Value of Information Analytical Methods: Report 2 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force

The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health...

Full description

Saved in:
Bibliographic Details
Published inValue in health Vol. 23; no. 3; pp. 277 - 286
Main Authors Rothery, Claire, Strong, Mark, Koffijberg, Hendrik (Erik), Basu, Anirban, Ghabri, Salah, Knies, Saskia, Murray, James F., Sanders Schmidler, Gillian D., Steuten, Lotte, Fenwick, Elisabeth
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1098-3015
1524-4733
1524-4733
DOI10.1016/j.jval.2020.01.004

Cover

Abstract The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. •Value of information (VOI) analysis provides a framework for quantifying the value of acquiring additional information to reduce uncertainty in decision making. Quantifying the expected improvement with new information requires an assessment of the scale and consequences of uncertainty in terms of payoffs. Acquiring information, however, can be costly. Therefore, the value of new information is compared with the cost of acquiring the information to determine whether it is worthwhile.•This report provides practical guidance on the methods and reporting of VOI analysis. The methods are presented in generic form to allow them to be adapted to any specific decision-making context. This means that even in healthcare systems in which economic considerations are not explicitly incorporated into decision making, the same methods can be applied.•This report provides 8 recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The primary audience for the report is methodologists or analysts who are responsible for undertaking VOI analysis to inform decision making.
AbstractList AbstractThe allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted.
The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted.
The allocation of health care resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities, and on the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision-making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using Value of Information (VOI) analysis. This report, from the ISPOR VOI Task Force, describes methods for computing four VOI measures: the Expected Value of Perfect Information (EVPI), Expected Value of Partial Perfect Information (EVPPI), Expected Value of Sample Information (EVSI) and Expected Net Benefit of Sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. This report provides detailed guidance and emerging good practices on VOI analysis for assessing the value of research to inform decisions in different contexts.
The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. •Value of information (VOI) analysis provides a framework for quantifying the value of acquiring additional information to reduce uncertainty in decision making. Quantifying the expected improvement with new information requires an assessment of the scale and consequences of uncertainty in terms of payoffs. Acquiring information, however, can be costly. Therefore, the value of new information is compared with the cost of acquiring the information to determine whether it is worthwhile.•This report provides practical guidance on the methods and reporting of VOI analysis. The methods are presented in generic form to allow them to be adapted to any specific decision-making context. This means that even in healthcare systems in which economic considerations are not explicitly incorporated into decision making, the same methods can be applied.•This report provides 8 recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The primary audience for the report is methodologists or analysts who are responsible for undertaking VOI analysis to inform decision making.
The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted.The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted.
Author Rothery, Claire
Basu, Anirban
Ghabri, Salah
Knies, Saskia
Strong, Mark
Koffijberg, Hendrik (Erik)
Murray, James F.
Sanders Schmidler, Gillian D.
Steuten, Lotte
Fenwick, Elisabeth
Author_xml – sequence: 1
  givenname: Claire
  surname: Rothery
  fullname: Rothery, Claire
  email: claire.rothery@york.ac.uk
  organization: Centre for Health Economics, University of York, York, England, UK
– sequence: 2
  givenname: Mark
  surname: Strong
  fullname: Strong, Mark
  organization: School of Health and Related Research, University of Sheffield, Sheffield, England, UK
– sequence: 3
  givenname: Hendrik (Erik)
  surname: Koffijberg
  fullname: Koffijberg, Hendrik (Erik)
  organization: Department of Health Technology & Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands
– sequence: 4
  givenname: Anirban
  surname: Basu
  fullname: Basu, Anirban
  organization: The Comparative Health Outcomes, Policy, and Economics Institute, School of Pharmacy, University of Washington, Seattle, Washington, DC, USA
– sequence: 5
  givenname: Salah
  surname: Ghabri
  fullname: Ghabri, Salah
  organization: French National Authority for Health, Paris, France
– sequence: 6
  givenname: Saskia
  surname: Knies
  fullname: Knies, Saskia
  organization: National Health Care Institute (Zorginstituut Nederland), Diemen, The Netherlands
– sequence: 7
  givenname: James F.
  surname: Murray
  fullname: Murray, James F.
  organization: Eli Lilly and Company, Indianapolis, IN, USA
– sequence: 8
  givenname: Gillian D.
  surname: Sanders Schmidler
  fullname: Sanders Schmidler, Gillian D.
  organization: Duke-Margolis Center for Health Policy, Duke Clinical Research Institute and Department of Population Health Sciences, Duke University, Durham, NC, USA
– sequence: 9
  givenname: Lotte
  surname: Steuten
  fullname: Steuten, Lotte
  organization: Office of Health Economics, London, England, UK
– sequence: 10
  givenname: Elisabeth
  surname: Fenwick
  fullname: Fenwick, Elisabeth
  organization: Pharmerit International, Oxford, England, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32197720$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9rGzEQxZeS0vxpv0APRdBLL3ZH0q52N5RACElqSElI0tKbkLUjW85acqW1wad-9Wrr1LSGpAchgX7vaUbzDrM95x1m2VsKQwpUfJwNZyvVDhkwGAIdAuQvsgNasHyQl5zvpTPU1YADLfazwxhnACA4K15l-5zRuiwZHGQ_v6l2icQbMnLGh7nqrHfk1Kl23VmtWvIFu6lv4jG5xYUPHWE9202RjO5urm_J0_JoIzmfY5hYNyGX3jfkJiidTDGSexUfyIUPGl9nL41qI7553I-yrxfn92efB1fXl6Oz06uBLqq6G1Q6p0IxbgphGq5qbpqy4BQFNSXjyBXURvPxmKHAJtelEAaaUlFaNaaGfMyPspON72I5nmOj0XVBtXIR7FyFtfTKyn9vnJ3KiV_JkpdccEgGHx4Ngv-xxNjJuY0a21Y59MsoGa-oYGnxhL7fQWd-GdKfJCrnRZGDYHWi3v1d0baUP7NJANsAOvgYA5otQkH2AZAz2QdA9gGQQGUKQBJVOyJtu99TSV3Z9nnpp40U0xxWFoOM2qLT2NiAupONt8_LT3bkurWuz9ADrjFuv4DKyCTIuz6cfTZTpwBcfE8Gx08b_O_1XyVz9G8
CitedBy_id crossref_primary_10_1287_mnsc_2022_4540
crossref_primary_10_1016_j_jval_2022_07_006
crossref_primary_10_1080_14737167_2023_2263647
crossref_primary_10_1136_bmjopen_2022_066249
crossref_primary_10_1002_hec_4932
crossref_primary_10_1007_s40273_020_00979_3
crossref_primary_10_1093_jrsssa_qnad129
crossref_primary_10_1177_0272989X211045036
crossref_primary_10_1007_s40273_023_01341_z
crossref_primary_10_1007_s40273_024_01446_z
crossref_primary_10_1016_j_jval_2024_06_004
crossref_primary_10_1007_s40273_023_01242_1
crossref_primary_10_1016_j_techfore_2021_121000
crossref_primary_10_1016_j_jval_2021_11_1373
crossref_primary_10_1038_s41598_021_90405_1
crossref_primary_10_1002_eat_24198
crossref_primary_10_1007_s40273_022_01203_0
crossref_primary_10_1136_bmjopen_2024_094804
crossref_primary_10_1007_s40273_020_00907_5
crossref_primary_10_1016_j_jenvman_2024_122657
crossref_primary_10_2139_ssrn_3914670
crossref_primary_10_1177_0272989X241279459
crossref_primary_10_1016_j_jval_2020_11_015
crossref_primary_10_1515_em_2021_0012
crossref_primary_10_1007_s40273_021_01060_3
crossref_primary_10_1017_S026646232300260X
crossref_primary_10_1093_jnci_djac013
crossref_primary_10_1186_s12916_022_02445_7
crossref_primary_10_1080_14737167_2023_2144838
crossref_primary_10_1016_j_jval_2020_01_003
crossref_primary_10_1177_0272989X241262343
crossref_primary_10_3390_vaccines12030232
crossref_primary_10_1177_0272989X211053794
crossref_primary_10_1186_s12875_024_02496_0
crossref_primary_10_1016_j_jval_2021_03_013
crossref_primary_10_1111_jfr3_12993
crossref_primary_10_1002_hec_4478
crossref_primary_10_1287_deca_2022_0465
crossref_primary_10_1016_j_jval_2023_12_010
crossref_primary_10_1007_s40273_024_01403_w
crossref_primary_10_1001_jamahealthforum_2022_4065
crossref_primary_10_1111_iwj_13924
crossref_primary_10_1007_s40273_023_01303_5
crossref_primary_10_1007_s40273_024_01447_y
crossref_primary_10_1177_0272989X211068019
crossref_primary_10_1007_s40258_021_00662_4
crossref_primary_10_1177_0272989X211073098
crossref_primary_10_1016_j_jval_2024_03_2196
crossref_primary_10_1016_j_jcmg_2020_04_006
crossref_primary_10_1177_0272989X211026292
crossref_primary_10_1177_0272989X221100112
crossref_primary_10_1002_hec_4681
crossref_primary_10_1016_j_vhri_2025_101089
crossref_primary_10_1177_23814683231198873
crossref_primary_10_1002_hec_4520
crossref_primary_10_1089_tmj_2023_0010
crossref_primary_10_1177_0272989X211016427
crossref_primary_10_1177_0272989X211016307
crossref_primary_10_1186_s12889_024_20225_1
crossref_primary_10_3310_CTMD0148
crossref_primary_10_1007_s40273_024_01372_0
crossref_primary_10_3310_ZUCE8371
crossref_primary_10_1186_s13023_020_01666_4
crossref_primary_10_1186_s13063_022_06244_6
crossref_primary_10_1016_j_jval_2020_02_010
crossref_primary_10_3390_cancers14071786
crossref_primary_10_1016_j_jval_2023_06_014
crossref_primary_10_1007_s41669_020_00227_6
crossref_primary_10_1016_j_jval_2021_01_004
crossref_primary_10_1007_s13563_022_00361_z
crossref_primary_10_1186_s13063_022_06928_z
crossref_primary_10_1007_s10654_021_00761_5
crossref_primary_10_1177_0272989X231214791
crossref_primary_10_1177_0272989X241255047
crossref_primary_10_1158_1055_9965_EPI_21_0078
Cites_doi 10.1111/j.1524-4733.2009.00602.x
10.1111/j.1467-985X.2008.00547.x
10.1177/0272989X15575286
10.1177/0272989X09344746
10.1177/0272989X04263162
10.1016/0167-9236(95)00023-2
10.1016/j.jval.2017.04.011
10.1016/j.jval.2016.01.011
10.1111/j.1467-9876.2009.00684.x
10.1177/0272989X13501229
10.1016/j.jhealeco.2010.03.006
10.1016/j.jval.2012.04.014
10.1177/0272989X11409240
10.1177/0272989X17746988
10.1111/j.1524-4733.2008.00502.x
10.1016/j.jval.2010.08.001
10.1007/s40273-014-0219-x
10.1136/bmj.h5987
10.1002/sim.2069
10.1137/120889563
10.1186/2191-1991-3-8
10.1177/0272989X17697692
10.1016/j.jclinepi.2015.09.011
10.1016/j.jval.2020.01.001
10.1111/j.1467-9876.2011.01014.x
10.1177/0272989X17738515
10.1177/0272989X11412975
10.1177/0272989X13505910
10.1111/j.1467-985X.2008.00548.x
10.1177/0272989X15583495
10.1177/0272989X07312724
10.1177/0272989X16686766
10.3310/hta16460
10.1177/0272989X17715627
10.1177/0272989X16636847
10.1111/j.1467-985X.2008.00573.x
10.1177/0272989X09336142
10.3310/hta8380
10.1002/hec.1353
10.1177/0272989X11399921
10.1002/hec.1161
10.1177/0272989X13514774
10.1177/0272989X15579164
ContentType Journal Article
Copyright 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research
ISPOR–The Professional Society for Health Economics and Outcomes Research
Copyright © 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Science Ltd. Mar 2020
Copyright_xml – notice: 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research
– notice: ISPOR–The Professional Society for Health Economics and Outcomes Research
– notice: Copyright © 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Mar 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7QJ
7X8
5PM
DOI 10.1016/j.jval.2020.01.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
Applied Social Sciences Index & Abstracts (ASSIA)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Applied Social Sciences Index and Abstracts (ASSIA)
MEDLINE - Academic
DatabaseTitleList
Applied Social Sciences Index and Abstracts (ASSIA)

PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
Public Health
EISSN 1524-4733
EndPage 286
ExternalDocumentID PMC7373630
32197720
10_1016_j_jval_2020_01_004
S109830152030036X
1_s2_0_S109830152030036X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.3N
.FO
.GA
.Y3
.~1
0R~
10A
123
1OC
1P~
1~.
29Q
31~
36B
4.4
44B
457
4G.
51W
51X
52N
52P
52R
52S
52X
53G
5LA
5VS
66C
6PF
7-5
7PT
8-1
8P~
8UM
AAEDT
AAEDW
AAFJI
AAFWJ
AAIKJ
AAKOC
AALRI
AAMMB
AAOAW
AAPFB
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQN
ABDBF
ABEML
ABIVO
ABJNI
ABMAC
ABMMH
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACIEU
ACPRK
ACRLP
ACRPL
ACUHS
ACVFH
ACXQS
ADBBV
ADCNI
ADEZE
ADFHU
ADMUD
ADNMO
ADVLN
AEBSH
AEFGJ
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AEYQN
AFBPY
AFEBI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AFZJQ
AGCQF
AGHFR
AGQPQ
AGTHC
AGUBO
AGXDD
AGYEJ
AIDQK
AIDYY
AIEXJ
AIGII
AIIAU
AIIUN
AIKHN
AITUG
AJAOE
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BAWUL
BFHJK
BKOJK
BLXMC
BNPGV
BY8
CAG
CO8
COF
CS3
DCZOG
DIK
DU5
EAD
EAP
EBS
EFJIC
EFKBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HF~
HVGLF
HZI
HZ~
IHE
IXB
KOM
LH4
M41
MO0
N9A
O-L
O9-
OAUVE
OIG
OK1
OVD
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
QB0
R2-
ROL
SDF
SEL
SES
SPCBC
SSB
SSF
SSH
SSO
SSZ
SV3
T5K
TEORI
TUS
W99
WIN
WYUIH
XG1
YFH
Z5R
~G-
0SF
6I.
AACTN
AAFTH
AAHHS
ABVKL
ACCFJ
AEEZP
AEQDE
AFCTW
AFKWA
AIWBW
AJBDE
AJOXV
AMFUW
NCXOZ
RIG
SUPJJ
AAIAV
ABLVK
ABYKQ
AJBFU
AKYCK
EFLBG
IXIXF
LCYCR
AAYXX
AGRNS
CITATION
NPM
7QJ
7X8
5PM
ID FETCH-LOGICAL-c589t-8c416a23f56fd3a93fd7531e61f723e3a09fc3bb2e6ed4c766f0d7a118df904b3
IEDL.DBID IXB
ISSN 1098-3015
1524-4733
IngestDate Thu Aug 21 18:19:52 EDT 2025
Fri Sep 05 12:29:05 EDT 2025
Wed Aug 13 07:23:01 EDT 2025
Wed Feb 19 02:30:59 EST 2025
Tue Jul 01 04:21:45 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Fri Feb 23 02:46:38 EST 2024
Sun Feb 23 10:19:12 EST 2025
Tue Aug 26 16:31:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords value of research
decision making
EVSI
ENBS
EVPI
value of information
EVPPI
study design
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c589t-8c416a23f56fd3a93fd7531e61f723e3a09fc3bb2e6ed4c766f0d7a118df904b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S109830152030036X
PMID 32197720
PQID 2435540629
PQPubID 105593
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7373630
proquest_miscellaneous_2381628163
proquest_journals_2435540629
pubmed_primary_32197720
crossref_primary_10_1016_j_jval_2020_01_004
crossref_citationtrail_10_1016_j_jval_2020_01_004
elsevier_sciencedirect_doi_10_1016_j_jval_2020_01_004
elsevier_clinicalkeyesjournals_1_s2_0_S109830152030036X
elsevier_clinicalkey_doi_10_1016_j_jval_2020_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Lawrenceville
PublicationTitle Value in health
PublicationTitleAlternate Value Health
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Nadiminti, Mukhopadhyay, Kriebel (bib20) 1996; 16
McKenna, Griffin, Koffijberg, Claxton (bib46) 2016; 70
Fenwick, Steuten, Knies (bib1) 2020
Briggs, Weinstein, Fenwick, Karnon, Sculpher, Paltiel (bib2) 2012; 15
Madan, Ades, Price (bib28) 2014; 34
Griffin, Welton, Claxton (bib52) 2010; 30
Strong, Oakley, Brennan (bib49)
Turner, Spiegelhalter, Smith, Thompson (bib9) 2009; 172
Bilcke, Beutels, Brisson, Jit (bib10) 2011; 31
Jones, Griffin, Palmer, Main, Orton, Sculpher (bib13) 2004; 8
Aspinall, Cooke (bib4) 2013
Härkänen, Maljanen, Lindfors, Virtala, Knekt (bib6) 2013; 3
Strong, Oakley, Chilcott (bib17) 2011; 61
Heath, Manolopoulou, Baio (bib31) 2017; 37
Bojke, Claxton, Sculpher, Palmer (bib14) 2009; 12
Wilson (bib32) 2015; 33
Eckermann, Willan (bib40) 2009; 18
Welton, Madan, Caldwell, Peters, Ades (bib34) 2014; 34
Jackson, Sharples, Thompson (bib11) 2010; 59
Eckermann, Willan (bib25) 2007; 16
Filipović-Pierucci, Zarca, Durand-Zaleski (bib48) 2017
Claxton, Palmer, Longworth (bib42) 2012; 16
Basu, Meltzer (bib19) 2018; 38
Strong, Oakley, Brennan (bib29) 2014; 34
Jackson, Thompson, Sharples (bib15) 2009; 172
Strong, Oakley, Brennan, Breeze (bib30) 2015; 35
Welton, Thom (bib51) 2015; 35
Claxton, Griffin, Koffijberg, McKenna (bib45) 2015; 351
Heath, Manolopoulou, Baio (bib38) 2018; 38
O’Hagan, Buck, Daneshkhah (bib5) 2006
Philips, Claxton, Palmer (bib39) 2008; 28
Conti, Claxton (bib22) 2009; 29
Tuffaha, Gordon, Scuffham (bib23) 2016; 1
Baio, Berardi, Heath (bib50) 2017
Briggs, Sculpher, Claxton (bib3) 2006
Tuffaha, Strong, Gordon, Scuffham (bib35) 2016; 19
Grimm, Dixon, Stevens (bib41) 2017; 37
Meltzer, Hoomans, Chung, Basu (bib43) 2011; 31
Price, Welton, Briggs, Ades (bib16) 2011; 14
McKenna, Claxton (bib24) 2011; 31
Willan, Pinto (bib26) 2005; 24
Ades, Lu, Claxton (bib33) 2004; 24
Welton, Ades, Carlin, Altman, Sterne (bib8) 2009; 172
Bennette, Veenstra, Basu, Baker, Ramsey, Carlson (bib44) 2016; 36
Strong, Oakley (bib12) 2014; 2
Jalal, Alarid-Escudero (bib37) 2018; 38
Von Neumann, Morgenstern (bib18) 1944
Johnson, Crown, Martin, Dormuth, Siebert (bib7) 2009; 12
Koffijberg, Knies, Janssen (bib21) 2018; 21
Menzies (bib36) 2016; 36
Oakley, Brennan, Tappenden, Chilcott (bib27) 2010; 29
Baio, Berardi, Heath (bib47) 2018
Johnson (10.1016/j.jval.2020.01.004_bib7) 2009; 12
Eckermann (10.1016/j.jval.2020.01.004_bib40) 2009; 18
Nadiminti (10.1016/j.jval.2020.01.004_bib20) 1996; 16
Jalal (10.1016/j.jval.2020.01.004_bib37) 2018; 38
Jackson (10.1016/j.jval.2020.01.004_bib15) 2009; 172
Jackson (10.1016/j.jval.2020.01.004_bib11) 2010; 59
Koffijberg (10.1016/j.jval.2020.01.004_bib21) 2018; 21
Basu (10.1016/j.jval.2020.01.004_bib19) 2018; 38
Briggs (10.1016/j.jval.2020.01.004_bib3) 2006
Welton (10.1016/j.jval.2020.01.004_bib8) 2009; 172
Eckermann (10.1016/j.jval.2020.01.004_bib25) 2007; 16
Willan (10.1016/j.jval.2020.01.004_bib26) 2005; 24
Baio (10.1016/j.jval.2020.01.004_bib50) 2017
Welton (10.1016/j.jval.2020.01.004_bib34) 2014; 34
Strong (10.1016/j.jval.2020.01.004_bib30) 2015; 35
Grimm (10.1016/j.jval.2020.01.004_bib41) 2017; 37
Von Neumann (10.1016/j.jval.2020.01.004_bib18) 1944
O’Hagan (10.1016/j.jval.2020.01.004_bib5) 2006
Conti (10.1016/j.jval.2020.01.004_bib22) 2009; 29
Price (10.1016/j.jval.2020.01.004_bib16) 2011; 14
Baio (10.1016/j.jval.2020.01.004_bib47)
Turner (10.1016/j.jval.2020.01.004_bib9) 2009; 172
Filipović-Pierucci (10.1016/j.jval.2020.01.004_bib48)
Tuffaha (10.1016/j.jval.2020.01.004_bib35) 2016; 19
Bilcke (10.1016/j.jval.2020.01.004_bib10) 2011; 31
McKenna (10.1016/j.jval.2020.01.004_bib46) 2016; 70
Strong (10.1016/j.jval.2020.01.004_bib12) 2014; 2
Strong (10.1016/j.jval.2020.01.004_bib17) 2011; 61
Aspinall (10.1016/j.jval.2020.01.004_bib4) 2013
Jones (10.1016/j.jval.2020.01.004_bib13) 2004; 8
Claxton (10.1016/j.jval.2020.01.004_bib45) 2015; 351
Meltzer (10.1016/j.jval.2020.01.004_bib43) 2011; 31
Griffin (10.1016/j.jval.2020.01.004_bib52) 2010; 30
Strong (10.1016/j.jval.2020.01.004_bib49)
Strong (10.1016/j.jval.2020.01.004_bib29) 2014; 34
Welton (10.1016/j.jval.2020.01.004_bib51) 2015; 35
Heath (10.1016/j.jval.2020.01.004_bib31) 2017; 37
Bennette (10.1016/j.jval.2020.01.004_bib44) 2016; 36
Wilson (10.1016/j.jval.2020.01.004_bib32) 2015; 33
Briggs (10.1016/j.jval.2020.01.004_bib2) 2012; 15
Heath (10.1016/j.jval.2020.01.004_bib38) 2018; 38
Philips (10.1016/j.jval.2020.01.004_bib39) 2008; 28
McKenna (10.1016/j.jval.2020.01.004_bib24) 2011; 31
Fenwick (10.1016/j.jval.2020.01.004_bib1) 2020
Oakley (10.1016/j.jval.2020.01.004_bib27) 2010; 29
Menzies (10.1016/j.jval.2020.01.004_bib36) 2016; 36
Bojke (10.1016/j.jval.2020.01.004_bib14) 2009; 12
Tuffaha (10.1016/j.jval.2020.01.004_bib23) 2016; 1
Claxton (10.1016/j.jval.2020.01.004_bib42) 2012; 16
Härkänen (10.1016/j.jval.2020.01.004_bib6) 2013; 3
Madan (10.1016/j.jval.2020.01.004_bib28) 2014; 34
Ades (10.1016/j.jval.2020.01.004_bib33) 2004; 24
References_xml – volume: 59
  start-page: 233
  year: 2010
  end-page: 253
  ident: bib11
  article-title: Structural and parameter uncertainty in Bayesian cost-effectiveness models
  publication-title: J R Stat Soc Ser C Appl Stat
– volume: 8
  start-page: 1
  year: 2004
  end-page: 196
  ident: bib13
  article-title: Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation
  publication-title: Health Technology Assessment
– year: 2006
  ident: bib3
  article-title: Decision Modelling for Health Economic Evaluation
– volume: 172
  start-page: 119
  year: 2009
  end-page: 136
  ident: bib8
  article-title: Models for potentially biased evidence in meta-analysis using empirically based priors
  publication-title: J R Stat Soc Ser A
– start-page: 64
  year: 2013
  end-page: 99
  ident: bib4
  article-title: Quantifying scientific uncertainty from expert judgement elicitation
  publication-title: Risk and Uncertainty Assessment for Natural Hazards
– volume: 34
  start-page: 311
  year: 2014
  end-page: 326
  ident: bib29
  article-title: Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach
  publication-title: Med Decis Making
– volume: 70
  start-page: 183
  year: 2016
  end-page: 190
  ident: bib46
  article-title: Methods to place a value on additional evidence are illustrated using a case study of corticosteroids after traumatic brain injury
  publication-title: J Clin Epidemiol
– volume: 28
  start-page: 287
  year: 2008
  end-page: 299
  ident: bib39
  article-title: The half-life of truth: what are appropriate time horizons for research decisions?
  publication-title: Med Decis Making
– volume: 16
  start-page: 195
  year: 2007
  end-page: 209
  ident: bib25
  article-title: Expected value of information and decision making in HTA
  publication-title: Health Econ
– volume: 38
  start-page: 427
  year: 2018
  end-page: 438
  ident: bib19
  article-title: Decision criterion and value of information analysis: optimal aspirin dosage for secondary prevention of cardiovascular events
  publication-title: Med Decis Making
– volume: 37
  start-page: 747
  year: 2017
  end-page: 758
  ident: bib31
  article-title: A review of methods for analysis of the expected value of information
  publication-title: Med Decis Making
– volume: 351
  start-page: h5987
  year: 2015
  ident: bib45
  article-title: How to estimate the health benefits of additional research and changing clinical practice
  publication-title: BMJ
– volume: 33
  start-page: 105
  year: 2015
  end-page: 121
  ident: bib32
  article-title: A practical guide to value of information analysis
  publication-title: Pharmacoeconomics
– volume: 172
  start-page: 21
  year: 2009
  end-page: 47
  ident: bib9
  article-title: Bias modelling in evidence synthesis
  publication-title: J R Stat Soc Ser A
– year: 2018
  ident: bib47
  article-title: BCEA: Bayesian cost effectiveness analysis
– volume: 12
  start-page: 739
  year: 2009
  end-page: 749
  ident: bib14
  article-title: Characterizing structural uncertainty in decision analytic models: a review and application of methods
  publication-title: Value Health
– volume: 35
  start-page: 564
  year: 2015
  end-page: 566
  ident: bib51
  article-title: Value of information: we’ve got speed, what more do we need?
  publication-title: Med Decis Making
– volume: 31
  start-page: 675
  year: 2011
  end-page: 692
  ident: bib10
  article-title: Accounting for methodological, structural, and parameter uncertainty in decision-analytic models: a practical guide
  publication-title: Med Decis Making
– volume: 15
  start-page: 835
  year: 2012
  end-page: 842
  ident: bib2
  article-title: Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6
  publication-title: Value Health
– volume: 38
  start-page: 174
  year: 2018
  end-page: 188
  ident: bib37
  article-title: A Gaussian approximation approach for value of information analysis
  publication-title: Med Decis Making
– volume: 36
  start-page: 308
  year: 2016
  end-page: 320
  ident: bib36
  article-title: An efficient estimator for the expected value of sample information
  publication-title: Med Decis Making
– year: 1944
  ident: bib18
  article-title: Theory of Games and Economic Behavior
– volume: 12
  start-page: 1062
  year: 2009
  end-page: 1073
  ident: bib7
  article-title: Good research practices for comparative effectiveness research: analytic methods to improve causal inference from nonrandomized studies of treatment effects using secondary data sources: the ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report–Part III
  publication-title: Value Health
– volume: 29
  start-page: 468
  year: 2010
  end-page: 477
  ident: bib27
  article-title: Simulation sample sizes for Monte Carlo partial EVPI calculations
  publication-title: J Health Econ
– volume: 18
  start-page: 203
  year: 2009
  end-page: 216
  ident: bib40
  article-title: Globally optimal trial design for local decision making
  publication-title: Health Econ
– volume: 34
  start-page: 327
  year: 2014
  end-page: 342
  ident: bib28
  article-title: Strategies for efficient computation of the expected value of partial perfect information
  publication-title: Med Decis Making
– volume: 31
  start-page: 853
  year: 2011
  end-page: 865
  ident: bib24
  article-title: Addressing adoption and research design decisions simultaneously: the role of value of sample information analysis
  publication-title: Med Decis Making
– year: 2020
  ident: bib1
  article-title: Value of information analysis for research decisions—an introduction: report 1 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force
  publication-title: Value Health
– volume: 19
  start-page: 505
  year: 2016
  end-page: 509
  ident: bib35
  article-title: Efficient value of information calculation using a nonparametric regression approach: an applied perspective
  publication-title: Value Health
– volume: 172
  start-page: 383
  year: 2009
  end-page: 404
  ident: bib15
  article-title: Accounting for uncertainty in health economic decision models by using model averaging
  publication-title: J R Stat Soc Ser A Stat Soc
– volume: 35
  start-page: 570
  year: 2015
  end-page: 583
  ident: bib30
  article-title: Estimating the expected value of sample information using the probabilistic sensitivity analysis sample: a fast, nonparametric regression-based method
  publication-title: Med Decis Making
– volume: 31
  start-page: E1
  year: 2011
  end-page: E22
  ident: bib43
  article-title: Minimal modeling approaches to value of information analysis for health research
  publication-title: Med Decis Making
– volume: 24
  start-page: 1791
  year: 2005
  end-page: 1806
  ident: bib26
  article-title: The value of information and optimal clinical trial design
  publication-title: Stat Med
– volume: 2
  start-page: 106
  year: 2014
  end-page: 125
  ident: bib12
  article-title: When is a model good enough? Deriving the expected value of model improvement via specifying internal model discrepancies
  publication-title: SIAM/ASA Journal on Uncertainty Quantification
– volume: 21
  start-page: 203
  year: 2018
  end-page: 209
  ident: bib21
  article-title: The impact of decision makers’ constraints on the outcome of value of information analysis
  publication-title: Value Health
– volume: 29
  start-page: 643
  year: 2009
  end-page: 660
  ident: bib22
  article-title: Dimensions of design space: a decision-theoretic approach to optimal research design
  publication-title: Med Decis Making
– volume: 36
  start-page: 641
  year: 2016
  end-page: 651
  ident: bib44
  article-title: Development and evaluation of an approach to using value of information analyses for real-time prioritization decisions within SWOG, a large cancer clinical trials cooperative group
  publication-title: Med Decis Making
– volume: 61
  start-page: 25
  year: 2011
  end-page: 45
  ident: bib17
  article-title: Managing structural uncertainty in health economic decision models: a discrepancy approach
  publication-title: J R Stat Soc Ser C
– year: 2017
  ident: bib50
  article-title: Bayesian cost-effectiveness analysis with the R package BCEA
– year: 2017
  ident: bib48
  article-title: Markov models for health economic evaluation: the R Package heemod. ArXiv e-prints
– volume: 3
  start-page: 8
  year: 2013
  ident: bib6
  article-title: Confounding and missing data in cost-effectiveness analysis: comparing different methods
  publication-title: Health Econ Rev
– ident: bib49
  article-title: SAVI—Sheffield Accelerated Value of Information
– volume: 34
  start-page: 352
  year: 2014
  end-page: 365
  ident: bib34
  article-title: Expected value of sample information for multi-arm cluster randomized trials with binary outcomes
  publication-title: Med Decis Making
– volume: 38
  start-page: 163
  year: 2018
  end-page: 173
  ident: bib38
  article-title: Efficient Monte Carlo estimation of the expected value of sample information using moment matching
  publication-title: Med Decis Making
– year: 2006
  ident: bib5
  article-title: Uncertain Judgements: Eliciting Expert Probabilities
– volume: 1
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib23
  article-title: Value of information analysis informing adoption and research decisions in a portfolio of health care interventions
  publication-title: Med Decis Making Policy Pract
– volume: 16
  start-page: 1
  year: 2012
  end-page: 323
  ident: bib42
  article-title: Informing a decision framework for when NICE should recommend the use of health technologies only in the context of an appropriately designed programme of evidence development
  publication-title: Health Technol Assess
– volume: 24
  start-page: 207
  year: 2004
  end-page: 227
  ident: bib33
  article-title: Expected value of sample information calculations in medical decision modeling
  publication-title: Med Decis Making
– volume: 14
  start-page: 205
  year: 2011
  end-page: 218
  ident: bib16
  article-title: Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information
  publication-title: Value Health
– volume: 37
  start-page: 523
  year: 2017
  end-page: 533
  ident: bib41
  article-title: Assessing the expected value of research studies in reducing uncertainty and improving implementation dynamics
  publication-title: Med Decis Making
– volume: 16
  start-page: 241
  year: 1996
  end-page: 254
  ident: bib20
  article-title: Risk aversion and the value of information
  publication-title: Decis Support Syst
– volume: 30
  start-page: 155
  year: 2010
  end-page: 162
  ident: bib52
  article-title: Exploring the research decision space: the expected value of information for sequential research designs
  publication-title: Med Decis Making
– volume: 12
  start-page: 1062
  issue: 8
  year: 2009
  ident: 10.1016/j.jval.2020.01.004_bib7
  publication-title: Value Health
  doi: 10.1111/j.1524-4733.2009.00602.x
– volume: 172
  start-page: 21
  year: 2009
  ident: 10.1016/j.jval.2020.01.004_bib9
  article-title: Bias modelling in evidence synthesis
  publication-title: J R Stat Soc Ser A
  doi: 10.1111/j.1467-985X.2008.00547.x
– year: 2006
  ident: 10.1016/j.jval.2020.01.004_bib3
– volume: 35
  start-page: 570
  issue: 5
  year: 2015
  ident: 10.1016/j.jval.2020.01.004_bib30
  article-title: Estimating the expected value of sample information using the probabilistic sensitivity analysis sample: a fast, nonparametric regression-based method
  publication-title: Med Decis Making
  doi: 10.1177/0272989X15575286
– volume: 30
  start-page: 155
  year: 2010
  ident: 10.1016/j.jval.2020.01.004_bib52
  article-title: Exploring the research decision space: the expected value of information for sequential research designs
  publication-title: Med Decis Making
  doi: 10.1177/0272989X09344746
– volume: 24
  start-page: 207
  issue: 2
  year: 2004
  ident: 10.1016/j.jval.2020.01.004_bib33
  article-title: Expected value of sample information calculations in medical decision modeling
  publication-title: Med Decis Making
  doi: 10.1177/0272989X04263162
– volume: 16
  start-page: 241
  issue: 3
  year: 1996
  ident: 10.1016/j.jval.2020.01.004_bib20
  article-title: Risk aversion and the value of information
  publication-title: Decis Support Syst
  doi: 10.1016/0167-9236(95)00023-2
– year: 1944
  ident: 10.1016/j.jval.2020.01.004_bib18
– volume: 21
  start-page: 203
  issue: 2
  year: 2018
  ident: 10.1016/j.jval.2020.01.004_bib21
  article-title: The impact of decision makers’ constraints on the outcome of value of information analysis
  publication-title: Value Health
  doi: 10.1016/j.jval.2017.04.011
– start-page: 64
  year: 2013
  ident: 10.1016/j.jval.2020.01.004_bib4
  article-title: Quantifying scientific uncertainty from expert judgement elicitation
– volume: 19
  start-page: 505
  issue: 4
  year: 2016
  ident: 10.1016/j.jval.2020.01.004_bib35
  article-title: Efficient value of information calculation using a nonparametric regression approach: an applied perspective
  publication-title: Value Health
  doi: 10.1016/j.jval.2016.01.011
– volume: 59
  start-page: 233
  issue: 2
  year: 2010
  ident: 10.1016/j.jval.2020.01.004_bib11
  article-title: Structural and parameter uncertainty in Bayesian cost-effectiveness models
  publication-title: J R Stat Soc Ser C Appl Stat
  doi: 10.1111/j.1467-9876.2009.00684.x
– year: 2017
  ident: 10.1016/j.jval.2020.01.004_bib50
– volume: 34
  start-page: 352
  year: 2014
  ident: 10.1016/j.jval.2020.01.004_bib34
  article-title: Expected value of sample information for multi-arm cluster randomized trials with binary outcomes
  publication-title: Med Decis Making
  doi: 10.1177/0272989X13501229
– volume: 29
  start-page: 468
  issue: 3
  year: 2010
  ident: 10.1016/j.jval.2020.01.004_bib27
  article-title: Simulation sample sizes for Monte Carlo partial EVPI calculations
  publication-title: J Health Econ
  doi: 10.1016/j.jhealeco.2010.03.006
– ident: 10.1016/j.jval.2020.01.004_bib49
– volume: 15
  start-page: 835
  year: 2012
  ident: 10.1016/j.jval.2020.01.004_bib2
  article-title: Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6
  publication-title: Value Health
  doi: 10.1016/j.jval.2012.04.014
– volume: 31
  start-page: 675
  issue: 4
  year: 2011
  ident: 10.1016/j.jval.2020.01.004_bib10
  article-title: Accounting for methodological, structural, and parameter uncertainty in decision-analytic models: a practical guide
  publication-title: Med Decis Making
  doi: 10.1177/0272989X11409240
– volume: 38
  start-page: 427
  issue: 4
  year: 2018
  ident: 10.1016/j.jval.2020.01.004_bib19
  article-title: Decision criterion and value of information analysis: optimal aspirin dosage for secondary prevention of cardiovascular events
  publication-title: Med Decis Making
  doi: 10.1177/0272989X17746988
– volume: 12
  start-page: 739
  issue: 5
  year: 2009
  ident: 10.1016/j.jval.2020.01.004_bib14
  article-title: Characterizing structural uncertainty in decision analytic models: a review and application of methods
  publication-title: Value Health
  doi: 10.1111/j.1524-4733.2008.00502.x
– volume: 14
  start-page: 205
  issue: 2
  year: 2011
  ident: 10.1016/j.jval.2020.01.004_bib16
  article-title: Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information
  publication-title: Value Health
  doi: 10.1016/j.jval.2010.08.001
– volume: 33
  start-page: 105
  issue: 2
  year: 2015
  ident: 10.1016/j.jval.2020.01.004_bib32
  article-title: A practical guide to value of information analysis
  publication-title: Pharmacoeconomics
  doi: 10.1007/s40273-014-0219-x
– volume: 351
  start-page: h5987
  year: 2015
  ident: 10.1016/j.jval.2020.01.004_bib45
  article-title: How to estimate the health benefits of additional research and changing clinical practice
  publication-title: BMJ
  doi: 10.1136/bmj.h5987
– volume: 24
  start-page: 1791
  year: 2005
  ident: 10.1016/j.jval.2020.01.004_bib26
  article-title: The value of information and optimal clinical trial design
  publication-title: Stat Med
  doi: 10.1002/sim.2069
– volume: 2
  start-page: 106
  issue: 1
  year: 2014
  ident: 10.1016/j.jval.2020.01.004_bib12
  article-title: When is a model good enough? Deriving the expected value of model improvement via specifying internal model discrepancies
  publication-title: SIAM/ASA Journal on Uncertainty Quantification
  doi: 10.1137/120889563
– year: 2006
  ident: 10.1016/j.jval.2020.01.004_bib5
– volume: 3
  start-page: 8
  issue: 1
  year: 2013
  ident: 10.1016/j.jval.2020.01.004_bib6
  article-title: Confounding and missing data in cost-effectiveness analysis: comparing different methods
  publication-title: Health Econ Rev
  doi: 10.1186/2191-1991-3-8
– volume: 37
  start-page: 747
  year: 2017
  ident: 10.1016/j.jval.2020.01.004_bib31
  article-title: A review of methods for analysis of the expected value of information
  publication-title: Med Decis Making
  doi: 10.1177/0272989X17697692
– volume: 70
  start-page: 183
  year: 2016
  ident: 10.1016/j.jval.2020.01.004_bib46
  article-title: Methods to place a value on additional evidence are illustrated using a case study of corticosteroids after traumatic brain injury
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.09.011
– year: 2020
  ident: 10.1016/j.jval.2020.01.004_bib1
  article-title: Value of information analysis for research decisions—an introduction: report 1 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force
  publication-title: Value Health
  doi: 10.1016/j.jval.2020.01.001
– volume: 61
  start-page: 25
  issue: 1
  year: 2011
  ident: 10.1016/j.jval.2020.01.004_bib17
  article-title: Managing structural uncertainty in health economic decision models: a discrepancy approach
  publication-title: J R Stat Soc Ser C
  doi: 10.1111/j.1467-9876.2011.01014.x
– volume: 38
  start-page: 163
  issue: 2
  year: 2018
  ident: 10.1016/j.jval.2020.01.004_bib38
  article-title: Efficient Monte Carlo estimation of the expected value of sample information using moment matching
  publication-title: Med Decis Making
  doi: 10.1177/0272989X17738515
– volume: 31
  start-page: E1
  issue: 6
  year: 2011
  ident: 10.1016/j.jval.2020.01.004_bib43
  article-title: Minimal modeling approaches to value of information analysis for health research
  publication-title: Med Decis Making
  doi: 10.1177/0272989X11412975
– volume: 34
  start-page: 311
  issue: 3
  year: 2014
  ident: 10.1016/j.jval.2020.01.004_bib29
  article-title: Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach
  publication-title: Med Decis Making
  doi: 10.1177/0272989X13505910
– volume: 172
  start-page: 119
  year: 2009
  ident: 10.1016/j.jval.2020.01.004_bib8
  article-title: Models for potentially biased evidence in meta-analysis using empirically based priors
  publication-title: J R Stat Soc Ser A
  doi: 10.1111/j.1467-985X.2008.00548.x
– ident: 10.1016/j.jval.2020.01.004_bib47
– ident: 10.1016/j.jval.2020.01.004_bib48
– volume: 36
  start-page: 308
  year: 2016
  ident: 10.1016/j.jval.2020.01.004_bib36
  article-title: An efficient estimator for the expected value of sample information
  publication-title: Med Decis Making
  doi: 10.1177/0272989X15583495
– volume: 28
  start-page: 287
  year: 2008
  ident: 10.1016/j.jval.2020.01.004_bib39
  article-title: The half-life of truth: what are appropriate time horizons for research decisions?
  publication-title: Med Decis Making
  doi: 10.1177/0272989X07312724
– volume: 37
  start-page: 523
  issue: 5
  year: 2017
  ident: 10.1016/j.jval.2020.01.004_bib41
  article-title: Assessing the expected value of research studies in reducing uncertainty and improving implementation dynamics
  publication-title: Med Decis Making
  doi: 10.1177/0272989X16686766
– volume: 16
  start-page: 1
  issue: 46
  year: 2012
  ident: 10.1016/j.jval.2020.01.004_bib42
  article-title: Informing a decision framework for when NICE should recommend the use of health technologies only in the context of an appropriately designed programme of evidence development
  publication-title: Health Technol Assess
  doi: 10.3310/hta16460
– volume: 38
  start-page: 174
  issue: 2
  year: 2018
  ident: 10.1016/j.jval.2020.01.004_bib37
  article-title: A Gaussian approximation approach for value of information analysis
  publication-title: Med Decis Making
  doi: 10.1177/0272989X17715627
– volume: 36
  start-page: 641
  issue: 5
  year: 2016
  ident: 10.1016/j.jval.2020.01.004_bib44
  article-title: Development and evaluation of an approach to using value of information analyses for real-time prioritization decisions within SWOG, a large cancer clinical trials cooperative group
  publication-title: Med Decis Making
  doi: 10.1177/0272989X16636847
– volume: 172
  start-page: 383
  issue: 2
  year: 2009
  ident: 10.1016/j.jval.2020.01.004_bib15
  article-title: Accounting for uncertainty in health economic decision models by using model averaging
  publication-title: J R Stat Soc Ser A Stat Soc
  doi: 10.1111/j.1467-985X.2008.00573.x
– volume: 29
  start-page: 643
  issue: 6
  year: 2009
  ident: 10.1016/j.jval.2020.01.004_bib22
  article-title: Dimensions of design space: a decision-theoretic approach to optimal research design
  publication-title: Med Decis Making
  doi: 10.1177/0272989X09336142
– volume: 8
  start-page: 1
  issue: 38
  year: 2004
  ident: 10.1016/j.jval.2020.01.004_bib13
  article-title: Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation
  publication-title: Health Technology Assessment
  doi: 10.3310/hta8380
– volume: 18
  start-page: 203
  year: 2009
  ident: 10.1016/j.jval.2020.01.004_bib40
  article-title: Globally optimal trial design for local decision making
  publication-title: Health Econ
  doi: 10.1002/hec.1353
– volume: 31
  start-page: 853
  issue: 6
  year: 2011
  ident: 10.1016/j.jval.2020.01.004_bib24
  article-title: Addressing adoption and research design decisions simultaneously: the role of value of sample information analysis
  publication-title: Med Decis Making
  doi: 10.1177/0272989X11399921
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.jval.2020.01.004_bib23
  article-title: Value of information analysis informing adoption and research decisions in a portfolio of health care interventions
  publication-title: Med Decis Making Policy Pract
– volume: 16
  start-page: 195
  year: 2007
  ident: 10.1016/j.jval.2020.01.004_bib25
  article-title: Expected value of information and decision making in HTA
  publication-title: Health Econ
  doi: 10.1002/hec.1161
– volume: 34
  start-page: 327
  issue: 3
  year: 2014
  ident: 10.1016/j.jval.2020.01.004_bib28
  article-title: Strategies for efficient computation of the expected value of partial perfect information
  publication-title: Med Decis Making
  doi: 10.1177/0272989X13514774
– volume: 35
  start-page: 564
  issue: 5
  year: 2015
  ident: 10.1016/j.jval.2020.01.004_bib51
  article-title: Value of information: we’ve got speed, what more do we need?
  publication-title: Med Decis Making
  doi: 10.1177/0272989X15579164
SSID ssj0006325
Score 2.5405388
SecondaryResourceType review_article
Snippet The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the...
AbstractThe allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing...
The allocation of health care resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Cost analysis
Decision making
ENBS
EVPI
EVPPI
EVSI
Health care
Health care delivery
Health care expenditures
Internal Medicine
Public Health
Resource allocation
Sampling
study design
Uncertainty
Value
value of information
value of research
Title Value of Information Analytical Methods: Report 2 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force
URI https://www.clinicalkey.com/#!/content/1-s2.0-S109830152030036X
https://www.clinicalkey.es/playcontent/1-s2.0-S109830152030036X
https://dx.doi.org/10.1016/j.jval.2020.01.004
https://www.ncbi.nlm.nih.gov/pubmed/32197720
https://www.proquest.com/docview/2435540629
https://www.proquest.com/docview/2381628163
https://pubmed.ncbi.nlm.nih.gov/PMC7373630
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBAvCMZXYVRGQnthoY6dODFvY6J0oI6KdahvlpPYomNqpqV92Av869wlTkbZGBIPeUh8pyS-y_kuvt8dIa9yBwOc2SBWGQsiB7LIJKJAVFoowZRNa3j0-FCOjqOPs3i2QfZbLAymVXrb39j02lr7KwM_m4Oz-XxwFDKVgnrGHPQU7PAM7DCiShHEN3vXWWMp6sarSBwgtQfONDleJyBNiBE5q0t3-mZt1yxOV53PP3Mof1uUhvfJPe9N0r3mgR-QDbvYInfGfr98i-xMmsrUF7t0egm0qnbpDp1c1qy-eEh-fjWnK0tLRz0-CeVF64ol9c9uOq47TVdvaeOxU4604DzSg6PJ5y_07-zVvKL45wubIdEPZVnQiQdmVXRqqu90WJ7n9hE5Hr6f7o8C35shyONULYM0B0_OcOFi6QphlHAFBD6hlaFLuLDCMOVykWXcSltEeSKlY0ViIJwpnGJRJh6TzUW5sE8JNUUeOZZxI20eiSLMsGqAKkxobIrhZ4-ErVB07guXY_-MU91mqJ1oFKRGQWoWahBkj7zueM6ash03UotW1roFpIIJ1bCq3MiVXMdlK28FKh3qimumr2hqj8Qd55qy__OO260i6u4mPEKXkUkOE_WyGwYjgTs_ZmHLFdDg9jCHQ_TIk0Zvu2kRsGZBiMXgddY0uiPAAuTrI4v5t7oQeSISIQV79p-v85zcxbMmo2-bbC7PV_YFuHjLrE9uvfkR9sntvYNPo8N-_UX_AublUi0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwEvCMZXxwAjob2wqI6dODFv00Rp2Voq1qG-WU5si25TMy3tw5741zknTkbZGBIPeYnvlMR3Od_Zd79D6H1uYYASE8QiI0FkQRYZd1UgItWCEWHSqjx6NOaDk-jLLJ5toIOmFsalVXrbX9v0ylr7Oz0_m72L-bx3HBKRgnrGFPQU7PDsHtqMXFPrDtrcHx4Oxq1B5qzqveroA8fga2fqNK9TECiEiZRU6J2-X9st69NN__PPNMrf1qX-Y_TIO5R4v37nJ2jDLLbQ_ZE_Mt9Cu5ManPpqD0-va63KPbyLJ9ew1VdP0c_v6nxlcGGxL1FyIsMVaEm1341HVbPp8iOunXZMHS34j3h4PPn6Df-dvZyX2G1-uX5I-HNRaDzxtVklnqryDPeLy9w8Qyf9T9ODQeDbMwR5nIplkObgzCnKbMytZkowqyH2CQ0PbUKZYYoIm7Mso4YbHeUJ55boREFEo60gUcaeo86iWJiXCCudR5ZkVHGTR0yHmQMOEFqFyqQuAu2isBGKzD12uWuhcS6bJLVT6QQpnSAlCSUIsos-tDwXNXLHndSskbVsalLBikpYWO7kSm7jMqU3BKUMZUklkTeUtYvilnNN3__5xJ1GEWX7EBo5r5FwChP1rh0GO-EOf9TCFCugcSfEFC7WRS9qvW2nhcGyBVEWgc9Z0-iWwGGQr48s5j8qLPKEJYwzsv2fn_MWPRhMR0fyaDg-fIUeupE6wW8HdZaXK_MaPL5l9sb_0b8AQANT0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Value+of+Information+Analytical+Methods%3A+Report+2+of+the+ISPOR+Value+of+Information+Analysis+Emerging+Good+Practices+Task+Force&rft.jtitle=Value+in+health&rft.au=Rothery%2C+Claire&rft.au=Strong%2C+Mark&rft.au=Koffijberg%2C+Hendrik+Erik&rft.au=Basu%2C+Anirban&rft.date=2020-03-01&rft.issn=1524-4733&rft.eissn=1524-4733&rft.volume=23&rft.issue=3&rft.spage=277&rft_id=info:doi/10.1016%2Fj.jval.2020.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10983015%2FS1098301520X00040%2Fcov150h.gif