
crossref_primary_10_1093_burnst_tkac043
crossref_primary_10_2147_IJN_S488368
crossref_primary_10_1021_acsabm_1c01312
crossref_primary_10_3390_ijms22094413
crossref_primary_10_3390_life11111123
crossref_primary_10_1007_s00395_021_00856_w
crossref_primary_10_18632_aging_101814
crossref_primary_10_1080_20013078_2017_1388731
crossref_primary_10_1002_jex2_86
crossref_primary_10_1155_2020_5424281
crossref_primary_10_3390_ijms18040711
crossref_primary_10_1016_j_addr_2021_114009
crossref_primary_10_1007_s12265_020_10040_5
crossref_primary_10_1016_j_biomaterials_2024_122502
crossref_primary_10_1021_acs_jproteome_0c01048
crossref_primary_10_1089_scd_2019_0194
crossref_primary_10_2139_ssrn_4128898
crossref_primary_10_3389_fphar_2020_532041
crossref_primary_10_1016_j_ymthe_2016_12_022
crossref_primary_10_1111_jcmm_16515
crossref_primary_10_1007_s11626_016_0039_8
crossref_primary_10_1016_j_tips_2015_06_004
crossref_primary_10_1016_j_addr_2021_05_011
crossref_primary_10_1016_j_repbio_2021_100593
crossref_primary_10_4252_wjsc_v10_i8_106
crossref_primary_10_1016_j_pharmthera_2021_108025
crossref_primary_10_1089_ten_tea_2016_0508
crossref_primary_10_1111_apha_13339
crossref_primary_10_1113_JP282048
crossref_primary_10_3389_fphar_2023_1063458
crossref_primary_10_1016_j_jconrel_2018_10_001
crossref_primary_10_3892_mmr_2024_13266
crossref_primary_10_3389_fcell_2022_996887
crossref_primary_10_1186_s12951_022_01445_2
crossref_primary_10_1016_j_biopha_2020_111148
crossref_primary_10_1161_CIRCULATIONAHA_115_016978
crossref_primary_10_1186_s13018_024_05355_x
crossref_primary_10_1016_j_bioactmat_2024_02_021
crossref_primary_10_1016_j_bja_2022_08_040
crossref_primary_10_1016_j_freeradbiomed_2023_05_007
crossref_primary_10_1016_j_vph_2021_106873
crossref_primary_10_3389_fonc_2019_00197
crossref_primary_10_1038_s41569_020_0389_5
crossref_primary_10_1038_s41598_020_59225_7
crossref_primary_10_3390_ijms17010063
crossref_primary_10_1155_2017_7849851
crossref_primary_10_1016_j_yjmcc_2020_02_007
crossref_primary_10_3390_ph14080766
crossref_primary_10_1186_s12979_024_00472_x
crossref_primary_10_31083_j_rcm2506222
crossref_primary_10_1186_s12933_017_0638_z
crossref_primary_10_1007_s11033_024_09500_x
crossref_primary_10_1002_mco2_454
crossref_primary_10_3390_nu16010071
crossref_primary_10_1016_j_phrs_2020_105162
crossref_primary_10_3390_ijms232214334
crossref_primary_10_1016_j_tibtech_2024_03_010
crossref_primary_10_3390_metabo13040479
crossref_primary_10_3390_pharmaceutics14091848
crossref_primary_10_1016_j_biopha_2022_112810
crossref_primary_10_1080_08820139_2024_2354268
crossref_primary_10_1007_s00395_018_0674_1
crossref_primary_10_1007_s12015_015_9602_z
crossref_primary_10_1016_j_jacc_2021_01_017
crossref_primary_10_1007_s00395_022_00947_2
crossref_primary_10_1073_pnas_1721521115
crossref_primary_10_1016_j_yjmcc_2018_04_012
crossref_primary_10_1016_j_jare_2023_12_014
crossref_primary_10_3390_ijms20205024
crossref_primary_10_1007_s13105_024_01027_w
crossref_primary_10_1016_j_gene_2015_08_067
crossref_primary_10_1093_cvr_cvy231
crossref_primary_10_1093_eurheartj_ehac517
crossref_primary_10_3390_biomedicines8070218
crossref_primary_10_1177_1756286418789326
crossref_primary_10_1111_jcmm_14014
crossref_primary_10_1016_j_repbio_2020_07_002
crossref_primary_10_1186_s40001_022_00868_9
crossref_primary_10_2174_1389203723666220817085941
crossref_primary_10_3389_fcvm_2022_906350
crossref_primary_10_1042_CS20190036
crossref_primary_10_1098_rstb_2016_0522
crossref_primary_10_3390_ijms24032344
crossref_primary_10_1186_s40824_023_00433_3
crossref_primary_10_1038_s41598_021_90470_6
crossref_primary_10_1161_CIRCRESAHA_115_307654
crossref_primary_10_1186_s13287_024_03983_y
crossref_primary_10_1080_14728222_2018_1439015
crossref_primary_10_1111_jcmm_70050
crossref_primary_10_1016_j_dsx_2019_04_010
crossref_primary_10_1016_j_jacc_2015_02_028
crossref_primary_10_1016_j_plipres_2019_01_004
crossref_primary_10_3389_fphys_2020_00479
crossref_primary_10_3390_cells10123331
crossref_primary_10_1002_jcp_27964
crossref_primary_10_1007_s00424_016_1922_6
crossref_primary_10_1038_s41392_024_01735_1
crossref_primary_10_3389_fcell_2020_00367
crossref_primary_10_3389_fcvm_2024_1436764
crossref_primary_10_3390_ijms22158163
crossref_primary_10_1161_JAHA_117_007954
crossref_primary_10_3892_ol_2017_5824
crossref_primary_10_1080_20013078_2018_1560809
crossref_primary_10_1038_s41467_019_08895_7
crossref_primary_10_1242_dmm_045559
crossref_primary_10_3389_fchem_2023_1115440
crossref_primary_10_1074_jbc_M116_745653
crossref_primary_10_3390_cells11071165
crossref_primary_10_3390_cells9030724
crossref_primary_10_1038_s41551_020_00637_1
crossref_primary_10_1021_acsinfecdis_3c00348
crossref_primary_10_1155_2018_4971261
crossref_primary_10_1038_nrcardio_2017_7
crossref_primary_10_3389_fphar_2017_00775
crossref_primary_10_1016_j_freeradbiomed_2019_11_032
crossref_primary_10_1002_jcp_28704
crossref_primary_10_1093_cvr_cvx211
crossref_primary_10_1080_21691401_2018_1436555
crossref_primary_10_1093_cvr_cvac031
crossref_primary_10_1016_j_bcp_2022_115350
crossref_primary_10_1039_D2MO00257D
crossref_primary_10_1016_j_ajps_2024_100965
crossref_primary_10_3390_biom11030388
crossref_primary_10_1002_sctm_17_0081
crossref_primary_10_1016_j_jacc_2015_12_002
crossref_primary_10_3390_ijms232315438
crossref_primary_10_3390_ijms22042193
crossref_primary_10_1161_CIRCRESAHA_118_314635
crossref_primary_10_1038_s41374_020_00515_z
crossref_primary_10_1038_s41569_020_00499_9
crossref_primary_10_1093_cvr_cvy314
crossref_primary_10_1002_stem_3296
crossref_primary_10_1093_cvr_cvab054
crossref_primary_10_1016_j_bbrc_2018_06_075
crossref_primary_10_1111_jcmm_17689
crossref_primary_10_1186_s40580_024_00423_8
crossref_primary_10_1055_s_0042_1756705
crossref_primary_10_3390_pharmaceutics12121195
crossref_primary_10_1016_j_yjmcc_2017_08_002
crossref_primary_10_1007_s12012_021_09700_y
crossref_primary_10_1371_journal_pone_0294060
crossref_primary_10_1038_s41420_019_0159_5
crossref_primary_10_1002_jev2_12164
crossref_primary_10_1007_s12265_018_9847_4
crossref_primary_10_1007_s10495_017_1355_5
crossref_primary_10_1016_j_chemphyslip_2019_104836
crossref_primary_10_1016_j_biopha_2019_109451
crossref_primary_10_1016_j_cmet_2025_02_009
crossref_primary_10_1111_jcmm_12923
crossref_primary_10_1007_s00018_021_03973_w
crossref_primary_10_1292_jvms_19_0643
crossref_primary_10_3389_fphys_2018_00216
crossref_primary_10_3390_cells11091375
crossref_primary_10_1038_s41392_023_01377_9
crossref_primary_10_1155_2020_1241065
crossref_primary_10_1016_j_intimp_2021_107730
crossref_primary_10_1002_1873_3468_13487
crossref_primary_10_1016_j_retram_2021_103323
crossref_primary_10_3389_fphys_2017_00494
crossref_primary_10_3390_cells10061500
crossref_primary_10_1039_D2SD00010E
crossref_primary_10_1016_j_ymthe_2018_04_024
crossref_primary_10_7717_peerj_11147
crossref_primary_10_1161_JAHA_124_036555
crossref_primary_10_1016_j_bcp_2023_115462
crossref_primary_10_3390_diagnostics10100843
crossref_primary_10_1111_febs_15557
crossref_primary_10_3390_ijms20133272
crossref_primary_10_1038_s41419_018_0274_x
crossref_primary_10_3390_biomedicines12092119
crossref_primary_10_1002_jcp_27110
crossref_primary_10_1002_stem_3261
crossref_primary_10_1152_ajpheart_00100_2018
crossref_primary_10_1007_s11033_020_05453_z
crossref_primary_10_3390_jpm13081263
crossref_primary_10_1186_s12951_022_01284_1
crossref_primary_10_3390_ijms23063334
crossref_primary_10_1007_s10557_016_6698_6
crossref_primary_10_3389_fgene_2022_847679
crossref_primary_10_1007_s00395_017_0628_z
crossref_primary_10_1096_fj_202400371R
crossref_primary_10_2174_0929867326666190129142604
crossref_primary_10_3389_fphys_2016_00125
crossref_primary_10_3389_fcell_2022_875376
crossref_primary_10_3389_fphys_2018_00348
crossref_primary_10_1152_ajpheart_00027_2018
crossref_primary_10_1093_cvr_cvab139
crossref_primary_10_1097_FJC_0000000000000507
crossref_primary_10_3390_cells9030592
crossref_primary_10_17816_pmj38476_84
crossref_primary_10_1152_ajpheart_00213_2017
crossref_primary_10_1038_srep21961
crossref_primary_10_1172_JCI135710
crossref_primary_10_3389_fphar_2023_1143888
crossref_primary_10_3390_ijms21155294
crossref_primary_10_3389_fcell_2021_802509
crossref_primary_10_1080_15548627_2020_1821547
crossref_primary_10_3390_ijms21207687
crossref_primary_10_1002_adtp_202200066
crossref_primary_10_1186_s13048_020_00735_3
crossref_primary_10_1016_j_jss_2018_06_066
crossref_primary_10_1016_j_vesic_2023_100031
crossref_primary_10_1161_HYPERTENSIONAHA_121_17574
crossref_primary_10_1016_j_phrs_2015_11_004
crossref_primary_10_1021_acs_analchem_1c04282
crossref_primary_10_1002_adfm_201803567
crossref_primary_10_1002_adtp_202400006
crossref_primary_10_1021_acsnano_3c07878
crossref_primary_10_1007_s11010_017_3160_4
crossref_primary_10_1186_s12916_019_1268_y
crossref_primary_10_4103_1673_5374_303012
crossref_primary_10_2147_IJN_S338937
crossref_primary_10_14336_AD_2018_1020
crossref_primary_10_1007_s12265_018_9831_z
crossref_primary_10_1080_20013078_2017_1390391
crossref_primary_10_1093_cvr_cvz209
crossref_primary_10_1096_fj_202101323R
crossref_primary_10_1093_eurheartj_ehab323
crossref_primary_10_1016_j_expneurol_2018_06_007
crossref_primary_10_1093_eurheartj_ehw304
crossref_primary_10_1016_j_lfs_2023_121649
crossref_primary_10_1038_s41420_020_00305_y
crossref_primary_10_1161_CIRCRESAHA_117_311215
crossref_primary_10_1080_14728222_2024_2421760
crossref_primary_10_1097_PRS_0000000000010389
crossref_primary_10_3390_cells9030675
crossref_primary_10_1007_s10974_019_09555_5
crossref_primary_10_1002_ctm2_262
crossref_primary_10_3390_ijms21239262
crossref_primary_10_1016_j_lfs_2020_117987
crossref_primary_10_1093_cvr_cvaa137
crossref_primary_10_1186_s10020_022_00575_5
crossref_primary_10_1042_EBC20170081
crossref_primary_10_1016_j_bios_2015_09_061
crossref_primary_10_1111_aas_13296
crossref_primary_10_1007_s11051_021_05289_z
crossref_primary_10_2478_jtim_2020_0004
crossref_primary_10_1002_cbf_3578
crossref_primary_10_1002_jcp_28894
crossref_primary_10_1038_s41598_017_08250_0
crossref_primary_10_1177_0300060520957541
crossref_primary_10_1007_s10741_016_9561_8
crossref_primary_10_1111_jcmm_17162
crossref_primary_10_1038_s41390_020_0923_5
crossref_primary_10_3389_fonc_2021_675940
crossref_primary_10_1016_j_ijcard_2024_132104
crossref_primary_10_2217_nnm_16_7
crossref_primary_10_1007_s10616_024_00634_1
crossref_primary_10_3390_cells10112933
Cites_doi 10.1093/intimm/dxh267
10.4049/jimmunol.1300052
10.3109/08820139809022710
10.1016/0022-2828(92)93148-D
10.1083/jcb.201211138
10.1007/s00395-004-0483-6
10.1016/j.yjmcc.2014.01.004
10.1152/physrev.00023.2010
10.1007/s00395-012-0277-1
10.1161/01.CIR.96.12.4343
10.1136/hrt.2003.028092
10.1016/j.ejheart.2006.03.004
10.1172/JCI68480
10.1172/JCI62874
10.1172/JCI117815
10.1161/CIRCRESAHA.111.253286
10.1161/01.CIR.96.5.1641
10.1152/ajpheart.00812.2013
10.1016/0014-5793(92)81216-9
10.1073/pnas.1016065108
10.1038/ncb1596
10.1152/ajpheart.00306.2009
10.1074/jbc.M502017200
10.1016/j.yjmcc.2010.10.021
10.1146/annurev.immunol.20.100301.064801
10.1097/SLA.0b013e3181bfda8c
10.1016/S0140-6736(12)60916-7
10.1016/j.scr.2009.12.003
10.1016/j.stemcr.2014.04.006
10.1161/CIRCRESAHA.113.300636
10.1007/s00395-013-0377-6
ContentType Journal Article
Copyright 2015 American College of Cardiology Foundation
American College of Cardiology Foundation
Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Apr 21, 2015
Copyright_xml – notice: 2015 American College of Cardiology Foundation
– notice: American College of Cardiology Foundation
– notice: Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Apr 21, 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
7X8
DOI 10.1016/j.jacc.2015.02.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
AIDS and Cancer Research Abstracts

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
EndPage 1536
ExternalDocumentID 3653808511
25881934
10_1016_j_jacc_2015_02_026
S0735109715006191
1_s2_0_S0735109715006191
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K002066/1
– fundername: British Heart Foundation
  grantid: RG/08/015/26411
– fundername: Department of Health’s National Institute for Health Research Biomedical Research Centres
– fundername: National Institute for Health Research, University College London Hospitals/University College London Biomedical Research Centre
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
18M
1B1
1P~
1~.
1~5
2WC
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
AABNK
AABVL
AAEDT
AAEDW
AAIKJ
AAOAW
AAQFI
AAXUO
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFPUW
AFRAH
AFRHN
AFTJW
AGCQF
AGHFR
AGYEJ
AHMBA
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BLXMC
CS3
DIK
DU5
E3Z
EBS
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
G-Q
GBLVA
GX1
H13
HVGLF
IHE
IXB
J1W
K-O
KQ8
L7B
MO0
N9A
O-L
O9-
OA.
OAUVE
OK1
OL~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSZ
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
YYM
YZZ
Z5R
.55
.GJ
0SF
1CY
29L
3O-
3V.
6I.
7RV
AACTN
AAFTH
AAKUH
AALRI
AAQQT
AAQXK
AAYOK
ABVKL
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFCTW
AFETI
AFFNX
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
BENPR
BPHCQ
FGOYB
HX~
HZ~
J5H
N4W
NCXOZ
QTD
R2-
RIG
SEW
T5K
X7M
XPP
YYP
ZGI
ZXP
AAIAV
ABJNI
EFLBG
LCYCR
NAHTW
ZA5
AAYWO
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
7X8
~HD
ID FETCH-LOGICAL-c589t-c8a15e79e8ffba7574676d6d9f604c1e9c6e93f667793b548fb6eedffea27fb43
IEDL.DBID .~1
ISSN 0735-1097
1558-3597
IngestDate Sun Sep 28 08:20:54 EDT 2025
Sat Sep 27 22:31:42 EDT 2025
Sat Jul 26 03:13:36 EDT 2025
Mon Jul 21 06:05:25 EDT 2025
Tue Jul 01 01:32:36 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Fri Feb 23 02:33:08 EST 2024
Sun Feb 23 10:18:57 EST 2025
Tue Aug 26 18:48:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords ischemia-reperfusion injury
HSP
exosomes
cardioprotection
miRNA
heat shock protein
toll-like receptor
TLR
RIC
TEM
microribonucleic acid
remote ischemic pre-conditioning
transmission electron microscopy
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-c8a15e79e8ffba7574676d6d9f604c1e9c6e93f667793b548fb6eedffea27fb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0735109715006191
PMID 25881934
PQID 1672911373
PQPubID 2031078
PageCount 12
ParticipantIDs proquest_miscellaneous_1872838274
proquest_miscellaneous_1674199311
proquest_journals_1672911373
pubmed_primary_25881934
crossref_citationtrail_10_1016_j_jacc_2015_02_026
crossref_primary_10_1016_j_jacc_2015_02_026
elsevier_sciencedirect_doi_10_1016_j_jacc_2015_02_026
elsevier_clinicalkeyesjournals_1_s2_0_S0735109715006191
elsevier_clinicalkey_doi_10_1016_j_jacc_2015_02_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-21
PublicationDateYYYYMMDD 2015-04-21
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Dybdahl, Slordahl, Waage, Kierulf, Espevik, Sundan (bib12) 2005; 91
Lancaster, Febbraio (bib30) 2005; 280
Davidson, Selvaraj, He (bib24) 2013; 108
Mymrikov, Seit-Nebi, Gusev (bib16) 2011; 91
Efthymiou, Mocanu, de Belleroche, Wells, Latchmann, Yellon (bib17) 2004; 99
Giricz, Varga, Baranyai (bib18) 2014; 68
Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (bib4) 2007; 9
Yellon, Davidson (bib1) 2014; 114
Pockley, Shepherd, Corton (bib29) 1998; 27
Heusch (bib21) 2013; 381
Dong, Vallejo, Tzeng, Thomas, Mann (bib15) 2010; 298
Zhang, Zhang, Shan, Hunt, Pandita, Lee (bib23) 2013; 191
Sahoo, Klychko, Thorne (bib3) 2011; 109
Varga, Zvara, Farago (bib26) 2014; 307
Srivastava (bib32) 2002; 20
Hausenloy, Yellon (bib8) 2013; 123
Martin, Mestril, Hilal-Dandan, Brunton, Dillmann (bib9) 1997; 96
Cai, Parajuli, Zheng, Becker (bib25) 2012; 107
Birnbaum, Hale, Kloner (bib22) 1997; 96
Stokoe, Engel, Campbell, Cohen, Gaestel (bib27) 1992; 313
Lai, Arslan, Lee (bib5) 2010; 4
Marber, Mestril, Chi, Sayen, Yellon, Dillmann (bib11) 1995; 95
Satoh, Shimoda, Akatsu, Ishikawa, Minami, Nakamura (bib13) 2006; 8
Caby, Lankar, Vincendeau-Scherrer, Raposo, Bonnerot (bib7) 2005; 17
Raposo, Stoorvogel (bib2) 2013; 200
Marber, Rose, Wang (bib28) 2011; 51
Ibrahim, Cheng, Marban (bib6) 2014; 2
Chalmin, Ladoire, Mignot (bib20) 2010; 120
Wang, Birch, He (bib14) 2010; 251
May, Kramarenko, Brandon (bib31) 2013; 123
Stangl, Gehrmann, Riegger (bib19) 2011; 108
Yellon, Latchman (bib10) 1992; 24
Ibrahim (10.1016/j.jacc.2015.02.026_bib6) 2014; 2
Mymrikov (10.1016/j.jacc.2015.02.026_bib16) 2011; 91
Lai (10.1016/j.jacc.2015.02.026_bib5) 2010; 4
Pockley (10.1016/j.jacc.2015.02.026_bib29) 1998; 27
Varga (10.1016/j.jacc.2015.02.026_bib26) 2014; 307
Davidson (10.1016/j.jacc.2015.02.026_bib24) 2013; 108
May (10.1016/j.jacc.2015.02.026_bib31) 2013; 123
Satoh (10.1016/j.jacc.2015.02.026_bib13) 2006; 8
Marber (10.1016/j.jacc.2015.02.026_bib11) 1995; 95
Heusch (10.1016/j.jacc.2015.02.026_bib21) 2013; 381
Wang (10.1016/j.jacc.2015.02.026_bib14) 2010; 251
Giricz (10.1016/j.jacc.2015.02.026_bib18) 2014; 68
Efthymiou (10.1016/j.jacc.2015.02.026_bib17) 2004; 99
Cai (10.1016/j.jacc.2015.02.026_bib25) 2012; 107
Srivastava (10.1016/j.jacc.2015.02.026_bib32) 2002; 20
Raposo (10.1016/j.jacc.2015.02.026_bib2) 2013; 200
Dybdahl (10.1016/j.jacc.2015.02.026_bib12) 2005; 91
Stangl (10.1016/j.jacc.2015.02.026_bib19) 2011; 108
Martin (10.1016/j.jacc.2015.02.026_bib9) 1997; 96
Caby (10.1016/j.jacc.2015.02.026_bib7) 2005; 17
Sahoo (10.1016/j.jacc.2015.02.026_bib3) 2011; 109
Dong (10.1016/j.jacc.2015.02.026_bib15) 2010; 298
Chalmin (10.1016/j.jacc.2015.02.026_bib20) 2010; 120
Valadi (10.1016/j.jacc.2015.02.026_bib4) 2007; 9
Zhang (10.1016/j.jacc.2015.02.026_bib23) 2013; 191
Yellon (10.1016/j.jacc.2015.02.026_bib1) 2014; 114
Birnbaum (10.1016/j.jacc.2015.02.026_bib22) 1997; 96
Yellon (10.1016/j.jacc.2015.02.026_bib10) 1992; 24
Stokoe (10.1016/j.jacc.2015.02.026_bib27) 1992; 313
Lancaster (10.1016/j.jacc.2015.02.026_bib30) 2005; 280
Hausenloy (10.1016/j.jacc.2015.02.026_bib8) 2013; 123
Marber (10.1016/j.jacc.2015.02.026_bib28) 2011; 51
25881935 - J Am Coll Cardiol. 2015 Apr 21;65(15):1537-8
References_xml – volume: 51
  start-page: 485
  year: 2011
  end-page: 490
  ident: bib28
  article-title: The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure
  publication-title: J Mol Cell Cardiol
– volume: 280
  start-page: 23349
  year: 2005
  end-page: 23355
  ident: bib30
  article-title: Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins
  publication-title: J Biol Chem
– volume: 20
  start-page: 395
  year: 2002
  end-page: 425
  ident: bib32
  article-title: Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses
  publication-title: Annu Rev Immunol
– volume: 91
  start-page: 299
  year: 2005
  end-page: 304
  ident: bib12
  article-title: Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction
  publication-title: Heart
– volume: 99
  start-page: 392
  year: 2004
  end-page: 394
  ident: bib17
  article-title: Heat shock protein 27 protects the heart against myocardial infarction
  publication-title: Basic Res Cardiol
– volume: 120
  start-page: 457
  year: 2010
  end-page: 471
  ident: bib20
  article-title: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells
  publication-title: J Clin Invest
– volume: 251
  start-page: 292
  year: 2010
  end-page: 299
  ident: bib14
  article-title: Remote ischemic preconditioning by hindlimb occlusion prevents liver ischemic/reperfusion injury: the role of High Mobility Group-Box 1
  publication-title: Ann Surg
– volume: 91
  start-page: 1123
  year: 2011
  end-page: 1159
  ident: bib16
  article-title: Large potentials of small heat shock proteins
  publication-title: Physiol Rev
– volume: 4
  start-page: 214
  year: 2010
  end-page: 222
  ident: bib5
  article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury
  publication-title: Stem Cell Res
– volume: 381
  start-page: 166
  year: 2013
  end-page: 175
  ident: bib21
  article-title: Cardioprotection: chances and challenges of its translation to the clinic
  publication-title: Lancet
– volume: 24
  start-page: 113
  year: 1992
  end-page: 124
  ident: bib10
  article-title: Stress proteins and myocardial protection
  publication-title: J Mol Cell Cardiol
– volume: 2
  start-page: 606
  year: 2014
  end-page: 619
  ident: bib6
  article-title: Exosomes as critical agents of cardiac regeneration triggered by cell therapy
  publication-title: Stem Cell Reports
– volume: 109
  start-page: 724
  year: 2011
  end-page: 728
  ident: bib3
  article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity
  publication-title: Circ Res
– volume: 298
  start-page: H1079
  year: 2010
  end-page: H1087
  ident: bib15
  article-title: Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 123
  start-page: 3577
  year: 2013
  end-page: 3587
  ident: bib31
  article-title: Inner ear supporting cells protect hair cells by secreting HSP70
  publication-title: J Clin Invest
– volume: 307
  start-page: H216
  year: 2014
  end-page: H227
  ident: bib26
  article-title: MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 27
  start-page: 367
  year: 1998
  end-page: 377
  ident: bib29
  article-title: Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals
  publication-title: Immunol Invest
– volume: 108
  start-page: 733
  year: 2011
  end-page: 738
  ident: bib19
  article-title: Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody
  publication-title: Proc Natl Acad Sci U S A
– volume: 200
  start-page: 373
  year: 2013
  end-page: 383
  ident: bib2
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J Cell Biol
– volume: 123
  start-page: 92
  year: 2013
  end-page: 100
  ident: bib8
  article-title: Myocardial ischemia-reperfusion injury: a neglected therapeutic target
  publication-title: J Clin Invest
– volume: 17
  start-page: 879
  year: 2005
  end-page: 887
  ident: bib7
  article-title: Exosomal-like vesicles are present in human blood plasma
  publication-title: Int Immunol
– volume: 108
  start-page: 377
  year: 2013
  ident: bib24
  article-title: Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis
  publication-title: Basic Res Cardiol
– volume: 107
  start-page: 277
  year: 2012
  ident: bib25
  article-title: Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10
  publication-title: Basic Res Cardiol
– volume: 8
  start-page: 810
  year: 2006
  end-page: 815
  ident: bib13
  article-title: Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction
  publication-title: Eur J Heart Fail
– volume: 96
  start-page: 1641
  year: 1997
  end-page: 1646
  ident: bib22
  article-title: Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit
  publication-title: Circulation
– volume: 95
  start-page: 1446
  year: 1995
  end-page: 1456
  ident: bib11
  article-title: Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury
  publication-title: J Clin Invest
– volume: 96
  start-page: 4343
  year: 1997
  end-page: 4348
  ident: bib9
  article-title: Small heat shock proteins and protection against ischemic injury in cardiac myocytes
  publication-title: Circulation
– volume: 68
  start-page: 75
  year: 2014
  end-page: 78
  ident: bib18
  article-title: Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles
  publication-title: J Mol Cell Cardiol
– volume: 191
  start-page: 1393
  year: 2013
  end-page: 1403
  ident: bib23
  article-title: A protective Hsp70-TLR4 pathway in lethal oxidant lung injury
  publication-title: J Immunol
– volume: 9
  start-page: 654
  year: 2007
  end-page: 659
  ident: bib4
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat Cell Biol
– volume: 313
  start-page: 307
  year: 1992
  end-page: 313
  ident: bib27
  article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins
  publication-title: FEBS Lett
– volume: 114
  start-page: 325
  year: 2014
  end-page: 332
  ident: bib1
  article-title: Exosomes: nanoparticles involved in cardioprotection?
  publication-title: Circ Res
– volume: 17
  start-page: 879
  year: 2005
  ident: 10.1016/j.jacc.2015.02.026_bib7
  article-title: Exosomal-like vesicles are present in human blood plasma
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxh267
– volume: 191
  start-page: 1393
  year: 2013
  ident: 10.1016/j.jacc.2015.02.026_bib23
  article-title: A protective Hsp70-TLR4 pathway in lethal oxidant lung injury
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300052
– volume: 27
  start-page: 367
  year: 1998
  ident: 10.1016/j.jacc.2015.02.026_bib29
  article-title: Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals
  publication-title: Immunol Invest
  doi: 10.3109/08820139809022710
– volume: 24
  start-page: 113
  year: 1992
  ident: 10.1016/j.jacc.2015.02.026_bib10
  article-title: Stress proteins and myocardial protection
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/0022-2828(92)93148-D
– volume: 200
  start-page: 373
  year: 2013
  ident: 10.1016/j.jacc.2015.02.026_bib2
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201211138
– volume: 120
  start-page: 457
  year: 2010
  ident: 10.1016/j.jacc.2015.02.026_bib20
  article-title: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells
  publication-title: J Clin Invest
– volume: 99
  start-page: 392
  year: 2004
  ident: 10.1016/j.jacc.2015.02.026_bib17
  article-title: Heat shock protein 27 protects the heart against myocardial infarction
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-004-0483-6
– volume: 68
  start-page: 75
  year: 2014
  ident: 10.1016/j.jacc.2015.02.026_bib18
  article-title: Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2014.01.004
– volume: 91
  start-page: 1123
  year: 2011
  ident: 10.1016/j.jacc.2015.02.026_bib16
  article-title: Large potentials of small heat shock proteins
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00023.2010
– volume: 107
  start-page: 277
  year: 2012
  ident: 10.1016/j.jacc.2015.02.026_bib25
  article-title: Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-012-0277-1
– volume: 96
  start-page: 4343
  year: 1997
  ident: 10.1016/j.jacc.2015.02.026_bib9
  article-title: Small heat shock proteins and protection against ischemic injury in cardiac myocytes
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.12.4343
– volume: 91
  start-page: 299
  year: 2005
  ident: 10.1016/j.jacc.2015.02.026_bib12
  article-title: Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction
  publication-title: Heart
  doi: 10.1136/hrt.2003.028092
– volume: 8
  start-page: 810
  year: 2006
  ident: 10.1016/j.jacc.2015.02.026_bib13
  article-title: Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction
  publication-title: Eur J Heart Fail
  doi: 10.1016/j.ejheart.2006.03.004
– volume: 123
  start-page: 3577
  year: 2013
  ident: 10.1016/j.jacc.2015.02.026_bib31
  article-title: Inner ear supporting cells protect hair cells by secreting HSP70
  publication-title: J Clin Invest
  doi: 10.1172/JCI68480
– volume: 123
  start-page: 92
  year: 2013
  ident: 10.1016/j.jacc.2015.02.026_bib8
  article-title: Myocardial ischemia-reperfusion injury: a neglected therapeutic target
  publication-title: J Clin Invest
  doi: 10.1172/JCI62874
– volume: 95
  start-page: 1446
  year: 1995
  ident: 10.1016/j.jacc.2015.02.026_bib11
  article-title: Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury
  publication-title: J Clin Invest
  doi: 10.1172/JCI117815
– volume: 109
  start-page: 724
  year: 2011
  ident: 10.1016/j.jacc.2015.02.026_bib3
  article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.111.253286
– volume: 96
  start-page: 1641
  year: 1997
  ident: 10.1016/j.jacc.2015.02.026_bib22
  article-title: Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.5.1641
– volume: 307
  start-page: H216
  year: 2014
  ident: 10.1016/j.jacc.2015.02.026_bib26
  article-title: MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00812.2013
– volume: 313
  start-page: 307
  year: 1992
  ident: 10.1016/j.jacc.2015.02.026_bib27
  article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(92)81216-9
– volume: 108
  start-page: 733
  year: 2011
  ident: 10.1016/j.jacc.2015.02.026_bib19
  article-title: Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1016065108
– volume: 9
  start-page: 654
  year: 2007
  ident: 10.1016/j.jacc.2015.02.026_bib4
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1596
– volume: 298
  start-page: H1079
  year: 2010
  ident: 10.1016/j.jacc.2015.02.026_bib15
  article-title: Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00306.2009
– volume: 280
  start-page: 23349
  year: 2005
  ident: 10.1016/j.jacc.2015.02.026_bib30
  article-title: Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M502017200
– volume: 51
  start-page: 485
  year: 2011
  ident: 10.1016/j.jacc.2015.02.026_bib28
  article-title: The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2010.10.021
– volume: 20
  start-page: 395
  year: 2002
  ident: 10.1016/j.jacc.2015.02.026_bib32
  article-title: Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.20.100301.064801
– volume: 251
  start-page: 292
  year: 2010
  ident: 10.1016/j.jacc.2015.02.026_bib14
  article-title: Remote ischemic preconditioning by hindlimb occlusion prevents liver ischemic/reperfusion injury: the role of High Mobility Group-Box 1
  publication-title: Ann Surg
  doi: 10.1097/SLA.0b013e3181bfda8c
– volume: 381
  start-page: 166
  year: 2013
  ident: 10.1016/j.jacc.2015.02.026_bib21
  article-title: Cardioprotection: chances and challenges of its translation to the clinic
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60916-7
– volume: 4
  start-page: 214
  year: 2010
  ident: 10.1016/j.jacc.2015.02.026_bib5
  article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2009.12.003
– volume: 2
  start-page: 606
  year: 2014
  ident: 10.1016/j.jacc.2015.02.026_bib6
  article-title: Exosomes as critical agents of cardiac regeneration triggered by cell therapy
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2014.04.006
– volume: 114
  start-page: 325
  year: 2014
  ident: 10.1016/j.jacc.2015.02.026_bib1
  article-title: Exosomes: nanoparticles involved in cardioprotection?
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.113.300636
– volume: 108
  start-page: 377
  year: 2013
  ident: 10.1016/j.jacc.2015.02.026_bib24
  article-title: Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-013-0377-6
– reference: 25881935 - J Am Coll Cardiol. 2015 Apr 21;65(15):1537-8
SSID ssj0006819
Score 2.6310258
Snippet Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart,...
AbstractBackgroundExosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act...
Background Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1525
SubjectTerms Adult
Animals
Cardiology
cardioprotection
Cardiovascular
exosomes
Exosomes - metabolism
Exosomes - pathology
Healthy Volunteers
heat shock protein
HSP27 Heat-Shock Proteins - metabolism
HSP70 Heat-Shock Proteins - metabolism
Humans
Immune system
ischemia-reperfusion injury
Kinases
Male
Microscopy, Electron
Middle Aged
Myocardial Reperfusion Injury - prevention & control
Myocytes, Cardiac - cytology
Plasma
Rats, Sprague-Dawley
Rodents
Tetraspanin 28 - metabolism
Tetraspanin 30 - metabolism
toll-like receptor
Title Plasma Exosomes Protect the Myocardium From Ischemia-Reperfusion Injury
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0735109715006191
https://www.clinicalkey.es/playcontent/1-s2.0-S0735109715006191
https://dx.doi.org/10.1016/j.jacc.2015.02.026
https://www.ncbi.nlm.nih.gov/pubmed/25881934
https://www.proquest.com/docview/1672911373
https://www.proquest.com/docview/1674199311
https://www.proquest.com/docview/1872838274
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelD2MvY9_z1hUN9ja8RLKtj8euNGsGGYWtkDchKxIkzHaJE1hf-rf3zpZTRrsMBsZg-2SZ46e7n3ynEyEfwcdzoa1PAS06zV0IqWU6pAWTSD94KS1GdGffxfll_m1ezA_I6bAWBtMqo-3vbXpnreOdUdTm6Gq5HP0AcBYYP4V3glPqV7DnErH--eYuzUOobnMPFE5ROi6c6XO8VtZhGUNWdHU7scDCw87pb-Szc0KTp-RJZI_0pP_AZ-TA18_Jo1mMj78gXy-ADFeWnv1u2qbyLb3oyzBQoHl0dg1-C_Cwrehk3VR0ChNbXy1tCiTcr8MW_5vRab0CLb8kl5Ozn6fnadwqIXWF0pvUKcsKL7VXIZRWFriJiFiIhQ5inDvmtRNeZ0EICeOxhFlKKAV4xxC85TKUefaKHNZN7d8QCgxAKL0AEcnzhePKY8UWPy5L7pwMMiFs0JFxsY44bmfxywwJYyuDejWoVzPmcIiEfNq1ueqraOyVzgbVm2F9KFg0A0Z-byv5UCvfxkHZGmZakDT3gJOQYtfyD-z9s8ejARfmrhMB0xXGMpkl5MPuMYxZDMTY2jfbTibHxEnG9sgoCcxPcZkn5HWPuZ3qeKEA1Vn-9j8__B15jFcYFOPsiBxu1lv_HrjVpjzuBg-cp_Mvt0AhH8E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelg20vY9_z1m0a7G2IRLItyY9baZZsTSmshbwJWZEgobZLnMD63_fOX2Osy2DgJ-tkieOnu598pxMhH8HHC5lZzwAtGUtcCMzyLLCUK6QfIlcWI7rzMzm9TL4t0sUBOe7PwmBaZWf7W5veWOvuzajT5uh6tRr9AHCmGD-Fb4JTwhPs94ANjBHas8WXwRxL3dzugdIMxbuTM22S19o6rGPI06ZwJ1ZYuNs7_Y19Nl5o8pg86ugj_dzO8Ak58OVTcn_eBcifka_nwIYLS09-VnVV-Jqet3UYKPA8Or8BxwWA2BV0sqkKOoOdrS9WlgEL95uwwx9ndFauQc3PyeXk5OJ4yrq7EphLdbZlTlueepV5HUJuVYq3iMilXGZBjhPHfeakz-IgpYIFmcM2JeQS3GMI3goV8iR-QQ7LqvSvCAUKIHW2BBElkqUT2mPJFj_Oc-GcCioivNeRcV0hcbzP4sr0GWNrg3o1qFczFvDIiHwa-ly3ZTT2Sse96k1_QBRMmgErv7eXuquXr7tVWRtuapA0fyAnIunQ8zfw_XPEox4X5tcgEvYrnMcqjsiHoRkWLUZibOmrXSOTYOYk53tktALqp4VKIvKyxdygOpFqQHWcvP7Pib8nD6YX81NzOjv7_oY8xBaMkAl-RA63m51_C0Rrm79rFtItBHoh6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+exosomes+protect+the+myocardium+from+ischemia-reperfusion+injury&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Vicencio%2C+Jose+M&rft.au=Yellon%2C+Derek+M&rft.au=Sivaraman%2C+Vivek&rft.au=Das%2C+Debashish&rft.date=2015-04-21&rft.issn=1558-3597&rft.eissn=1558-3597&rft.volume=65&rft.issue=15&rft.spage=1525&rft_id=info:doi/10.1016%2Fj.jacc.2015.02.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109714X00665%2Fcov150h.gif