Value of Information Analytical Methods: Report 2 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force
The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health...
Saved in:
Published in | Value in health Vol. 23; no. 3; pp. 277 - 286 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1098-3015 1524-4733 1524-4733 |
DOI | 10.1016/j.jval.2020.01.004 |
Cover
Abstract | The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted.
•Value of information (VOI) analysis provides a framework for quantifying the value of acquiring additional information to reduce uncertainty in decision making. Quantifying the expected improvement with new information requires an assessment of the scale and consequences of uncertainty in terms of payoffs. Acquiring information, however, can be costly. Therefore, the value of new information is compared with the cost of acquiring the information to determine whether it is worthwhile.•This report provides practical guidance on the methods and reporting of VOI analysis. The methods are presented in generic form to allow them to be adapted to any specific decision-making context. This means that even in healthcare systems in which economic considerations are not explicitly incorporated into decision making, the same methods can be applied.•This report provides 8 recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The primary audience for the report is methodologists or analysts who are responsible for undertaking VOI analysis to inform decision making. |
---|---|
AbstractList | AbstractThe allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. The allocation of health care resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities, and on the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision-making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using Value of Information (VOI) analysis. This report, from the ISPOR VOI Task Force, describes methods for computing four VOI measures: the Expected Value of Perfect Information (EVPI), Expected Value of Partial Perfect Information (EVPPI), Expected Value of Sample Information (EVSI) and Expected Net Benefit of Sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. This report provides detailed guidance and emerging good practices on VOI analysis for assessing the value of research to inform decisions in different contexts. The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. •Value of information (VOI) analysis provides a framework for quantifying the value of acquiring additional information to reduce uncertainty in decision making. Quantifying the expected improvement with new information requires an assessment of the scale and consequences of uncertainty in terms of payoffs. Acquiring information, however, can be costly. Therefore, the value of new information is compared with the cost of acquiring the information to determine whether it is worthwhile.•This report provides practical guidance on the methods and reporting of VOI analysis. The methods are presented in generic form to allow them to be adapted to any specific decision-making context. This means that even in healthcare systems in which economic considerations are not explicitly incorporated into decision making, the same methods can be applied.•This report provides 8 recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The primary audience for the report is methodologists or analysts who are responsible for undertaking VOI analysis to inform decision making. The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted.The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the activities and of the opportunity cost of the expenditure. To date, much effort has been devoted to assessing the expected costs and health effects, but there remains an important need to also reflect the consequences of uncertainty in resource allocation decisions and the value of further research to reduce uncertainty. Decision making with uncertainty may turn out to be suboptimal, resulting in health loss. Consequently, there may be value in reducing uncertainty, through the collection of new evidence, to better inform resource decisions. This value can be quantified using value of information (VOI) analysis. This report from the ISPOR VOI Task Force describes methods for computing 4 VOI measures: the expected value of perfect information, expected value of partial perfect information (EVPPI), expected value of sample information (EVSI), and expected net benefit of sampling (ENBS). Several methods exist for computing EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method based on the features of the decision problem. The report provides a number of recommendations for good practice when planning, undertaking, or reviewing VOI analyses. The software needed to compute VOI is discussed, and areas for future research are highlighted. |
Author | Rothery, Claire Basu, Anirban Ghabri, Salah Knies, Saskia Strong, Mark Koffijberg, Hendrik (Erik) Murray, James F. Sanders Schmidler, Gillian D. Steuten, Lotte Fenwick, Elisabeth |
Author_xml | – sequence: 1 givenname: Claire surname: Rothery fullname: Rothery, Claire email: claire.rothery@york.ac.uk organization: Centre for Health Economics, University of York, York, England, UK – sequence: 2 givenname: Mark surname: Strong fullname: Strong, Mark organization: School of Health and Related Research, University of Sheffield, Sheffield, England, UK – sequence: 3 givenname: Hendrik (Erik) surname: Koffijberg fullname: Koffijberg, Hendrik (Erik) organization: Department of Health Technology & Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands – sequence: 4 givenname: Anirban surname: Basu fullname: Basu, Anirban organization: The Comparative Health Outcomes, Policy, and Economics Institute, School of Pharmacy, University of Washington, Seattle, Washington, DC, USA – sequence: 5 givenname: Salah surname: Ghabri fullname: Ghabri, Salah organization: French National Authority for Health, Paris, France – sequence: 6 givenname: Saskia surname: Knies fullname: Knies, Saskia organization: National Health Care Institute (Zorginstituut Nederland), Diemen, The Netherlands – sequence: 7 givenname: James F. surname: Murray fullname: Murray, James F. organization: Eli Lilly and Company, Indianapolis, IN, USA – sequence: 8 givenname: Gillian D. surname: Sanders Schmidler fullname: Sanders Schmidler, Gillian D. organization: Duke-Margolis Center for Health Policy, Duke Clinical Research Institute and Department of Population Health Sciences, Duke University, Durham, NC, USA – sequence: 9 givenname: Lotte surname: Steuten fullname: Steuten, Lotte organization: Office of Health Economics, London, England, UK – sequence: 10 givenname: Elisabeth surname: Fenwick fullname: Fenwick, Elisabeth organization: Pharmerit International, Oxford, England, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32197720$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9rGzEQxZeS0vxpv0APRdBLL3ZH0q52N5RACElqSElI0tKbkLUjW85acqW1wad-9Wrr1LSGpAchgX7vaUbzDrM95x1m2VsKQwpUfJwNZyvVDhkwGAIdAuQvsgNasHyQl5zvpTPU1YADLfazwxhnACA4K15l-5zRuiwZHGQ_v6l2icQbMnLGh7nqrHfk1Kl23VmtWvIFu6lv4jG5xYUPHWE9202RjO5urm_J0_JoIzmfY5hYNyGX3jfkJiidTDGSexUfyIUPGl9nL41qI7553I-yrxfn92efB1fXl6Oz06uBLqq6G1Q6p0IxbgphGq5qbpqy4BQFNSXjyBXURvPxmKHAJtelEAaaUlFaNaaGfMyPspON72I5nmOj0XVBtXIR7FyFtfTKyn9vnJ3KiV_JkpdccEgGHx4Ngv-xxNjJuY0a21Y59MsoGa-oYGnxhL7fQWd-GdKfJCrnRZGDYHWi3v1d0baUP7NJANsAOvgYA5otQkH2AZAz2QdA9gGQQGUKQBJVOyJtu99TSV3Z9nnpp40U0xxWFoOM2qLT2NiAupONt8_LT3bkurWuz9ADrjFuv4DKyCTIuz6cfTZTpwBcfE8Gx08b_O_1XyVz9G8 |
CitedBy_id | crossref_primary_10_1287_mnsc_2022_4540 crossref_primary_10_1016_j_jval_2022_07_006 crossref_primary_10_1080_14737167_2023_2263647 crossref_primary_10_1136_bmjopen_2022_066249 crossref_primary_10_1002_hec_4932 crossref_primary_10_1007_s40273_020_00979_3 crossref_primary_10_1093_jrsssa_qnad129 crossref_primary_10_1177_0272989X211045036 crossref_primary_10_1007_s40273_023_01341_z crossref_primary_10_1007_s40273_024_01446_z crossref_primary_10_1016_j_jval_2024_06_004 crossref_primary_10_1007_s40273_023_01242_1 crossref_primary_10_1016_j_techfore_2021_121000 crossref_primary_10_1016_j_jval_2021_11_1373 crossref_primary_10_1038_s41598_021_90405_1 crossref_primary_10_1002_eat_24198 crossref_primary_10_1007_s40273_022_01203_0 crossref_primary_10_1136_bmjopen_2024_094804 crossref_primary_10_1007_s40273_020_00907_5 crossref_primary_10_1016_j_jenvman_2024_122657 crossref_primary_10_2139_ssrn_3914670 crossref_primary_10_1177_0272989X241279459 crossref_primary_10_1016_j_jval_2020_11_015 crossref_primary_10_1515_em_2021_0012 crossref_primary_10_1007_s40273_021_01060_3 crossref_primary_10_1017_S026646232300260X crossref_primary_10_1093_jnci_djac013 crossref_primary_10_1186_s12916_022_02445_7 crossref_primary_10_1080_14737167_2023_2144838 crossref_primary_10_1016_j_jval_2020_01_003 crossref_primary_10_1177_0272989X241262343 crossref_primary_10_3390_vaccines12030232 crossref_primary_10_1177_0272989X211053794 crossref_primary_10_1186_s12875_024_02496_0 crossref_primary_10_1016_j_jval_2021_03_013 crossref_primary_10_1111_jfr3_12993 crossref_primary_10_1002_hec_4478 crossref_primary_10_1287_deca_2022_0465 crossref_primary_10_1016_j_jval_2023_12_010 crossref_primary_10_1007_s40273_024_01403_w crossref_primary_10_1001_jamahealthforum_2022_4065 crossref_primary_10_1111_iwj_13924 crossref_primary_10_1007_s40273_023_01303_5 crossref_primary_10_1007_s40273_024_01447_y crossref_primary_10_1177_0272989X211068019 crossref_primary_10_1007_s40258_021_00662_4 crossref_primary_10_1177_0272989X211073098 crossref_primary_10_1016_j_jval_2024_03_2196 crossref_primary_10_1016_j_jcmg_2020_04_006 crossref_primary_10_1177_0272989X211026292 crossref_primary_10_1177_0272989X221100112 crossref_primary_10_1002_hec_4681 crossref_primary_10_1016_j_vhri_2025_101089 crossref_primary_10_1177_23814683231198873 crossref_primary_10_1002_hec_4520 crossref_primary_10_1089_tmj_2023_0010 crossref_primary_10_1177_0272989X211016427 crossref_primary_10_1177_0272989X211016307 crossref_primary_10_1186_s12889_024_20225_1 crossref_primary_10_3310_CTMD0148 crossref_primary_10_1007_s40273_024_01372_0 crossref_primary_10_3310_ZUCE8371 crossref_primary_10_1186_s13023_020_01666_4 crossref_primary_10_1186_s13063_022_06244_6 crossref_primary_10_1016_j_jval_2020_02_010 crossref_primary_10_3390_cancers14071786 crossref_primary_10_1016_j_jval_2023_06_014 crossref_primary_10_1007_s41669_020_00227_6 crossref_primary_10_1016_j_jval_2021_01_004 crossref_primary_10_1007_s13563_022_00361_z crossref_primary_10_1186_s13063_022_06928_z crossref_primary_10_1007_s10654_021_00761_5 crossref_primary_10_1177_0272989X231214791 crossref_primary_10_1177_0272989X241255047 crossref_primary_10_1158_1055_9965_EPI_21_0078 |
Cites_doi | 10.1111/j.1524-4733.2009.00602.x 10.1111/j.1467-985X.2008.00547.x 10.1177/0272989X15575286 10.1177/0272989X09344746 10.1177/0272989X04263162 10.1016/0167-9236(95)00023-2 10.1016/j.jval.2017.04.011 10.1016/j.jval.2016.01.011 10.1111/j.1467-9876.2009.00684.x 10.1177/0272989X13501229 10.1016/j.jhealeco.2010.03.006 10.1016/j.jval.2012.04.014 10.1177/0272989X11409240 10.1177/0272989X17746988 10.1111/j.1524-4733.2008.00502.x 10.1016/j.jval.2010.08.001 10.1007/s40273-014-0219-x 10.1136/bmj.h5987 10.1002/sim.2069 10.1137/120889563 10.1186/2191-1991-3-8 10.1177/0272989X17697692 10.1016/j.jclinepi.2015.09.011 10.1016/j.jval.2020.01.001 10.1111/j.1467-9876.2011.01014.x 10.1177/0272989X17738515 10.1177/0272989X11412975 10.1177/0272989X13505910 10.1111/j.1467-985X.2008.00548.x 10.1177/0272989X15583495 10.1177/0272989X07312724 10.1177/0272989X16686766 10.3310/hta16460 10.1177/0272989X17715627 10.1177/0272989X16636847 10.1111/j.1467-985X.2008.00573.x 10.1177/0272989X09336142 10.3310/hta8380 10.1002/hec.1353 10.1177/0272989X11399921 10.1002/hec.1161 10.1177/0272989X13514774 10.1177/0272989X15579164 |
ContentType | Journal Article |
Copyright | 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research ISPOR–The Professional Society for Health Economics and Outcomes Research Copyright © 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Science Ltd. Mar 2020 |
Copyright_xml | – notice: 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research – notice: ISPOR–The Professional Society for Health Economics and Outcomes Research – notice: Copyright © 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Science Ltd. Mar 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7QJ 7X8 5PM |
DOI | 10.1016/j.jval.2020.01.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed Applied Social Sciences Index & Abstracts (ASSIA) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Applied Social Sciences Index and Abstracts (ASSIA) MEDLINE - Academic |
DatabaseTitleList | Applied Social Sciences Index and Abstracts (ASSIA) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology Public Health |
EISSN | 1524-4733 |
EndPage | 286 |
ExternalDocumentID | PMC7373630 32197720 10_1016_j_jval_2020_01_004 S109830152030036X 1_s2_0_S109830152030036X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .3N .FO .GA .Y3 .~1 0R~ 10A 123 1OC 1P~ 1~. 29Q 31~ 36B 4.4 44B 457 4G. 51W 51X 52N 52P 52R 52S 52X 53G 5LA 5VS 66C 6PF 7-5 7PT 8-1 8P~ 8UM AAEDT AAEDW AAFJI AAFWJ AAIKJ AAKOC AALRI AAMMB AAOAW AAPFB AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABCQN ABDBF ABEML ABIVO ABJNI ABMAC ABMMH ABMZM ABWVN ABXDB ACDAQ ACGFS ACHQT ACIEU ACPRK ACRLP ACRPL ACUHS ACVFH ACXQS ADBBV ADCNI ADEZE ADFHU ADMUD ADNMO ADVLN AEBSH AEFGJ AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AEYQN AFBPY AFEBI AFJKZ AFPUW AFRHN AFTJW AFXIZ AFZJQ AGCQF AGHFR AGQPQ AGTHC AGUBO AGXDD AGYEJ AIDQK AIDYY AIEXJ AIGII AIIAU AIIUN AIKHN AITUG AJAOE AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOMHK APXCP ASPBG AVARZ AVWKF AXJTR AXLSJ AZFZN BAWUL BFHJK BKOJK BLXMC BNPGV BY8 CAG CO8 COF CS3 DCZOG DIK DU5 EAD EAP EBS EFJIC EFKBS EJD EMB EMK EMOBN ESX F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HF~ HVGLF HZI HZ~ IHE IXB KOM LH4 M41 MO0 N9A O-L O9- OAUVE OIG OK1 OVD P-8 P-9 P2P PC. PQQKQ PRBVW Q38 QB0 R2- ROL SDF SEL SES SPCBC SSB SSF SSH SSO SSZ SV3 T5K TEORI TUS W99 WIN WYUIH XG1 YFH Z5R ~G- 0SF 6I. AACTN AAFTH AAHHS ABVKL ACCFJ AEEZP AEQDE AFCTW AFKWA AIWBW AJBDE AJOXV AMFUW NCXOZ RIG SUPJJ AAIAV ABLVK ABYKQ AJBFU AKYCK EFLBG IXIXF LCYCR AAYXX AGRNS CITATION NPM 7QJ 7X8 5PM |
ID | FETCH-LOGICAL-c589t-8c416a23f56fd3a93fd7531e61f723e3a09fc3bb2e6ed4c766f0d7a118df904b3 |
IEDL.DBID | IXB |
ISSN | 1098-3015 1524-4733 |
IngestDate | Thu Aug 21 18:19:52 EDT 2025 Fri Sep 05 12:29:05 EDT 2025 Wed Aug 13 07:23:01 EDT 2025 Wed Feb 19 02:30:59 EST 2025 Tue Jul 01 04:21:45 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Fri Feb 23 02:46:38 EST 2024 Sun Feb 23 10:19:12 EST 2025 Tue Aug 26 16:31:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | value of research decision making EVSI ENBS EVPI value of information EVPPI study design |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2020 ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c589t-8c416a23f56fd3a93fd7531e61f723e3a09fc3bb2e6ed4c766f0d7a118df904b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S109830152030036X |
PMID | 32197720 |
PQID | 2435540629 |
PQPubID | 105593 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7373630 proquest_miscellaneous_2381628163 proquest_journals_2435540629 pubmed_primary_32197720 crossref_primary_10_1016_j_jval_2020_01_004 crossref_citationtrail_10_1016_j_jval_2020_01_004 elsevier_sciencedirect_doi_10_1016_j_jval_2020_01_004 elsevier_clinicalkeyesjournals_1_s2_0_S109830152030036X elsevier_clinicalkey_doi_10_1016_j_jval_2020_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Lawrenceville |
PublicationTitle | Value in health |
PublicationTitleAlternate | Value Health |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Nadiminti, Mukhopadhyay, Kriebel (bib20) 1996; 16 McKenna, Griffin, Koffijberg, Claxton (bib46) 2016; 70 Fenwick, Steuten, Knies (bib1) 2020 Briggs, Weinstein, Fenwick, Karnon, Sculpher, Paltiel (bib2) 2012; 15 Madan, Ades, Price (bib28) 2014; 34 Griffin, Welton, Claxton (bib52) 2010; 30 Strong, Oakley, Brennan (bib49) Turner, Spiegelhalter, Smith, Thompson (bib9) 2009; 172 Bilcke, Beutels, Brisson, Jit (bib10) 2011; 31 Jones, Griffin, Palmer, Main, Orton, Sculpher (bib13) 2004; 8 Aspinall, Cooke (bib4) 2013 Härkänen, Maljanen, Lindfors, Virtala, Knekt (bib6) 2013; 3 Strong, Oakley, Chilcott (bib17) 2011; 61 Heath, Manolopoulou, Baio (bib31) 2017; 37 Bojke, Claxton, Sculpher, Palmer (bib14) 2009; 12 Wilson (bib32) 2015; 33 Eckermann, Willan (bib40) 2009; 18 Welton, Madan, Caldwell, Peters, Ades (bib34) 2014; 34 Jackson, Sharples, Thompson (bib11) 2010; 59 Eckermann, Willan (bib25) 2007; 16 Filipović-Pierucci, Zarca, Durand-Zaleski (bib48) 2017 Claxton, Palmer, Longworth (bib42) 2012; 16 Basu, Meltzer (bib19) 2018; 38 Strong, Oakley, Brennan (bib29) 2014; 34 Jackson, Thompson, Sharples (bib15) 2009; 172 Strong, Oakley, Brennan, Breeze (bib30) 2015; 35 Welton, Thom (bib51) 2015; 35 Claxton, Griffin, Koffijberg, McKenna (bib45) 2015; 351 Heath, Manolopoulou, Baio (bib38) 2018; 38 O’Hagan, Buck, Daneshkhah (bib5) 2006 Philips, Claxton, Palmer (bib39) 2008; 28 Conti, Claxton (bib22) 2009; 29 Tuffaha, Gordon, Scuffham (bib23) 2016; 1 Baio, Berardi, Heath (bib50) 2017 Briggs, Sculpher, Claxton (bib3) 2006 Tuffaha, Strong, Gordon, Scuffham (bib35) 2016; 19 Grimm, Dixon, Stevens (bib41) 2017; 37 Meltzer, Hoomans, Chung, Basu (bib43) 2011; 31 Price, Welton, Briggs, Ades (bib16) 2011; 14 McKenna, Claxton (bib24) 2011; 31 Willan, Pinto (bib26) 2005; 24 Ades, Lu, Claxton (bib33) 2004; 24 Welton, Ades, Carlin, Altman, Sterne (bib8) 2009; 172 Bennette, Veenstra, Basu, Baker, Ramsey, Carlson (bib44) 2016; 36 Strong, Oakley (bib12) 2014; 2 Jalal, Alarid-Escudero (bib37) 2018; 38 Von Neumann, Morgenstern (bib18) 1944 Johnson, Crown, Martin, Dormuth, Siebert (bib7) 2009; 12 Koffijberg, Knies, Janssen (bib21) 2018; 21 Menzies (bib36) 2016; 36 Oakley, Brennan, Tappenden, Chilcott (bib27) 2010; 29 Baio, Berardi, Heath (bib47) 2018 Johnson (10.1016/j.jval.2020.01.004_bib7) 2009; 12 Eckermann (10.1016/j.jval.2020.01.004_bib40) 2009; 18 Nadiminti (10.1016/j.jval.2020.01.004_bib20) 1996; 16 Jalal (10.1016/j.jval.2020.01.004_bib37) 2018; 38 Jackson (10.1016/j.jval.2020.01.004_bib15) 2009; 172 Jackson (10.1016/j.jval.2020.01.004_bib11) 2010; 59 Koffijberg (10.1016/j.jval.2020.01.004_bib21) 2018; 21 Basu (10.1016/j.jval.2020.01.004_bib19) 2018; 38 Briggs (10.1016/j.jval.2020.01.004_bib3) 2006 Welton (10.1016/j.jval.2020.01.004_bib8) 2009; 172 Eckermann (10.1016/j.jval.2020.01.004_bib25) 2007; 16 Willan (10.1016/j.jval.2020.01.004_bib26) 2005; 24 Baio (10.1016/j.jval.2020.01.004_bib50) 2017 Welton (10.1016/j.jval.2020.01.004_bib34) 2014; 34 Strong (10.1016/j.jval.2020.01.004_bib30) 2015; 35 Grimm (10.1016/j.jval.2020.01.004_bib41) 2017; 37 Von Neumann (10.1016/j.jval.2020.01.004_bib18) 1944 O’Hagan (10.1016/j.jval.2020.01.004_bib5) 2006 Conti (10.1016/j.jval.2020.01.004_bib22) 2009; 29 Price (10.1016/j.jval.2020.01.004_bib16) 2011; 14 Baio (10.1016/j.jval.2020.01.004_bib47) Turner (10.1016/j.jval.2020.01.004_bib9) 2009; 172 Filipović-Pierucci (10.1016/j.jval.2020.01.004_bib48) Tuffaha (10.1016/j.jval.2020.01.004_bib35) 2016; 19 Bilcke (10.1016/j.jval.2020.01.004_bib10) 2011; 31 McKenna (10.1016/j.jval.2020.01.004_bib46) 2016; 70 Strong (10.1016/j.jval.2020.01.004_bib12) 2014; 2 Strong (10.1016/j.jval.2020.01.004_bib17) 2011; 61 Aspinall (10.1016/j.jval.2020.01.004_bib4) 2013 Jones (10.1016/j.jval.2020.01.004_bib13) 2004; 8 Claxton (10.1016/j.jval.2020.01.004_bib45) 2015; 351 Meltzer (10.1016/j.jval.2020.01.004_bib43) 2011; 31 Griffin (10.1016/j.jval.2020.01.004_bib52) 2010; 30 Strong (10.1016/j.jval.2020.01.004_bib49) Strong (10.1016/j.jval.2020.01.004_bib29) 2014; 34 Welton (10.1016/j.jval.2020.01.004_bib51) 2015; 35 Heath (10.1016/j.jval.2020.01.004_bib31) 2017; 37 Bennette (10.1016/j.jval.2020.01.004_bib44) 2016; 36 Wilson (10.1016/j.jval.2020.01.004_bib32) 2015; 33 Briggs (10.1016/j.jval.2020.01.004_bib2) 2012; 15 Heath (10.1016/j.jval.2020.01.004_bib38) 2018; 38 Philips (10.1016/j.jval.2020.01.004_bib39) 2008; 28 McKenna (10.1016/j.jval.2020.01.004_bib24) 2011; 31 Fenwick (10.1016/j.jval.2020.01.004_bib1) 2020 Oakley (10.1016/j.jval.2020.01.004_bib27) 2010; 29 Menzies (10.1016/j.jval.2020.01.004_bib36) 2016; 36 Bojke (10.1016/j.jval.2020.01.004_bib14) 2009; 12 Tuffaha (10.1016/j.jval.2020.01.004_bib23) 2016; 1 Claxton (10.1016/j.jval.2020.01.004_bib42) 2012; 16 Härkänen (10.1016/j.jval.2020.01.004_bib6) 2013; 3 Madan (10.1016/j.jval.2020.01.004_bib28) 2014; 34 Ades (10.1016/j.jval.2020.01.004_bib33) 2004; 24 |
References_xml | – volume: 59 start-page: 233 year: 2010 end-page: 253 ident: bib11 article-title: Structural and parameter uncertainty in Bayesian cost-effectiveness models publication-title: J R Stat Soc Ser C Appl Stat – volume: 8 start-page: 1 year: 2004 end-page: 196 ident: bib13 article-title: Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation publication-title: Health Technology Assessment – year: 2006 ident: bib3 article-title: Decision Modelling for Health Economic Evaluation – volume: 172 start-page: 119 year: 2009 end-page: 136 ident: bib8 article-title: Models for potentially biased evidence in meta-analysis using empirically based priors publication-title: J R Stat Soc Ser A – start-page: 64 year: 2013 end-page: 99 ident: bib4 article-title: Quantifying scientific uncertainty from expert judgement elicitation publication-title: Risk and Uncertainty Assessment for Natural Hazards – volume: 34 start-page: 311 year: 2014 end-page: 326 ident: bib29 article-title: Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach publication-title: Med Decis Making – volume: 70 start-page: 183 year: 2016 end-page: 190 ident: bib46 article-title: Methods to place a value on additional evidence are illustrated using a case study of corticosteroids after traumatic brain injury publication-title: J Clin Epidemiol – volume: 28 start-page: 287 year: 2008 end-page: 299 ident: bib39 article-title: The half-life of truth: what are appropriate time horizons for research decisions? publication-title: Med Decis Making – volume: 16 start-page: 195 year: 2007 end-page: 209 ident: bib25 article-title: Expected value of information and decision making in HTA publication-title: Health Econ – volume: 38 start-page: 427 year: 2018 end-page: 438 ident: bib19 article-title: Decision criterion and value of information analysis: optimal aspirin dosage for secondary prevention of cardiovascular events publication-title: Med Decis Making – volume: 37 start-page: 747 year: 2017 end-page: 758 ident: bib31 article-title: A review of methods for analysis of the expected value of information publication-title: Med Decis Making – volume: 351 start-page: h5987 year: 2015 ident: bib45 article-title: How to estimate the health benefits of additional research and changing clinical practice publication-title: BMJ – volume: 33 start-page: 105 year: 2015 end-page: 121 ident: bib32 article-title: A practical guide to value of information analysis publication-title: Pharmacoeconomics – volume: 172 start-page: 21 year: 2009 end-page: 47 ident: bib9 article-title: Bias modelling in evidence synthesis publication-title: J R Stat Soc Ser A – year: 2018 ident: bib47 article-title: BCEA: Bayesian cost effectiveness analysis – volume: 12 start-page: 739 year: 2009 end-page: 749 ident: bib14 article-title: Characterizing structural uncertainty in decision analytic models: a review and application of methods publication-title: Value Health – volume: 35 start-page: 564 year: 2015 end-page: 566 ident: bib51 article-title: Value of information: we’ve got speed, what more do we need? publication-title: Med Decis Making – volume: 31 start-page: 675 year: 2011 end-page: 692 ident: bib10 article-title: Accounting for methodological, structural, and parameter uncertainty in decision-analytic models: a practical guide publication-title: Med Decis Making – volume: 15 start-page: 835 year: 2012 end-page: 842 ident: bib2 article-title: Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6 publication-title: Value Health – volume: 38 start-page: 174 year: 2018 end-page: 188 ident: bib37 article-title: A Gaussian approximation approach for value of information analysis publication-title: Med Decis Making – volume: 36 start-page: 308 year: 2016 end-page: 320 ident: bib36 article-title: An efficient estimator for the expected value of sample information publication-title: Med Decis Making – year: 1944 ident: bib18 article-title: Theory of Games and Economic Behavior – volume: 12 start-page: 1062 year: 2009 end-page: 1073 ident: bib7 article-title: Good research practices for comparative effectiveness research: analytic methods to improve causal inference from nonrandomized studies of treatment effects using secondary data sources: the ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report–Part III publication-title: Value Health – volume: 29 start-page: 468 year: 2010 end-page: 477 ident: bib27 article-title: Simulation sample sizes for Monte Carlo partial EVPI calculations publication-title: J Health Econ – volume: 18 start-page: 203 year: 2009 end-page: 216 ident: bib40 article-title: Globally optimal trial design for local decision making publication-title: Health Econ – volume: 34 start-page: 327 year: 2014 end-page: 342 ident: bib28 article-title: Strategies for efficient computation of the expected value of partial perfect information publication-title: Med Decis Making – volume: 31 start-page: 853 year: 2011 end-page: 865 ident: bib24 article-title: Addressing adoption and research design decisions simultaneously: the role of value of sample information analysis publication-title: Med Decis Making – year: 2020 ident: bib1 article-title: Value of information analysis for research decisions—an introduction: report 1 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force publication-title: Value Health – volume: 19 start-page: 505 year: 2016 end-page: 509 ident: bib35 article-title: Efficient value of information calculation using a nonparametric regression approach: an applied perspective publication-title: Value Health – volume: 172 start-page: 383 year: 2009 end-page: 404 ident: bib15 article-title: Accounting for uncertainty in health economic decision models by using model averaging publication-title: J R Stat Soc Ser A Stat Soc – volume: 35 start-page: 570 year: 2015 end-page: 583 ident: bib30 article-title: Estimating the expected value of sample information using the probabilistic sensitivity analysis sample: a fast, nonparametric regression-based method publication-title: Med Decis Making – volume: 31 start-page: E1 year: 2011 end-page: E22 ident: bib43 article-title: Minimal modeling approaches to value of information analysis for health research publication-title: Med Decis Making – volume: 24 start-page: 1791 year: 2005 end-page: 1806 ident: bib26 article-title: The value of information and optimal clinical trial design publication-title: Stat Med – volume: 2 start-page: 106 year: 2014 end-page: 125 ident: bib12 article-title: When is a model good enough? Deriving the expected value of model improvement via specifying internal model discrepancies publication-title: SIAM/ASA Journal on Uncertainty Quantification – volume: 21 start-page: 203 year: 2018 end-page: 209 ident: bib21 article-title: The impact of decision makers’ constraints on the outcome of value of information analysis publication-title: Value Health – volume: 29 start-page: 643 year: 2009 end-page: 660 ident: bib22 article-title: Dimensions of design space: a decision-theoretic approach to optimal research design publication-title: Med Decis Making – volume: 36 start-page: 641 year: 2016 end-page: 651 ident: bib44 article-title: Development and evaluation of an approach to using value of information analyses for real-time prioritization decisions within SWOG, a large cancer clinical trials cooperative group publication-title: Med Decis Making – volume: 61 start-page: 25 year: 2011 end-page: 45 ident: bib17 article-title: Managing structural uncertainty in health economic decision models: a discrepancy approach publication-title: J R Stat Soc Ser C – year: 2017 ident: bib50 article-title: Bayesian cost-effectiveness analysis with the R package BCEA – year: 2017 ident: bib48 article-title: Markov models for health economic evaluation: the R Package heemod. ArXiv e-prints – volume: 3 start-page: 8 year: 2013 ident: bib6 article-title: Confounding and missing data in cost-effectiveness analysis: comparing different methods publication-title: Health Econ Rev – ident: bib49 article-title: SAVI—Sheffield Accelerated Value of Information – volume: 34 start-page: 352 year: 2014 end-page: 365 ident: bib34 article-title: Expected value of sample information for multi-arm cluster randomized trials with binary outcomes publication-title: Med Decis Making – volume: 38 start-page: 163 year: 2018 end-page: 173 ident: bib38 article-title: Efficient Monte Carlo estimation of the expected value of sample information using moment matching publication-title: Med Decis Making – year: 2006 ident: bib5 article-title: Uncertain Judgements: Eliciting Expert Probabilities – volume: 1 start-page: 1 year: 2016 end-page: 11 ident: bib23 article-title: Value of information analysis informing adoption and research decisions in a portfolio of health care interventions publication-title: Med Decis Making Policy Pract – volume: 16 start-page: 1 year: 2012 end-page: 323 ident: bib42 article-title: Informing a decision framework for when NICE should recommend the use of health technologies only in the context of an appropriately designed programme of evidence development publication-title: Health Technol Assess – volume: 24 start-page: 207 year: 2004 end-page: 227 ident: bib33 article-title: Expected value of sample information calculations in medical decision modeling publication-title: Med Decis Making – volume: 14 start-page: 205 year: 2011 end-page: 218 ident: bib16 article-title: Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information publication-title: Value Health – volume: 37 start-page: 523 year: 2017 end-page: 533 ident: bib41 article-title: Assessing the expected value of research studies in reducing uncertainty and improving implementation dynamics publication-title: Med Decis Making – volume: 16 start-page: 241 year: 1996 end-page: 254 ident: bib20 article-title: Risk aversion and the value of information publication-title: Decis Support Syst – volume: 30 start-page: 155 year: 2010 end-page: 162 ident: bib52 article-title: Exploring the research decision space: the expected value of information for sequential research designs publication-title: Med Decis Making – volume: 12 start-page: 1062 issue: 8 year: 2009 ident: 10.1016/j.jval.2020.01.004_bib7 publication-title: Value Health doi: 10.1111/j.1524-4733.2009.00602.x – volume: 172 start-page: 21 year: 2009 ident: 10.1016/j.jval.2020.01.004_bib9 article-title: Bias modelling in evidence synthesis publication-title: J R Stat Soc Ser A doi: 10.1111/j.1467-985X.2008.00547.x – year: 2006 ident: 10.1016/j.jval.2020.01.004_bib3 – volume: 35 start-page: 570 issue: 5 year: 2015 ident: 10.1016/j.jval.2020.01.004_bib30 article-title: Estimating the expected value of sample information using the probabilistic sensitivity analysis sample: a fast, nonparametric regression-based method publication-title: Med Decis Making doi: 10.1177/0272989X15575286 – volume: 30 start-page: 155 year: 2010 ident: 10.1016/j.jval.2020.01.004_bib52 article-title: Exploring the research decision space: the expected value of information for sequential research designs publication-title: Med Decis Making doi: 10.1177/0272989X09344746 – volume: 24 start-page: 207 issue: 2 year: 2004 ident: 10.1016/j.jval.2020.01.004_bib33 article-title: Expected value of sample information calculations in medical decision modeling publication-title: Med Decis Making doi: 10.1177/0272989X04263162 – volume: 16 start-page: 241 issue: 3 year: 1996 ident: 10.1016/j.jval.2020.01.004_bib20 article-title: Risk aversion and the value of information publication-title: Decis Support Syst doi: 10.1016/0167-9236(95)00023-2 – year: 1944 ident: 10.1016/j.jval.2020.01.004_bib18 – volume: 21 start-page: 203 issue: 2 year: 2018 ident: 10.1016/j.jval.2020.01.004_bib21 article-title: The impact of decision makers’ constraints on the outcome of value of information analysis publication-title: Value Health doi: 10.1016/j.jval.2017.04.011 – start-page: 64 year: 2013 ident: 10.1016/j.jval.2020.01.004_bib4 article-title: Quantifying scientific uncertainty from expert judgement elicitation – volume: 19 start-page: 505 issue: 4 year: 2016 ident: 10.1016/j.jval.2020.01.004_bib35 article-title: Efficient value of information calculation using a nonparametric regression approach: an applied perspective publication-title: Value Health doi: 10.1016/j.jval.2016.01.011 – volume: 59 start-page: 233 issue: 2 year: 2010 ident: 10.1016/j.jval.2020.01.004_bib11 article-title: Structural and parameter uncertainty in Bayesian cost-effectiveness models publication-title: J R Stat Soc Ser C Appl Stat doi: 10.1111/j.1467-9876.2009.00684.x – year: 2017 ident: 10.1016/j.jval.2020.01.004_bib50 – volume: 34 start-page: 352 year: 2014 ident: 10.1016/j.jval.2020.01.004_bib34 article-title: Expected value of sample information for multi-arm cluster randomized trials with binary outcomes publication-title: Med Decis Making doi: 10.1177/0272989X13501229 – volume: 29 start-page: 468 issue: 3 year: 2010 ident: 10.1016/j.jval.2020.01.004_bib27 article-title: Simulation sample sizes for Monte Carlo partial EVPI calculations publication-title: J Health Econ doi: 10.1016/j.jhealeco.2010.03.006 – ident: 10.1016/j.jval.2020.01.004_bib49 – volume: 15 start-page: 835 year: 2012 ident: 10.1016/j.jval.2020.01.004_bib2 article-title: Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6 publication-title: Value Health doi: 10.1016/j.jval.2012.04.014 – volume: 31 start-page: 675 issue: 4 year: 2011 ident: 10.1016/j.jval.2020.01.004_bib10 article-title: Accounting for methodological, structural, and parameter uncertainty in decision-analytic models: a practical guide publication-title: Med Decis Making doi: 10.1177/0272989X11409240 – volume: 38 start-page: 427 issue: 4 year: 2018 ident: 10.1016/j.jval.2020.01.004_bib19 article-title: Decision criterion and value of information analysis: optimal aspirin dosage for secondary prevention of cardiovascular events publication-title: Med Decis Making doi: 10.1177/0272989X17746988 – volume: 12 start-page: 739 issue: 5 year: 2009 ident: 10.1016/j.jval.2020.01.004_bib14 article-title: Characterizing structural uncertainty in decision analytic models: a review and application of methods publication-title: Value Health doi: 10.1111/j.1524-4733.2008.00502.x – volume: 14 start-page: 205 issue: 2 year: 2011 ident: 10.1016/j.jval.2020.01.004_bib16 article-title: Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information publication-title: Value Health doi: 10.1016/j.jval.2010.08.001 – volume: 33 start-page: 105 issue: 2 year: 2015 ident: 10.1016/j.jval.2020.01.004_bib32 article-title: A practical guide to value of information analysis publication-title: Pharmacoeconomics doi: 10.1007/s40273-014-0219-x – volume: 351 start-page: h5987 year: 2015 ident: 10.1016/j.jval.2020.01.004_bib45 article-title: How to estimate the health benefits of additional research and changing clinical practice publication-title: BMJ doi: 10.1136/bmj.h5987 – volume: 24 start-page: 1791 year: 2005 ident: 10.1016/j.jval.2020.01.004_bib26 article-title: The value of information and optimal clinical trial design publication-title: Stat Med doi: 10.1002/sim.2069 – volume: 2 start-page: 106 issue: 1 year: 2014 ident: 10.1016/j.jval.2020.01.004_bib12 article-title: When is a model good enough? Deriving the expected value of model improvement via specifying internal model discrepancies publication-title: SIAM/ASA Journal on Uncertainty Quantification doi: 10.1137/120889563 – year: 2006 ident: 10.1016/j.jval.2020.01.004_bib5 – volume: 3 start-page: 8 issue: 1 year: 2013 ident: 10.1016/j.jval.2020.01.004_bib6 article-title: Confounding and missing data in cost-effectiveness analysis: comparing different methods publication-title: Health Econ Rev doi: 10.1186/2191-1991-3-8 – volume: 37 start-page: 747 year: 2017 ident: 10.1016/j.jval.2020.01.004_bib31 article-title: A review of methods for analysis of the expected value of information publication-title: Med Decis Making doi: 10.1177/0272989X17697692 – volume: 70 start-page: 183 year: 2016 ident: 10.1016/j.jval.2020.01.004_bib46 article-title: Methods to place a value on additional evidence are illustrated using a case study of corticosteroids after traumatic brain injury publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2015.09.011 – year: 2020 ident: 10.1016/j.jval.2020.01.004_bib1 article-title: Value of information analysis for research decisions—an introduction: report 1 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force publication-title: Value Health doi: 10.1016/j.jval.2020.01.001 – volume: 61 start-page: 25 issue: 1 year: 2011 ident: 10.1016/j.jval.2020.01.004_bib17 article-title: Managing structural uncertainty in health economic decision models: a discrepancy approach publication-title: J R Stat Soc Ser C doi: 10.1111/j.1467-9876.2011.01014.x – volume: 38 start-page: 163 issue: 2 year: 2018 ident: 10.1016/j.jval.2020.01.004_bib38 article-title: Efficient Monte Carlo estimation of the expected value of sample information using moment matching publication-title: Med Decis Making doi: 10.1177/0272989X17738515 – volume: 31 start-page: E1 issue: 6 year: 2011 ident: 10.1016/j.jval.2020.01.004_bib43 article-title: Minimal modeling approaches to value of information analysis for health research publication-title: Med Decis Making doi: 10.1177/0272989X11412975 – volume: 34 start-page: 311 issue: 3 year: 2014 ident: 10.1016/j.jval.2020.01.004_bib29 article-title: Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach publication-title: Med Decis Making doi: 10.1177/0272989X13505910 – volume: 172 start-page: 119 year: 2009 ident: 10.1016/j.jval.2020.01.004_bib8 article-title: Models for potentially biased evidence in meta-analysis using empirically based priors publication-title: J R Stat Soc Ser A doi: 10.1111/j.1467-985X.2008.00548.x – ident: 10.1016/j.jval.2020.01.004_bib47 – ident: 10.1016/j.jval.2020.01.004_bib48 – volume: 36 start-page: 308 year: 2016 ident: 10.1016/j.jval.2020.01.004_bib36 article-title: An efficient estimator for the expected value of sample information publication-title: Med Decis Making doi: 10.1177/0272989X15583495 – volume: 28 start-page: 287 year: 2008 ident: 10.1016/j.jval.2020.01.004_bib39 article-title: The half-life of truth: what are appropriate time horizons for research decisions? publication-title: Med Decis Making doi: 10.1177/0272989X07312724 – volume: 37 start-page: 523 issue: 5 year: 2017 ident: 10.1016/j.jval.2020.01.004_bib41 article-title: Assessing the expected value of research studies in reducing uncertainty and improving implementation dynamics publication-title: Med Decis Making doi: 10.1177/0272989X16686766 – volume: 16 start-page: 1 issue: 46 year: 2012 ident: 10.1016/j.jval.2020.01.004_bib42 article-title: Informing a decision framework for when NICE should recommend the use of health technologies only in the context of an appropriately designed programme of evidence development publication-title: Health Technol Assess doi: 10.3310/hta16460 – volume: 38 start-page: 174 issue: 2 year: 2018 ident: 10.1016/j.jval.2020.01.004_bib37 article-title: A Gaussian approximation approach for value of information analysis publication-title: Med Decis Making doi: 10.1177/0272989X17715627 – volume: 36 start-page: 641 issue: 5 year: 2016 ident: 10.1016/j.jval.2020.01.004_bib44 article-title: Development and evaluation of an approach to using value of information analyses for real-time prioritization decisions within SWOG, a large cancer clinical trials cooperative group publication-title: Med Decis Making doi: 10.1177/0272989X16636847 – volume: 172 start-page: 383 issue: 2 year: 2009 ident: 10.1016/j.jval.2020.01.004_bib15 article-title: Accounting for uncertainty in health economic decision models by using model averaging publication-title: J R Stat Soc Ser A Stat Soc doi: 10.1111/j.1467-985X.2008.00573.x – volume: 29 start-page: 643 issue: 6 year: 2009 ident: 10.1016/j.jval.2020.01.004_bib22 article-title: Dimensions of design space: a decision-theoretic approach to optimal research design publication-title: Med Decis Making doi: 10.1177/0272989X09336142 – volume: 8 start-page: 1 issue: 38 year: 2004 ident: 10.1016/j.jval.2020.01.004_bib13 article-title: Clinical effectiveness and cost-effectiveness of clopidogrel and modified-release dipyridamole in the secondary prevention of occlusive vascular events: a systematic review and economic evaluation publication-title: Health Technology Assessment doi: 10.3310/hta8380 – volume: 18 start-page: 203 year: 2009 ident: 10.1016/j.jval.2020.01.004_bib40 article-title: Globally optimal trial design for local decision making publication-title: Health Econ doi: 10.1002/hec.1353 – volume: 31 start-page: 853 issue: 6 year: 2011 ident: 10.1016/j.jval.2020.01.004_bib24 article-title: Addressing adoption and research design decisions simultaneously: the role of value of sample information analysis publication-title: Med Decis Making doi: 10.1177/0272989X11399921 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.jval.2020.01.004_bib23 article-title: Value of information analysis informing adoption and research decisions in a portfolio of health care interventions publication-title: Med Decis Making Policy Pract – volume: 16 start-page: 195 year: 2007 ident: 10.1016/j.jval.2020.01.004_bib25 article-title: Expected value of information and decision making in HTA publication-title: Health Econ doi: 10.1002/hec.1161 – volume: 34 start-page: 327 issue: 3 year: 2014 ident: 10.1016/j.jval.2020.01.004_bib28 article-title: Strategies for efficient computation of the expected value of partial perfect information publication-title: Med Decis Making doi: 10.1177/0272989X13514774 – volume: 35 start-page: 564 issue: 5 year: 2015 ident: 10.1016/j.jval.2020.01.004_bib51 article-title: Value of information: we’ve got speed, what more do we need? publication-title: Med Decis Making doi: 10.1177/0272989X15579164 |
SSID | ssj0006325 |
Score | 2.5405388 |
SecondaryResourceType | review_article |
Snippet | The allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in the... AbstractThe allocation of healthcare resources among competing priorities requires an assessment of the expected costs and health effects of investing... The allocation of health care resources among competing priorities requires an assessment of the expected costs and health effects of investing resources in... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 277 |
SubjectTerms | Cost analysis Decision making ENBS EVPI EVPPI EVSI Health care Health care delivery Health care expenditures Internal Medicine Public Health Resource allocation Sampling study design Uncertainty Value value of information value of research |
Title | Value of Information Analytical Methods: Report 2 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S109830152030036X https://www.clinicalkey.es/playcontent/1-s2.0-S109830152030036X https://dx.doi.org/10.1016/j.jval.2020.01.004 https://www.ncbi.nlm.nih.gov/pubmed/32197720 https://www.proquest.com/docview/2435540629 https://www.proquest.com/docview/2381628163 https://pubmed.ncbi.nlm.nih.gov/PMC7373630 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBAvCMZXYVRGQnthoY6dODFvY6J0oI6KdahvlpPYomNqpqV92Av869wlTkbZGBIPeUh8pyS-y_kuvt8dIa9yBwOc2SBWGQsiB7LIJKJAVFoowZRNa3j0-FCOjqOPs3i2QfZbLAymVXrb39j02lr7KwM_m4Oz-XxwFDKVgnrGHPQU7PAM7DCiShHEN3vXWWMp6sarSBwgtQfONDleJyBNiBE5q0t3-mZt1yxOV53PP3Mof1uUhvfJPe9N0r3mgR-QDbvYInfGfr98i-xMmsrUF7t0egm0qnbpDp1c1qy-eEh-fjWnK0tLRz0-CeVF64ol9c9uOq47TVdvaeOxU4604DzSg6PJ5y_07-zVvKL45wubIdEPZVnQiQdmVXRqqu90WJ7n9hE5Hr6f7o8C35shyONULYM0B0_OcOFi6QphlHAFBD6hlaFLuLDCMOVykWXcSltEeSKlY0ViIJwpnGJRJh6TzUW5sE8JNUUeOZZxI20eiSLMsGqAKkxobIrhZ4-ErVB07guXY_-MU91mqJ1oFKRGQWoWahBkj7zueM6ash03UotW1roFpIIJ1bCq3MiVXMdlK28FKh3qimumr2hqj8Qd55qy__OO260i6u4mPEKXkUkOE_WyGwYjgTs_ZmHLFdDg9jCHQ_TIk0Zvu2kRsGZBiMXgddY0uiPAAuTrI4v5t7oQeSISIQV79p-v85zcxbMmo2-bbC7PV_YFuHjLrE9uvfkR9sntvYNPo8N-_UX_AublUi0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwEvCMZXxwAjob2wqI6dODFv00Rp2Voq1qG-WU5si25TMy3tw5741zknTkbZGBIPeYnvlMR3Od_Zd79D6H1uYYASE8QiI0FkQRYZd1UgItWCEWHSqjx6NOaDk-jLLJ5toIOmFsalVXrbX9v0ylr7Oz0_m72L-bx3HBKRgnrGFPQU7PDsHtqMXFPrDtrcHx4Oxq1B5qzqveroA8fga2fqNK9TECiEiZRU6J2-X9st69NN__PPNMrf1qX-Y_TIO5R4v37nJ2jDLLbQ_ZE_Mt9Cu5ManPpqD0-va63KPbyLJ9ew1VdP0c_v6nxlcGGxL1FyIsMVaEm1341HVbPp8iOunXZMHS34j3h4PPn6Df-dvZyX2G1-uX5I-HNRaDzxtVklnqryDPeLy9w8Qyf9T9ODQeDbMwR5nIplkObgzCnKbMytZkowqyH2CQ0PbUKZYYoIm7Mso4YbHeUJ55boREFEo60gUcaeo86iWJiXCCudR5ZkVHGTR0yHmQMOEFqFyqQuAu2isBGKzD12uWuhcS6bJLVT6QQpnSAlCSUIsos-tDwXNXLHndSskbVsalLBikpYWO7kSm7jMqU3BKUMZUklkTeUtYvilnNN3__5xJ1GEWX7EBo5r5FwChP1rh0GO-EOf9TCFCugcSfEFC7WRS9qvW2nhcGyBVEWgc9Z0-iWwGGQr48s5j8qLPKEJYwzsv2fn_MWPRhMR0fyaDg-fIUeupE6wW8HdZaXK_MaPL5l9sb_0b8AQANT0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Value+of+Information+Analytical+Methods%3A+Report+2+of+the+ISPOR+Value+of+Information+Analysis+Emerging+Good+Practices+Task+Force&rft.jtitle=Value+in+health&rft.au=Rothery%2C+Claire&rft.au=Strong%2C+Mark&rft.au=Koffijberg%2C+Hendrik+Erik&rft.au=Basu%2C+Anirban&rft.date=2020-03-01&rft.issn=1524-4733&rft.eissn=1524-4733&rft.volume=23&rft.issue=3&rft.spage=277&rft_id=info:doi/10.1016%2Fj.jval.2020.01.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10983015%2FS1098301520X00040%2Fcov150h.gif |