O-GlcNAcylation regulates EZH2 protein stability and function

O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 4; pp. 1355 - 1360
Main Authors Chu, Chi-Shuen, Lo, Pei-Wen, Yeh, Yi-Hsien, Hsu, Pang-Hung, Peng, Shih-Huan, Teng, Yu-Ching, Kang, Ming-Lun, Wong, Chi-Huey, Juan, Li-Jung
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 28.01.2014
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1323226111

Cover

Abstract O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT–EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.
AbstractList O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT–EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.
The present study identifies a cross-talk of two important posttranslational modifications, revealing that enhancer of zeste homolog 2 (EZH2) O-GlcNAcylation (GlcNac, N -acetylglucosamine) at serine 75 is required for EZH2 protein stability and therefore facilitates the histone H3 trimethylation at K27 to form H3K27me3. The finding is significant because both O-linked GlcNAc transferase-mediated O-GlcNAcylation and EZH2-mediated H3K27me3 formation play a pivotal role in development, and their up-regulation is believed to participate in tumor malignancy. The identification of O-linked GlcNAc transferase association with the polycomb repressive complex 2 (PRC2) further provides a new approach to regulate PRC2 function. O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT–EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation. [PUBLICATION ABSTRACT]
Author Teng, Yu-Ching
Peng, Shih-Huan
Kang, Ming-Lun
Hsu, Pang-Hung
Wong, Chi-Huey
Juan, Li-Jung
Yeh, Yi-Hsien
Chu, Chi-Shuen
Lo, Pei-Wen
Author_xml – sequence: 1
  givenname: Chi-Shuen
  surname: Chu
  fullname: Chu, Chi-Shuen
– sequence: 2
  givenname: Pei-Wen
  surname: Lo
  fullname: Lo, Pei-Wen
– sequence: 3
  givenname: Yi-Hsien
  surname: Yeh
  fullname: Yeh, Yi-Hsien
– sequence: 4
  givenname: Pang-Hung
  surname: Hsu
  fullname: Hsu, Pang-Hung
– sequence: 5
  givenname: Shih-Huan
  surname: Peng
  fullname: Peng, Shih-Huan
– sequence: 6
  givenname: Yu-Ching
  surname: Teng
  fullname: Teng, Yu-Ching
– sequence: 7
  givenname: Ming-Lun
  surname: Kang
  fullname: Kang, Ming-Lun
– sequence: 8
  givenname: Chi-Huey
  surname: Wong
  fullname: Wong, Chi-Huey
– sequence: 9
  givenname: Li-Jung
  surname: Juan
  fullname: Juan, Li-Jung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24474760$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEQhS1URNPAmROwEhcu287YXnt9AKmqSotU0QP0wsXyOk5wtLFTexcp_x6naVqohDjZ0nzz_PzeETkIMThCXiMcI0h2sg4mHyOjjFKBiM_IBEFhLbiCAzIBoLJuOeWH5CjnJQCopoUX5JByLrkUMCEfr-uL3n49tZveDD6GKrnFWK4uV-c_Lmm1TnFwPlR5MJ3v_bCpTJhV8zHYLf2SPJ-bPrtX9-eU3Hw-_352WV9dX3w5O72qbdOqoRa27ShtEEE407bAmHSO0WZGOyqVMsiEtNIIJi1tQJmuE0YpRRs3EzjvBJuSTzvd9dit3My6MCTT63XyK5M2Ohqv_54E_1Mv4i_NVHmzaYrAh3uBFG9Hlwe98tm6vjfBxTFrLKZKcFK1_0e5ohIZL6FPyfsn6DKOKZQkthRXCkQrC_X2T_MPrvclFKDZATbFnJOba-uHuzbKX3yvEfS2bL0tWz-WXfZOnuztpf-9sbeyHTzQiJoX7C6nNztgmYeYHq0yKRRwVebvdvO5idosks_65hsFFADIVIuU_QbRdMaS
CitedBy_id crossref_primary_10_1146_annurev_biochem_060614_034420
crossref_primary_10_1016_j_ebiom_2024_104972
crossref_primary_10_1111_jcmm_18191
crossref_primary_10_1210_endocr_bqad023
crossref_primary_10_2478_s11658_014_0204_6
crossref_primary_10_1002_stem_3361
crossref_primary_10_1096_fj_202101520R
crossref_primary_10_1016_j_exphem_2021_07_003
crossref_primary_10_1101_lm_049023_118
crossref_primary_10_3390_molecules29245817
crossref_primary_10_1016_j_ajpath_2021_01_013
crossref_primary_10_1038_s41401_023_01218_z
crossref_primary_10_1016_j_bbrc_2018_04_053
crossref_primary_10_1093_glycob_cwv076
crossref_primary_10_1016_j_celrep_2018_11_042
crossref_primary_10_1038_ncomms13956
crossref_primary_10_1038_s41419_021_04022_x
crossref_primary_10_1016_j_ymgme_2015_01_007
crossref_primary_10_1016_j_ebiom_2020_102678
crossref_primary_10_1016_j_lfs_2021_119226
crossref_primary_10_1016_j_semcancer_2022_07_009
crossref_primary_10_1073_pnas_1900065116
crossref_primary_10_1016_j_jbc_2021_100439
crossref_primary_10_1074_jbc_M116_749663
crossref_primary_10_1074_jbc_REV120_014915
crossref_primary_10_1016_j_molmet_2018_02_010
crossref_primary_10_1038_onc_2017_223
crossref_primary_10_1089_aid_2017_0180
crossref_primary_10_4155_fmc_14_123
crossref_primary_10_1371_journal_pone_0165766
crossref_primary_10_3389_fgene_2014_00256
crossref_primary_10_1186_s13148_020_00862_0
crossref_primary_10_1016_j_bbrc_2016_02_037
crossref_primary_10_1074_jbc_RA120_015995
crossref_primary_10_1111_jcmm_14038
crossref_primary_10_1161_CIRCRESAHA_116_303936
crossref_primary_10_1371_journal_pone_0198351
crossref_primary_10_1007_s00018_022_04396_x
crossref_primary_10_1038_s41598_024_58176_7
crossref_primary_10_3389_fgene_2020_605263
crossref_primary_10_1038_s41375_018_0083_3
crossref_primary_10_1016_j_cmet_2020_12_015
crossref_primary_10_1021_jacs_8b11005
crossref_primary_10_1016_j_biopsych_2017_10_005
crossref_primary_10_1016_j_mam_2016_05_003
crossref_primary_10_1074_jbc_RA119_010312
crossref_primary_10_1371_journal_pgen_1010159
crossref_primary_10_3390_cancers14092121
crossref_primary_10_5582_ddt_2021_01100
crossref_primary_10_1016_j_bbrc_2015_10_030
crossref_primary_10_1038_labinvest_2015_104
crossref_primary_10_1016_j_tibs_2020_08_004
crossref_primary_10_1111_imm_13245
crossref_primary_10_1038_onc_2016_300
crossref_primary_10_1186_s13059_025_03537_2
crossref_primary_10_3389_fphys_2021_682052
crossref_primary_10_1016_j_bone_2021_115993
crossref_primary_10_1042_BST20160388
crossref_primary_10_3390_molecules23081967
crossref_primary_10_1038_s41419_021_03734_4
crossref_primary_10_1093_nar_gkv238
crossref_primary_10_1016_j_bbagen_2022_130250
crossref_primary_10_1007_s10863_018_9754_z
crossref_primary_10_1016_j_bbadis_2018_10_016
crossref_primary_10_1073_pnas_1801850115
crossref_primary_10_26508_lsa_202201385
crossref_primary_10_3389_fonc_2021_678447
crossref_primary_10_31887_DCNS_2016_18_4_tbale
crossref_primary_10_1016_j_jbc_2022_102115
crossref_primary_10_7554_eLife_83979
crossref_primary_10_1007_s12672_021_00450_5
crossref_primary_10_1093_nar_gkz1238
crossref_primary_10_1038_s41598_023_46923_1
crossref_primary_10_1158_1541_7786_MCR_20_0926
crossref_primary_10_1182_blood_2023019782
crossref_primary_10_3389_fonc_2022_960312
crossref_primary_10_1186_s13072_020_00369_1
crossref_primary_10_1016_j_yexcr_2023_113876
crossref_primary_10_1074_jbc_M114_579474
crossref_primary_10_1515_mr_2021_0015
crossref_primary_10_1016_j_jbc_2024_107150
crossref_primary_10_1038_s41598_019_48991_8
crossref_primary_10_1242_dev_201370
crossref_primary_10_3389_fendo_2014_00145
crossref_primary_10_1126_scitranslmed_aaz5387
crossref_primary_10_3389_fendo_2018_00578
crossref_primary_10_1074_jbc_RA118_002580
crossref_primary_10_1158_1541_7786_MCR_18_1025
crossref_primary_10_1038_s41422_021_00606_6
crossref_primary_10_1111_jcmm_16792
crossref_primary_10_1007_s13238_017_0416_4
crossref_primary_10_1073_pnas_1600509113
crossref_primary_10_3389_fendo_2014_00155
crossref_primary_10_1074_jbc_M115_704783
crossref_primary_10_1002_biof_2131
crossref_primary_10_1007_s13238_018_0597_5
crossref_primary_10_1039_D0CS01275K
crossref_primary_10_3389_fphar_2022_935536
crossref_primary_10_1186_s13072_023_00523_5
crossref_primary_10_1002_1873_3468_13159
crossref_primary_10_1038_s41418_020_00615_9
crossref_primary_10_1038_onc_2017_311
crossref_primary_10_1038_cdd_2016_95
crossref_primary_10_1016_j_yfrne_2015_09_001
crossref_primary_10_3390_cancers13071666
crossref_primary_10_1093_glycob_cwy027
crossref_primary_10_1016_j_neuint_2021_105099
crossref_primary_10_1016_j_jbc_2024_107709
crossref_primary_10_1021_acs_analchem_7b04531
crossref_primary_10_1155_2021_4907167
crossref_primary_10_1038_s41467_018_04992_1
crossref_primary_10_1002_mco2_421
crossref_primary_10_1101_gr_193748_115
crossref_primary_10_2217_epi_15_89
crossref_primary_10_1016_j_molcel_2018_02_027
crossref_primary_10_1074_jbc_AW119_003226
crossref_primary_10_1089_ars_2017_7237
crossref_primary_10_3390_cancers12102792
crossref_primary_10_1038_s41388_018_0533_4
crossref_primary_10_3389_fimmu_2022_928436
crossref_primary_10_1016_j_molcel_2022_03_004
crossref_primary_10_1074_jbc_RA119_008670
crossref_primary_10_3390_cancers12113168
crossref_primary_10_1098_rsob_150234
crossref_primary_10_1038_s41388_018_0435_5
crossref_primary_10_3389_fimmu_2022_852115
crossref_primary_10_18632_genesandcancer_13
crossref_primary_10_1042_BST20241119
crossref_primary_10_1038_s41388_023_02751_1
crossref_primary_10_15252_embj_201798115
crossref_primary_10_1074_jbc_R114_585984
crossref_primary_10_3389_fimmu_2023_1209970
crossref_primary_10_3389_fonc_2020_585288
crossref_primary_10_1016_j_mam_2016_09_004
crossref_primary_10_1021_acs_chemrev_4c00417
crossref_primary_10_3389_fendo_2019_00117
crossref_primary_10_1016_j_tig_2014_07_005
crossref_primary_10_1042_BST20200769
crossref_primary_10_1021_acs_chemrev_1c01032
crossref_primary_10_1007_s10863_018_9751_2
crossref_primary_10_1016_j_cellimm_2018_05_010
crossref_primary_10_1007_s13238_021_00846_7
crossref_primary_10_1111_febs_13729
crossref_primary_10_1158_1078_0432_CCR_16_2020
crossref_primary_10_1158_1541_7786_MCR_15_0263
crossref_primary_10_1016_j_celrep_2019_10_011
crossref_primary_10_1111_jcmm_14043
crossref_primary_10_1016_j_molcel_2020_10_036
crossref_primary_10_1093_carcin_bgy097
crossref_primary_10_1074_jbc_RA118_005993
crossref_primary_10_1186_s13578_020_00505_0
crossref_primary_10_3390_antiox13060656
crossref_primary_10_1038_s41594_019_0325_8
crossref_primary_10_1021_acschembio_5b00004
crossref_primary_10_1186_s13059_020_02150_9
crossref_primary_10_1016_j_cbpa_2016_06_005
crossref_primary_10_1016_j_celrep_2019_10_004
crossref_primary_10_1002_mnfr_202100197
crossref_primary_10_1007_s11434_015_0816_x
crossref_primary_10_1152_physrev_00043_2019
crossref_primary_10_3390_ijms21010173
crossref_primary_10_1016_j_bbrc_2014_06_068
crossref_primary_10_3389_fendo_2018_00415
crossref_primary_10_3389_fendo_2014_00193
crossref_primary_10_1186_s12929_020_00648_9
crossref_primary_10_1371_journal_pone_0118003
crossref_primary_10_1126_sciadv_abe2470
crossref_primary_10_1007_s44231_023_00048_1
crossref_primary_10_1007_s00412_015_0513_1
crossref_primary_10_1038_s41417_022_00464_3
crossref_primary_10_1038_nrm_2017_22
crossref_primary_10_1038_onc_2016_485
crossref_primary_10_1038_s41419_021_04381_5
crossref_primary_10_4143_crt_2014_46_3_209
crossref_primary_10_1007_s12013_024_01655_5
Cites_doi 10.1073/pnas.1009023107
10.1074/jbc.M111.240515
10.1126/science.1169727
10.1016/S0021-9258(17)32170-1
10.1038/ncb1470
10.1074/jbc.M111.315804
10.1016/S0092-8674(03)00974-7
10.1038/nrc3114
10.1073/pnas.1019289108
10.1101/sqb.2010.75.020
10.1038/nprot.2007.422
10.1016/j.cub.2005.04.051
10.1074/jbc.M113.460386
10.1007/s11033-012-2246-z
10.1016/j.bbagrm.2010.02.005
10.1016/S0092-8674(02)00810-3
10.1038/nature11742
10.1126/scisignal.2000526
10.1038/cr.2011.10
10.1016/j.gde.2004.02.001
10.1146/annurev-nutr-071812-161240
10.1073/pnas.111099998
10.1073/pnas.0911857107
10.1093/carcin/bgs231
10.1038/nchembio.1084
10.1073/pnas.1303800110
10.1371/journal.pgen.1003698
10.1016/j.stem.2012.03.001
10.1126/science.1076997
10.1074/jbc.M306449200
10.1158/0008-5472.CAN-08-3615
10.1101/gad.381706
10.1038/emboj.2012.357
10.1101/gad.1035902
10.7150/ijbs.8.59
10.1016/S0021-9258(19)57510-X
10.1016/S0092-8674(02)00976-5
10.1016/S0021-9258(19)39838-2
10.1074/jbc.272.14.9308
10.1158/0008-5472.CAN-12-0636
10.1016/j.cbpa.2012.10.021
10.1101/gad.377406
10.1016/S0079-6603(03)01004-3
10.1016/S0092-8674(02)00975-3
10.1038/bjc.2011.551
10.1007/s10549-011-1396-3
10.1016/S0021-9258(17)43295-9
10.1021/ja982312w
10.1146/annurev-biochem-060608-102511
10.1074/jbc.M209384200
10.3389/fendo.2013.00099
10.1073/pnas.0904638106
10.1093/emboj/cdg542
10.1038/nrm3334
10.1038/nature10656
10.1074/jbc.M111.284885
10.1016/j.molcel.2012.12.019
10.1074/jbc.M300036200
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 28, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 28, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1323226111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
CrossRef
MEDLINE


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate OGT regulates EZH2 stability
EISSN 1091-6490
EndPage 1360
ExternalDocumentID PMC3910655
3207865511
24474760
10_1073_pnas_1323226111
111_4_1355
23769049
US201600139812
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c589t-6c8b2251106ea880337ee325d2b2799a1367c7a637c2509abb6a99925ed61fb63
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:29:49 EDT 2025
Thu Sep 04 22:33:41 EDT 2025
Thu Sep 04 17:51:13 EDT 2025
Mon Jun 30 08:25:57 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 01:52:58 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Wed Nov 11 00:30:31 EST 2020
Thu May 29 08:40:44 EDT 2025
Wed Dec 27 19:04:21 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589t-6c8b2251106ea880337ee325d2b2799a1367c7a637c2509abb6a99925ed61fb63
Notes http://dx.doi.org/10.1073/pnas.1323226111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: C.-S.C., P.-W.L., C.-H.W., and L.-J.J. designed research; C.-S.C., P.-W.L., Y.-H.Y., P.-H.H., S.-H.P., Y.-C.T., and M.-L.K. performed research; C.-S.C., P.-W.L., P.-H.H., C.-H.W., and L.-J.J. analyzed data; and C.-S.C., C.-H.W., and L.-J.J. wrote the paper.
Contributed by Chi-Huey Wong, December 16, 2013 (sent for review September 25, 2013)
1C.-S.C. and P.-W.L. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/111/4/1355.full.pdf
PMID 24474760
PQID 1494990687
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1323226111
crossref_citationtrail_10_1073_pnas_1323226111
proquest_miscellaneous_1803091798
pubmed_primary_24474760
jstor_primary_23769049
proquest_journals_1494990687
proquest_miscellaneous_1492713432
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3910655
pnas_primary_111_4_1355
fao_agris_US201600139812
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-28
PublicationDateYYYYMMDD 2014-01-28
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
Miyamoto Y (e_1_3_3_46_2) 2010; 36
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
22791816 - Carcinogenesis. 2012 Oct;33(10):1930-9
16964247 - Nat Cell Biol. 2006 Oct;8(10):1074-83
16618801 - Genes Dev. 2006 May 1;20(9):1123-36
21606357 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9490-5
18007630 - Nat Protoc. 2007;2(11):2930-44
21045127 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19915-20
22121020 - Nature. 2011 Dec 22;480(7378):557-60
16618800 - Genes Dev. 2006 May 1;20(9):1110-22
21465172 - Breast Cancer Res Treat. 2012 Jan;131(1):65-73
21896475 - J Biol Chem. 2011 Oct 28;286(43):37483-95
12882516 - Prog Nucleic Acid Res Mol Biol. 2003;73:107-36
24009517 - PLoS Genet. 2013 Aug;9(8):e1003698
20202486 - Biochim Biophys Acta. 2010 May-Jun;1799(5-6):353-64
23964270 - Front Endocrinol (Lausanne). 2013 Aug 12;4:99
8034696 - J Biol Chem. 1994 Jul 29;269(30):19321-30
19478141 - Science. 2009 Jul 3;325(5936):93-6
15916951 - Curr Biol. 2005 May 24;15(10):942-7
14597631 - J Biol Chem. 2004 Jan 30;279(5):3563-72
23620515 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7922-7
9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15
23353889 - EMBO J. 2013 Mar 6;32(5):645-55
23079716 - Mol Biol Rep. 2013 Feb;40(2):1905-10
12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905
23023262 - Nat Chem Biol. 2012 Nov;8(11):890-6
20368426 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7413-8
23352454 - Mol Cell. 2013 Feb 21;49(4):645-56
23729667 - J Biol Chem. 2013 Jul 19;288(29):20776-84
21209387 - Cold Spring Harb Symp Quant Biol. 2010;75:43-9
2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8
14675536 - Cell. 2003 Dec 12;115(6):715-25
20068230 - Sci Signal. 2010;3(104):ra2
22187039 - Br J Cancer. 2012 Jan 17;106(2):243-7
14532106 - EMBO J. 2003 Oct 15;22(20):5323-35
12150998 - Cell. 2002 Jul 12;110(1):69-80
23146438 - Curr Opin Chem Biol. 2012 Dec;16(5-6):488-97
6421821 - J Biol Chem. 1984 Mar 10;259(5):3308-17
3086323 - J Biol Chem. 1986 Jun 15;261(17):8049-57
23642195 - Annu Rev Nutr. 2013;33:205-29
12408864 - Cell. 2002 Oct 18;111(2):197-208
23222540 - Nature. 2013 Jan 24;493(7433):561-4
19666537 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13427-32
21221131 - Cell Res. 2011 Apr;21(4):642-53
22751464 - Cancer Res. 2012 Sep 1;72(17):4574-86
21391816 - Annu Rev Biochem. 2011;80:825-58
12351676 - Science. 2002 Nov 1;298(5595):1039-43
12724313 - J Biol Chem. 2003 Jul 4;278(27):24608-16
20372800 - Int J Oncol. 2010 May;36(5):1253-60
21659531 - J Biol Chem. 2011 Aug 12;286(32):28511-9
22211105 - Int J Biol Sci. 2012;8(1):59-65
19369267 - Cancer Res. 2009 Apr 15;69(8):3634-41
22522719 - Nat Rev Mol Cell Biol. 2012 May;13(5):312-21
22608532 - Cell Stem Cell. 2012 Jul 6;11(1):62-74
11371615 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6611-6
15196462 - Curr Opin Genet Dev. 2004 Apr;14(2):155-64
22371497 - J Biol Chem. 2012 Apr 6;287(15):12195-203
21850036 - Nat Rev Cancer. 2011 Sep;11(9):678-84
12435728 - J Biol Chem. 2003 Feb 14;278(7):5399-409
12408863 - Cell. 2002 Oct 18;111(2):185-96
References_xml – ident: e_1_3_3_17_2
  doi: 10.1073/pnas.1009023107
– ident: e_1_3_3_53_2
  doi: 10.1074/jbc.M111.240515
– ident: e_1_3_3_34_2
  doi: 10.1126/science.1169727
– ident: e_1_3_3_5_2
  doi: 10.1016/S0021-9258(17)32170-1
– ident: e_1_3_3_11_2
  doi: 10.1038/ncb1470
– ident: e_1_3_3_20_2
  doi: 10.1074/jbc.M111.315804
– ident: e_1_3_3_51_2
  doi: 10.1016/S0092-8674(03)00974-7
– ident: e_1_3_3_15_2
  doi: 10.1038/nrc3114
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.1019289108
– ident: e_1_3_3_38_2
  doi: 10.1101/sqb.2010.75.020
– ident: e_1_3_3_42_2
  doi: 10.1038/nprot.2007.422
– ident: e_1_3_3_41_2
  doi: 10.1016/j.cub.2005.04.051
– ident: e_1_3_3_25_2
  doi: 10.1074/jbc.M113.460386
– ident: e_1_3_3_49_2
  doi: 10.1007/s11033-012-2246-z
– ident: e_1_3_3_16_2
  doi: 10.1016/j.bbagrm.2010.02.005
– ident: e_1_3_3_21_2
  doi: 10.1016/S0092-8674(02)00810-3
– ident: e_1_3_3_22_2
  doi: 10.1038/nature11742
– volume: 36
  start-page: 1253
  year: 2010
  ident: e_1_3_3_46_2
  article-title: Identification of UNC5A as a novel transcriptional target of tumor suppressor p53 and a regulator of apoptosis
  publication-title: Int J Oncol
– ident: e_1_3_3_54_2
  doi: 10.1126/scisignal.2000526
– ident: e_1_3_3_59_2
  doi: 10.1038/cr.2011.10
– ident: e_1_3_3_30_2
  doi: 10.1016/j.gde.2004.02.001
– ident: e_1_3_3_13_2
  doi: 10.1146/annurev-nutr-071812-161240
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.111099998
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.0911857107
– ident: e_1_3_3_47_2
  doi: 10.1093/carcin/bgs231
– ident: e_1_3_3_33_2
  doi: 10.1038/nchembio.1084
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.1303800110
– ident: e_1_3_3_57_2
  doi: 10.1371/journal.pgen.1003698
– ident: e_1_3_3_12_2
  doi: 10.1016/j.stem.2012.03.001
– ident: e_1_3_3_26_2
  doi: 10.1126/science.1076997
– ident: e_1_3_3_10_2
  doi: 10.1074/jbc.M306449200
– ident: e_1_3_3_48_2
  doi: 10.1158/0008-5472.CAN-08-3615
– ident: e_1_3_3_39_2
  doi: 10.1101/gad.381706
– ident: e_1_3_3_24_2
  doi: 10.1038/emboj.2012.357
– ident: e_1_3_3_27_2
  doi: 10.1101/gad.1035902
– ident: e_1_3_3_44_2
  doi: 10.7150/ijbs.8.59
– ident: e_1_3_3_2_2
  doi: 10.1016/S0021-9258(19)57510-X
– ident: e_1_3_3_29_2
  doi: 10.1016/S0092-8674(02)00976-5
– ident: e_1_3_3_3_2
  doi: 10.1016/S0021-9258(19)39838-2
– ident: e_1_3_3_4_2
  doi: 10.1074/jbc.272.14.9308
– ident: e_1_3_3_50_2
  doi: 10.1158/0008-5472.CAN-12-0636
– ident: e_1_3_3_6_2
  doi: 10.1016/j.cbpa.2012.10.021
– ident: e_1_3_3_58_2
  doi: 10.1101/gad.377406
– ident: e_1_3_3_52_2
  doi: 10.1016/S0079-6603(03)01004-3
– ident: e_1_3_3_28_2
  doi: 10.1016/S0092-8674(02)00975-3
– ident: e_1_3_3_31_2
  doi: 10.1038/bjc.2011.551
– ident: e_1_3_3_45_2
  doi: 10.1007/s10549-011-1396-3
– ident: e_1_3_3_1_2
  doi: 10.1016/S0021-9258(17)43295-9
– ident: e_1_3_3_7_2
  doi: 10.1021/ja982312w
– ident: e_1_3_3_8_2
  doi: 10.1146/annurev-biochem-060608-102511
– ident: e_1_3_3_56_2
  doi: 10.1074/jbc.M209384200
– ident: e_1_3_3_43_2
  doi: 10.3389/fendo.2013.00099
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.0904638106
– ident: e_1_3_3_40_2
  doi: 10.1093/emboj/cdg542
– ident: e_1_3_3_14_2
  doi: 10.1038/nrm3334
– ident: e_1_3_3_18_2
  doi: 10.1038/nature10656
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.M111.284885
– ident: e_1_3_3_23_2
  doi: 10.1016/j.molcel.2012.12.019
– ident: e_1_3_3_55_2
  doi: 10.1074/jbc.M300036200
– reference: 16618800 - Genes Dev. 2006 May 1;20(9):1110-22
– reference: 24009517 - PLoS Genet. 2013 Aug;9(8):e1003698
– reference: 23729667 - J Biol Chem. 2013 Jul 19;288(29):20776-84
– reference: 21896475 - J Biol Chem. 2011 Oct 28;286(43):37483-95
– reference: 23353889 - EMBO J. 2013 Mar 6;32(5):645-55
– reference: 12408864 - Cell. 2002 Oct 18;111(2):197-208
– reference: 21850036 - Nat Rev Cancer. 2011 Sep;11(9):678-84
– reference: 21045127 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19915-20
– reference: 23352454 - Mol Cell. 2013 Feb 21;49(4):645-56
– reference: 22608532 - Cell Stem Cell. 2012 Jul 6;11(1):62-74
– reference: 14675536 - Cell. 2003 Dec 12;115(6):715-25
– reference: 22791816 - Carcinogenesis. 2012 Oct;33(10):1930-9
– reference: 19666537 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13427-32
– reference: 21659531 - J Biol Chem. 2011 Aug 12;286(32):28511-9
– reference: 20372800 - Int J Oncol. 2010 May;36(5):1253-60
– reference: 12435728 - J Biol Chem. 2003 Feb 14;278(7):5399-409
– reference: 20368426 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7413-8
– reference: 18007630 - Nat Protoc. 2007;2(11):2930-44
– reference: 12724313 - J Biol Chem. 2003 Jul 4;278(27):24608-16
– reference: 23023262 - Nat Chem Biol. 2012 Nov;8(11):890-6
– reference: 3086323 - J Biol Chem. 1986 Jun 15;261(17):8049-57
– reference: 21391816 - Annu Rev Biochem. 2011;80:825-58
– reference: 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905
– reference: 20068230 - Sci Signal. 2010;3(104):ra2
– reference: 12408863 - Cell. 2002 Oct 18;111(2):185-96
– reference: 23642195 - Annu Rev Nutr. 2013;33:205-29
– reference: 9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15
– reference: 14532106 - EMBO J. 2003 Oct 15;22(20):5323-35
– reference: 2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8
– reference: 21221131 - Cell Res. 2011 Apr;21(4):642-53
– reference: 23964270 - Front Endocrinol (Lausanne). 2013 Aug 12;4:99
– reference: 15196462 - Curr Opin Genet Dev. 2004 Apr;14(2):155-64
– reference: 16964247 - Nat Cell Biol. 2006 Oct;8(10):1074-83
– reference: 22187039 - Br J Cancer. 2012 Jan 17;106(2):243-7
– reference: 22522719 - Nat Rev Mol Cell Biol. 2012 May;13(5):312-21
– reference: 14597631 - J Biol Chem. 2004 Jan 30;279(5):3563-72
– reference: 21209387 - Cold Spring Harb Symp Quant Biol. 2010;75:43-9
– reference: 8034696 - J Biol Chem. 1994 Jul 29;269(30):19321-30
– reference: 15916951 - Curr Biol. 2005 May 24;15(10):942-7
– reference: 23222540 - Nature. 2013 Jan 24;493(7433):561-4
– reference: 22211105 - Int J Biol Sci. 2012;8(1):59-65
– reference: 23079716 - Mol Biol Rep. 2013 Feb;40(2):1905-10
– reference: 12150998 - Cell. 2002 Jul 12;110(1):69-80
– reference: 20202486 - Biochim Biophys Acta. 2010 May-Jun;1799(5-6):353-64
– reference: 23146438 - Curr Opin Chem Biol. 2012 Dec;16(5-6):488-97
– reference: 12351676 - Science. 2002 Nov 1;298(5595):1039-43
– reference: 21606357 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9490-5
– reference: 21465172 - Breast Cancer Res Treat. 2012 Jan;131(1):65-73
– reference: 23620515 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7922-7
– reference: 6421821 - J Biol Chem. 1984 Mar 10;259(5):3308-17
– reference: 19478141 - Science. 2009 Jul 3;325(5936):93-6
– reference: 12882516 - Prog Nucleic Acid Res Mol Biol. 2003;73:107-36
– reference: 22751464 - Cancer Res. 2012 Sep 1;72(17):4574-86
– reference: 22121020 - Nature. 2011 Dec 22;480(7378):557-60
– reference: 19369267 - Cancer Res. 2009 Apr 15;69(8):3634-41
– reference: 16618801 - Genes Dev. 2006 May 1;20(9):1123-36
– reference: 22371497 - J Biol Chem. 2012 Apr 6;287(15):12195-203
– reference: 11371615 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6611-6
SSID ssj0009580
Score 2.531557
Snippet O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain...
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain...
The present study identifies a cross-talk of two important posttranslational modifications, revealing that enhancer of zeste homolog 2 (EZH2) O-GlcNAcylation...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1355
SubjectTerms Acetylglucosamine - metabolism
Biological Sciences
Breast cancer
Cell lines
Chromatin
DNA Methylation
Down-Regulation
Enhancer of Zeste Homolog 2 Protein
Epigenetics
Gene expression regulation
Gene Knockdown Techniques
Genes, Tumor Suppressor
Histones
Humans
Mass spectroscopy
Methylation
methyltransferases
microarray technology
mutants
Mutation
N-Acetylglucosaminyltransferases - genetics
N-Acetylglucosaminyltransferases - metabolism
neoplasms
Polycomb Repressive Complex 2 - metabolism
post-translational modification
Protein Stability
Proteins
serine
Small interfering RNA
Stem cells
transcription (genetics)
tumor suppressor genes
Tumors
Title O-GlcNAcylation regulates EZH2 protein stability and function
URI https://www.jstor.org/stable/23769049
http://www.pnas.org/content/111/4/1355.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24474760
https://www.proquest.com/docview/1494990687
https://www.proquest.com/docview/1492713432
https://www.proquest.com/docview/1803091798
https://pubmed.ncbi.nlm.nih.gov/PMC3910655
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry (Selected full-text)
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250330
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250330
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYYKAgITRUubROYieP1dQRodJNWis6XiLHddZIUzrW5gH-Jv5Izh9J2lIm4CWqbNd1fZf7sO9-h9DbGQulFFmGu5nPsbppwhGTAvssiwLBezOqz3Q_j2g88T9Ng2mr9XMtaqlcpR3xY2deyf9QFdqAripL9h8oW08KDfAZ6AtPoDA8_4rG5_jjjRj1xXcT0Na-M4Xl5bI9-BqTtsZgyAt1XKBDYA3UktJkNTWsWXpRq7FlFTQwqk4J-03OiRUEyzZuX4yaCsan89Lc3Of4cl42uWXDhYkAzvGXpvFK6oOcqxzHy7xpjpelMWiLaxyXVp3a04ieimCpsrvXwLx3rm1dDBNQjb5Jnu5II3nBcMHUN7VDa9FsBXG-fvCgBW3PM-i-v2kAEFmqbHHBlx1wtEFc0WqSDazt0XlyNhkOk_FgOt7sNbqdgOlEwZrsvbv9hlWNMnWXbwu27KEHhFFKqrOhGuI5NAlP9s9VQFLM-7C1nA0baC_jiyoYViHswtBd3s520O6aFTR-jB5Z98XtG148QC1ZPEEH1d67JxbF_P1TtM2cbs2crmJO1zKnWzOnC8zpVsz5DE3OBuPTGNtaHVgEYbTCVIQpUe5ql0oOOsHzmJQeCWYkJSyKuEIGFIxTjwkwuiOeppSDb0ICOaO9LKXeIdovFoU8Qi6nKQsFIVmUhn4QiTTzWCZkj0vOQGHMHNSpdi8RFshe1VO5SXRABfMStYdJs90OOqm_cGswXP489AjIkfBr0LDJ5JIo_EXlJIEZ7KBDTaN6ChVPFoGD7aDnepZ6anCp_UQxqIOOKzomVmzAj2k8qC4NmYPe1N0g1NVNHS_kotRjiEry9sg9Y0J1O6rwBtUCNGs0S_N95jPadRDbYJp6gAKV3-wp8rkGl_fAfwDGf3H_0l-ih83bf4z2V3elfAXW-Sp9rV-KXziD4Rg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=O-GlcNAcylation+regulates+EZH2+protein+stability+and+function&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chu%2C+Chi-Shuen&rft.au=Lo%2C+Pei-Wen&rft.au=Yeh%2C+Yi-Hsien&rft.au=Hsu%2C+Pang-Hung&rft.date=2014-01-28&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=4&rft.spage=1355&rft_id=info:doi/10.1073%2Fpnas.1323226111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3207865511
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif