O-GlcNAcylation regulates EZH2 protein stability and function
O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such a...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 4; pp. 1355 - 1360 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
28.01.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1323226111 |
Cover
Abstract | O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT–EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation. |
---|---|
AbstractList | O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT–EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation. O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation. The present study identifies a cross-talk of two important posttranslational modifications, revealing that enhancer of zeste homolog 2 (EZH2) O-GlcNAcylation (GlcNac, N -acetylglucosamine) at serine 75 is required for EZH2 protein stability and therefore facilitates the histone H3 trimethylation at K27 to form H3K27me3. The finding is significant because both O-linked GlcNAc transferase-mediated O-GlcNAcylation and EZH2-mediated H3K27me3 formation play a pivotal role in development, and their up-regulation is believed to participate in tumor malignancy. The identification of O-linked GlcNAc transferase association with the polycomb repressive complex 2 (PRC2) further provides a new approach to regulate PRC2 function. O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT–EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation. O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation. [PUBLICATION ABSTRACT] |
Author | Teng, Yu-Ching Peng, Shih-Huan Kang, Ming-Lun Hsu, Pang-Hung Wong, Chi-Huey Juan, Li-Jung Yeh, Yi-Hsien Chu, Chi-Shuen Lo, Pei-Wen |
Author_xml | – sequence: 1 givenname: Chi-Shuen surname: Chu fullname: Chu, Chi-Shuen – sequence: 2 givenname: Pei-Wen surname: Lo fullname: Lo, Pei-Wen – sequence: 3 givenname: Yi-Hsien surname: Yeh fullname: Yeh, Yi-Hsien – sequence: 4 givenname: Pang-Hung surname: Hsu fullname: Hsu, Pang-Hung – sequence: 5 givenname: Shih-Huan surname: Peng fullname: Peng, Shih-Huan – sequence: 6 givenname: Yu-Ching surname: Teng fullname: Teng, Yu-Ching – sequence: 7 givenname: Ming-Lun surname: Kang fullname: Kang, Ming-Lun – sequence: 8 givenname: Chi-Huey surname: Wong fullname: Wong, Chi-Huey – sequence: 9 givenname: Li-Jung surname: Juan fullname: Juan, Li-Jung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24474760$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEQhS1URNPAmROwEhcu287YXnt9AKmqSotU0QP0wsXyOk5wtLFTexcp_x6naVqohDjZ0nzz_PzeETkIMThCXiMcI0h2sg4mHyOjjFKBiM_IBEFhLbiCAzIBoLJuOeWH5CjnJQCopoUX5JByLrkUMCEfr-uL3n49tZveDD6GKrnFWK4uV-c_Lmm1TnFwPlR5MJ3v_bCpTJhV8zHYLf2SPJ-bPrtX9-eU3Hw-_352WV9dX3w5O72qbdOqoRa27ShtEEE407bAmHSO0WZGOyqVMsiEtNIIJi1tQJmuE0YpRRs3EzjvBJuSTzvd9dit3My6MCTT63XyK5M2Ohqv_54E_1Mv4i_NVHmzaYrAh3uBFG9Hlwe98tm6vjfBxTFrLKZKcFK1_0e5ohIZL6FPyfsn6DKOKZQkthRXCkQrC_X2T_MPrvclFKDZATbFnJOba-uHuzbKX3yvEfS2bL0tWz-WXfZOnuztpf-9sbeyHTzQiJoX7C6nNztgmYeYHq0yKRRwVebvdvO5idosks_65hsFFADIVIuU_QbRdMaS |
CitedBy_id | crossref_primary_10_1146_annurev_biochem_060614_034420 crossref_primary_10_1016_j_ebiom_2024_104972 crossref_primary_10_1111_jcmm_18191 crossref_primary_10_1210_endocr_bqad023 crossref_primary_10_2478_s11658_014_0204_6 crossref_primary_10_1002_stem_3361 crossref_primary_10_1096_fj_202101520R crossref_primary_10_1016_j_exphem_2021_07_003 crossref_primary_10_1101_lm_049023_118 crossref_primary_10_3390_molecules29245817 crossref_primary_10_1016_j_ajpath_2021_01_013 crossref_primary_10_1038_s41401_023_01218_z crossref_primary_10_1016_j_bbrc_2018_04_053 crossref_primary_10_1093_glycob_cwv076 crossref_primary_10_1016_j_celrep_2018_11_042 crossref_primary_10_1038_ncomms13956 crossref_primary_10_1038_s41419_021_04022_x crossref_primary_10_1016_j_ymgme_2015_01_007 crossref_primary_10_1016_j_ebiom_2020_102678 crossref_primary_10_1016_j_lfs_2021_119226 crossref_primary_10_1016_j_semcancer_2022_07_009 crossref_primary_10_1073_pnas_1900065116 crossref_primary_10_1016_j_jbc_2021_100439 crossref_primary_10_1074_jbc_M116_749663 crossref_primary_10_1074_jbc_REV120_014915 crossref_primary_10_1016_j_molmet_2018_02_010 crossref_primary_10_1038_onc_2017_223 crossref_primary_10_1089_aid_2017_0180 crossref_primary_10_4155_fmc_14_123 crossref_primary_10_1371_journal_pone_0165766 crossref_primary_10_3389_fgene_2014_00256 crossref_primary_10_1186_s13148_020_00862_0 crossref_primary_10_1016_j_bbrc_2016_02_037 crossref_primary_10_1074_jbc_RA120_015995 crossref_primary_10_1111_jcmm_14038 crossref_primary_10_1161_CIRCRESAHA_116_303936 crossref_primary_10_1371_journal_pone_0198351 crossref_primary_10_1007_s00018_022_04396_x crossref_primary_10_1038_s41598_024_58176_7 crossref_primary_10_3389_fgene_2020_605263 crossref_primary_10_1038_s41375_018_0083_3 crossref_primary_10_1016_j_cmet_2020_12_015 crossref_primary_10_1021_jacs_8b11005 crossref_primary_10_1016_j_biopsych_2017_10_005 crossref_primary_10_1016_j_mam_2016_05_003 crossref_primary_10_1074_jbc_RA119_010312 crossref_primary_10_1371_journal_pgen_1010159 crossref_primary_10_3390_cancers14092121 crossref_primary_10_5582_ddt_2021_01100 crossref_primary_10_1016_j_bbrc_2015_10_030 crossref_primary_10_1038_labinvest_2015_104 crossref_primary_10_1016_j_tibs_2020_08_004 crossref_primary_10_1111_imm_13245 crossref_primary_10_1038_onc_2016_300 crossref_primary_10_1186_s13059_025_03537_2 crossref_primary_10_3389_fphys_2021_682052 crossref_primary_10_1016_j_bone_2021_115993 crossref_primary_10_1042_BST20160388 crossref_primary_10_3390_molecules23081967 crossref_primary_10_1038_s41419_021_03734_4 crossref_primary_10_1093_nar_gkv238 crossref_primary_10_1016_j_bbagen_2022_130250 crossref_primary_10_1007_s10863_018_9754_z crossref_primary_10_1016_j_bbadis_2018_10_016 crossref_primary_10_1073_pnas_1801850115 crossref_primary_10_26508_lsa_202201385 crossref_primary_10_3389_fonc_2021_678447 crossref_primary_10_31887_DCNS_2016_18_4_tbale crossref_primary_10_1016_j_jbc_2022_102115 crossref_primary_10_7554_eLife_83979 crossref_primary_10_1007_s12672_021_00450_5 crossref_primary_10_1093_nar_gkz1238 crossref_primary_10_1038_s41598_023_46923_1 crossref_primary_10_1158_1541_7786_MCR_20_0926 crossref_primary_10_1182_blood_2023019782 crossref_primary_10_3389_fonc_2022_960312 crossref_primary_10_1186_s13072_020_00369_1 crossref_primary_10_1016_j_yexcr_2023_113876 crossref_primary_10_1074_jbc_M114_579474 crossref_primary_10_1515_mr_2021_0015 crossref_primary_10_1016_j_jbc_2024_107150 crossref_primary_10_1038_s41598_019_48991_8 crossref_primary_10_1242_dev_201370 crossref_primary_10_3389_fendo_2014_00145 crossref_primary_10_1126_scitranslmed_aaz5387 crossref_primary_10_3389_fendo_2018_00578 crossref_primary_10_1074_jbc_RA118_002580 crossref_primary_10_1158_1541_7786_MCR_18_1025 crossref_primary_10_1038_s41422_021_00606_6 crossref_primary_10_1111_jcmm_16792 crossref_primary_10_1007_s13238_017_0416_4 crossref_primary_10_1073_pnas_1600509113 crossref_primary_10_3389_fendo_2014_00155 crossref_primary_10_1074_jbc_M115_704783 crossref_primary_10_1002_biof_2131 crossref_primary_10_1007_s13238_018_0597_5 crossref_primary_10_1039_D0CS01275K crossref_primary_10_3389_fphar_2022_935536 crossref_primary_10_1186_s13072_023_00523_5 crossref_primary_10_1002_1873_3468_13159 crossref_primary_10_1038_s41418_020_00615_9 crossref_primary_10_1038_onc_2017_311 crossref_primary_10_1038_cdd_2016_95 crossref_primary_10_1016_j_yfrne_2015_09_001 crossref_primary_10_3390_cancers13071666 crossref_primary_10_1093_glycob_cwy027 crossref_primary_10_1016_j_neuint_2021_105099 crossref_primary_10_1016_j_jbc_2024_107709 crossref_primary_10_1021_acs_analchem_7b04531 crossref_primary_10_1155_2021_4907167 crossref_primary_10_1038_s41467_018_04992_1 crossref_primary_10_1002_mco2_421 crossref_primary_10_1101_gr_193748_115 crossref_primary_10_2217_epi_15_89 crossref_primary_10_1016_j_molcel_2018_02_027 crossref_primary_10_1074_jbc_AW119_003226 crossref_primary_10_1089_ars_2017_7237 crossref_primary_10_3390_cancers12102792 crossref_primary_10_1038_s41388_018_0533_4 crossref_primary_10_3389_fimmu_2022_928436 crossref_primary_10_1016_j_molcel_2022_03_004 crossref_primary_10_1074_jbc_RA119_008670 crossref_primary_10_3390_cancers12113168 crossref_primary_10_1098_rsob_150234 crossref_primary_10_1038_s41388_018_0435_5 crossref_primary_10_3389_fimmu_2022_852115 crossref_primary_10_18632_genesandcancer_13 crossref_primary_10_1042_BST20241119 crossref_primary_10_1038_s41388_023_02751_1 crossref_primary_10_15252_embj_201798115 crossref_primary_10_1074_jbc_R114_585984 crossref_primary_10_3389_fimmu_2023_1209970 crossref_primary_10_3389_fonc_2020_585288 crossref_primary_10_1016_j_mam_2016_09_004 crossref_primary_10_1021_acs_chemrev_4c00417 crossref_primary_10_3389_fendo_2019_00117 crossref_primary_10_1016_j_tig_2014_07_005 crossref_primary_10_1042_BST20200769 crossref_primary_10_1021_acs_chemrev_1c01032 crossref_primary_10_1007_s10863_018_9751_2 crossref_primary_10_1016_j_cellimm_2018_05_010 crossref_primary_10_1007_s13238_021_00846_7 crossref_primary_10_1111_febs_13729 crossref_primary_10_1158_1078_0432_CCR_16_2020 crossref_primary_10_1158_1541_7786_MCR_15_0263 crossref_primary_10_1016_j_celrep_2019_10_011 crossref_primary_10_1111_jcmm_14043 crossref_primary_10_1016_j_molcel_2020_10_036 crossref_primary_10_1093_carcin_bgy097 crossref_primary_10_1074_jbc_RA118_005993 crossref_primary_10_1186_s13578_020_00505_0 crossref_primary_10_3390_antiox13060656 crossref_primary_10_1038_s41594_019_0325_8 crossref_primary_10_1021_acschembio_5b00004 crossref_primary_10_1186_s13059_020_02150_9 crossref_primary_10_1016_j_cbpa_2016_06_005 crossref_primary_10_1016_j_celrep_2019_10_004 crossref_primary_10_1002_mnfr_202100197 crossref_primary_10_1007_s11434_015_0816_x crossref_primary_10_1152_physrev_00043_2019 crossref_primary_10_3390_ijms21010173 crossref_primary_10_1016_j_bbrc_2014_06_068 crossref_primary_10_3389_fendo_2018_00415 crossref_primary_10_3389_fendo_2014_00193 crossref_primary_10_1186_s12929_020_00648_9 crossref_primary_10_1371_journal_pone_0118003 crossref_primary_10_1126_sciadv_abe2470 crossref_primary_10_1007_s44231_023_00048_1 crossref_primary_10_1007_s00412_015_0513_1 crossref_primary_10_1038_s41417_022_00464_3 crossref_primary_10_1038_nrm_2017_22 crossref_primary_10_1038_onc_2016_485 crossref_primary_10_1038_s41419_021_04381_5 crossref_primary_10_4143_crt_2014_46_3_209 crossref_primary_10_1007_s12013_024_01655_5 |
Cites_doi | 10.1073/pnas.1009023107 10.1074/jbc.M111.240515 10.1126/science.1169727 10.1016/S0021-9258(17)32170-1 10.1038/ncb1470 10.1074/jbc.M111.315804 10.1016/S0092-8674(03)00974-7 10.1038/nrc3114 10.1073/pnas.1019289108 10.1101/sqb.2010.75.020 10.1038/nprot.2007.422 10.1016/j.cub.2005.04.051 10.1074/jbc.M113.460386 10.1007/s11033-012-2246-z 10.1016/j.bbagrm.2010.02.005 10.1016/S0092-8674(02)00810-3 10.1038/nature11742 10.1126/scisignal.2000526 10.1038/cr.2011.10 10.1016/j.gde.2004.02.001 10.1146/annurev-nutr-071812-161240 10.1073/pnas.111099998 10.1073/pnas.0911857107 10.1093/carcin/bgs231 10.1038/nchembio.1084 10.1073/pnas.1303800110 10.1371/journal.pgen.1003698 10.1016/j.stem.2012.03.001 10.1126/science.1076997 10.1074/jbc.M306449200 10.1158/0008-5472.CAN-08-3615 10.1101/gad.381706 10.1038/emboj.2012.357 10.1101/gad.1035902 10.7150/ijbs.8.59 10.1016/S0021-9258(19)57510-X 10.1016/S0092-8674(02)00976-5 10.1016/S0021-9258(19)39838-2 10.1074/jbc.272.14.9308 10.1158/0008-5472.CAN-12-0636 10.1016/j.cbpa.2012.10.021 10.1101/gad.377406 10.1016/S0079-6603(03)01004-3 10.1016/S0092-8674(02)00975-3 10.1038/bjc.2011.551 10.1007/s10549-011-1396-3 10.1016/S0021-9258(17)43295-9 10.1021/ja982312w 10.1146/annurev-biochem-060608-102511 10.1074/jbc.M209384200 10.3389/fendo.2013.00099 10.1073/pnas.0904638106 10.1093/emboj/cdg542 10.1038/nrm3334 10.1038/nature10656 10.1074/jbc.M111.284885 10.1016/j.molcel.2012.12.019 10.1074/jbc.M300036200 |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 28, 2014 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 28, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1323226111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | OGT regulates EZH2 stability |
EISSN | 1091-6490 |
EndPage | 1360 |
ExternalDocumentID | PMC3910655 3207865511 24474760 10_1073_pnas_1323226111 111_4_1355 23769049 US201600139812 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c589t-6c8b2251106ea880337ee325d2b2799a1367c7a637c2509abb6a99925ed61fb63 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:29:49 EDT 2025 Thu Sep 04 22:33:41 EDT 2025 Thu Sep 04 17:51:13 EDT 2025 Mon Jun 30 08:25:57 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 Tue Jul 01 01:52:58 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Wed Nov 11 00:30:31 EST 2020 Thu May 29 08:40:44 EDT 2025 Wed Dec 27 19:04:21 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c589t-6c8b2251106ea880337ee325d2b2799a1367c7a637c2509abb6a99925ed61fb63 |
Notes | http://dx.doi.org/10.1073/pnas.1323226111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: C.-S.C., P.-W.L., C.-H.W., and L.-J.J. designed research; C.-S.C., P.-W.L., Y.-H.Y., P.-H.H., S.-H.P., Y.-C.T., and M.-L.K. performed research; C.-S.C., P.-W.L., P.-H.H., C.-H.W., and L.-J.J. analyzed data; and C.-S.C., C.-H.W., and L.-J.J. wrote the paper. Contributed by Chi-Huey Wong, December 16, 2013 (sent for review September 25, 2013) 1C.-S.C. and P.-W.L. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/4/1355.full.pdf |
PMID | 24474760 |
PQID | 1494990687 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1323226111 crossref_citationtrail_10_1073_pnas_1323226111 proquest_miscellaneous_1803091798 pubmed_primary_24474760 jstor_primary_23769049 proquest_journals_1494990687 proquest_miscellaneous_1492713432 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3910655 pnas_primary_111_4_1355 fao_agris_US201600139812 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-28 |
PublicationDateYYYYMMDD | 2014-01-28 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 Miyamoto Y (e_1_3_3_46_2) 2010; 36 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 22791816 - Carcinogenesis. 2012 Oct;33(10):1930-9 16964247 - Nat Cell Biol. 2006 Oct;8(10):1074-83 16618801 - Genes Dev. 2006 May 1;20(9):1123-36 21606357 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9490-5 18007630 - Nat Protoc. 2007;2(11):2930-44 21045127 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19915-20 22121020 - Nature. 2011 Dec 22;480(7378):557-60 16618800 - Genes Dev. 2006 May 1;20(9):1110-22 21465172 - Breast Cancer Res Treat. 2012 Jan;131(1):65-73 21896475 - J Biol Chem. 2011 Oct 28;286(43):37483-95 12882516 - Prog Nucleic Acid Res Mol Biol. 2003;73:107-36 24009517 - PLoS Genet. 2013 Aug;9(8):e1003698 20202486 - Biochim Biophys Acta. 2010 May-Jun;1799(5-6):353-64 23964270 - Front Endocrinol (Lausanne). 2013 Aug 12;4:99 8034696 - J Biol Chem. 1994 Jul 29;269(30):19321-30 19478141 - Science. 2009 Jul 3;325(5936):93-6 15916951 - Curr Biol. 2005 May 24;15(10):942-7 14597631 - J Biol Chem. 2004 Jan 30;279(5):3563-72 23620515 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7922-7 9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15 23353889 - EMBO J. 2013 Mar 6;32(5):645-55 23079716 - Mol Biol Rep. 2013 Feb;40(2):1905-10 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905 23023262 - Nat Chem Biol. 2012 Nov;8(11):890-6 20368426 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7413-8 23352454 - Mol Cell. 2013 Feb 21;49(4):645-56 23729667 - J Biol Chem. 2013 Jul 19;288(29):20776-84 21209387 - Cold Spring Harb Symp Quant Biol. 2010;75:43-9 2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8 14675536 - Cell. 2003 Dec 12;115(6):715-25 20068230 - Sci Signal. 2010;3(104):ra2 22187039 - Br J Cancer. 2012 Jan 17;106(2):243-7 14532106 - EMBO J. 2003 Oct 15;22(20):5323-35 12150998 - Cell. 2002 Jul 12;110(1):69-80 23146438 - Curr Opin Chem Biol. 2012 Dec;16(5-6):488-97 6421821 - J Biol Chem. 1984 Mar 10;259(5):3308-17 3086323 - J Biol Chem. 1986 Jun 15;261(17):8049-57 23642195 - Annu Rev Nutr. 2013;33:205-29 12408864 - Cell. 2002 Oct 18;111(2):197-208 23222540 - Nature. 2013 Jan 24;493(7433):561-4 19666537 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13427-32 21221131 - Cell Res. 2011 Apr;21(4):642-53 22751464 - Cancer Res. 2012 Sep 1;72(17):4574-86 21391816 - Annu Rev Biochem. 2011;80:825-58 12351676 - Science. 2002 Nov 1;298(5595):1039-43 12724313 - J Biol Chem. 2003 Jul 4;278(27):24608-16 20372800 - Int J Oncol. 2010 May;36(5):1253-60 21659531 - J Biol Chem. 2011 Aug 12;286(32):28511-9 22211105 - Int J Biol Sci. 2012;8(1):59-65 19369267 - Cancer Res. 2009 Apr 15;69(8):3634-41 22522719 - Nat Rev Mol Cell Biol. 2012 May;13(5):312-21 22608532 - Cell Stem Cell. 2012 Jul 6;11(1):62-74 11371615 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6611-6 15196462 - Curr Opin Genet Dev. 2004 Apr;14(2):155-64 22371497 - J Biol Chem. 2012 Apr 6;287(15):12195-203 21850036 - Nat Rev Cancer. 2011 Sep;11(9):678-84 12435728 - J Biol Chem. 2003 Feb 14;278(7):5399-409 12408863 - Cell. 2002 Oct 18;111(2):185-96 |
References_xml | – ident: e_1_3_3_17_2 doi: 10.1073/pnas.1009023107 – ident: e_1_3_3_53_2 doi: 10.1074/jbc.M111.240515 – ident: e_1_3_3_34_2 doi: 10.1126/science.1169727 – ident: e_1_3_3_5_2 doi: 10.1016/S0021-9258(17)32170-1 – ident: e_1_3_3_11_2 doi: 10.1038/ncb1470 – ident: e_1_3_3_20_2 doi: 10.1074/jbc.M111.315804 – ident: e_1_3_3_51_2 doi: 10.1016/S0092-8674(03)00974-7 – ident: e_1_3_3_15_2 doi: 10.1038/nrc3114 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.1019289108 – ident: e_1_3_3_38_2 doi: 10.1101/sqb.2010.75.020 – ident: e_1_3_3_42_2 doi: 10.1038/nprot.2007.422 – ident: e_1_3_3_41_2 doi: 10.1016/j.cub.2005.04.051 – ident: e_1_3_3_25_2 doi: 10.1074/jbc.M113.460386 – ident: e_1_3_3_49_2 doi: 10.1007/s11033-012-2246-z – ident: e_1_3_3_16_2 doi: 10.1016/j.bbagrm.2010.02.005 – ident: e_1_3_3_21_2 doi: 10.1016/S0092-8674(02)00810-3 – ident: e_1_3_3_22_2 doi: 10.1038/nature11742 – volume: 36 start-page: 1253 year: 2010 ident: e_1_3_3_46_2 article-title: Identification of UNC5A as a novel transcriptional target of tumor suppressor p53 and a regulator of apoptosis publication-title: Int J Oncol – ident: e_1_3_3_54_2 doi: 10.1126/scisignal.2000526 – ident: e_1_3_3_59_2 doi: 10.1038/cr.2011.10 – ident: e_1_3_3_30_2 doi: 10.1016/j.gde.2004.02.001 – ident: e_1_3_3_13_2 doi: 10.1146/annurev-nutr-071812-161240 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.111099998 – ident: e_1_3_3_36_2 doi: 10.1073/pnas.0911857107 – ident: e_1_3_3_47_2 doi: 10.1093/carcin/bgs231 – ident: e_1_3_3_33_2 doi: 10.1038/nchembio.1084 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1303800110 – ident: e_1_3_3_57_2 doi: 10.1371/journal.pgen.1003698 – ident: e_1_3_3_12_2 doi: 10.1016/j.stem.2012.03.001 – ident: e_1_3_3_26_2 doi: 10.1126/science.1076997 – ident: e_1_3_3_10_2 doi: 10.1074/jbc.M306449200 – ident: e_1_3_3_48_2 doi: 10.1158/0008-5472.CAN-08-3615 – ident: e_1_3_3_39_2 doi: 10.1101/gad.381706 – ident: e_1_3_3_24_2 doi: 10.1038/emboj.2012.357 – ident: e_1_3_3_27_2 doi: 10.1101/gad.1035902 – ident: e_1_3_3_44_2 doi: 10.7150/ijbs.8.59 – ident: e_1_3_3_2_2 doi: 10.1016/S0021-9258(19)57510-X – ident: e_1_3_3_29_2 doi: 10.1016/S0092-8674(02)00976-5 – ident: e_1_3_3_3_2 doi: 10.1016/S0021-9258(19)39838-2 – ident: e_1_3_3_4_2 doi: 10.1074/jbc.272.14.9308 – ident: e_1_3_3_50_2 doi: 10.1158/0008-5472.CAN-12-0636 – ident: e_1_3_3_6_2 doi: 10.1016/j.cbpa.2012.10.021 – ident: e_1_3_3_58_2 doi: 10.1101/gad.377406 – ident: e_1_3_3_52_2 doi: 10.1016/S0079-6603(03)01004-3 – ident: e_1_3_3_28_2 doi: 10.1016/S0092-8674(02)00975-3 – ident: e_1_3_3_31_2 doi: 10.1038/bjc.2011.551 – ident: e_1_3_3_45_2 doi: 10.1007/s10549-011-1396-3 – ident: e_1_3_3_1_2 doi: 10.1016/S0021-9258(17)43295-9 – ident: e_1_3_3_7_2 doi: 10.1021/ja982312w – ident: e_1_3_3_8_2 doi: 10.1146/annurev-biochem-060608-102511 – ident: e_1_3_3_56_2 doi: 10.1074/jbc.M209384200 – ident: e_1_3_3_43_2 doi: 10.3389/fendo.2013.00099 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.0904638106 – ident: e_1_3_3_40_2 doi: 10.1093/emboj/cdg542 – ident: e_1_3_3_14_2 doi: 10.1038/nrm3334 – ident: e_1_3_3_18_2 doi: 10.1038/nature10656 – ident: e_1_3_3_19_2 doi: 10.1074/jbc.M111.284885 – ident: e_1_3_3_23_2 doi: 10.1016/j.molcel.2012.12.019 – ident: e_1_3_3_55_2 doi: 10.1074/jbc.M300036200 – reference: 16618800 - Genes Dev. 2006 May 1;20(9):1110-22 – reference: 24009517 - PLoS Genet. 2013 Aug;9(8):e1003698 – reference: 23729667 - J Biol Chem. 2013 Jul 19;288(29):20776-84 – reference: 21896475 - J Biol Chem. 2011 Oct 28;286(43):37483-95 – reference: 23353889 - EMBO J. 2013 Mar 6;32(5):645-55 – reference: 12408864 - Cell. 2002 Oct 18;111(2):197-208 – reference: 21850036 - Nat Rev Cancer. 2011 Sep;11(9):678-84 – reference: 21045127 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19915-20 – reference: 23352454 - Mol Cell. 2013 Feb 21;49(4):645-56 – reference: 22608532 - Cell Stem Cell. 2012 Jul 6;11(1):62-74 – reference: 14675536 - Cell. 2003 Dec 12;115(6):715-25 – reference: 22791816 - Carcinogenesis. 2012 Oct;33(10):1930-9 – reference: 19666537 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13427-32 – reference: 21659531 - J Biol Chem. 2011 Aug 12;286(32):28511-9 – reference: 20372800 - Int J Oncol. 2010 May;36(5):1253-60 – reference: 12435728 - J Biol Chem. 2003 Feb 14;278(7):5399-409 – reference: 20368426 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7413-8 – reference: 18007630 - Nat Protoc. 2007;2(11):2930-44 – reference: 12724313 - J Biol Chem. 2003 Jul 4;278(27):24608-16 – reference: 23023262 - Nat Chem Biol. 2012 Nov;8(11):890-6 – reference: 3086323 - J Biol Chem. 1986 Jun 15;261(17):8049-57 – reference: 21391816 - Annu Rev Biochem. 2011;80:825-58 – reference: 12435631 - Genes Dev. 2002 Nov 15;16(22):2893-905 – reference: 20068230 - Sci Signal. 2010;3(104):ra2 – reference: 12408863 - Cell. 2002 Oct 18;111(2):185-96 – reference: 23642195 - Annu Rev Nutr. 2013;33:205-29 – reference: 9083067 - J Biol Chem. 1997 Apr 4;272(14):9308-15 – reference: 14532106 - EMBO J. 2003 Oct 15;22(20):5323-35 – reference: 2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8 – reference: 21221131 - Cell Res. 2011 Apr;21(4):642-53 – reference: 23964270 - Front Endocrinol (Lausanne). 2013 Aug 12;4:99 – reference: 15196462 - Curr Opin Genet Dev. 2004 Apr;14(2):155-64 – reference: 16964247 - Nat Cell Biol. 2006 Oct;8(10):1074-83 – reference: 22187039 - Br J Cancer. 2012 Jan 17;106(2):243-7 – reference: 22522719 - Nat Rev Mol Cell Biol. 2012 May;13(5):312-21 – reference: 14597631 - J Biol Chem. 2004 Jan 30;279(5):3563-72 – reference: 21209387 - Cold Spring Harb Symp Quant Biol. 2010;75:43-9 – reference: 8034696 - J Biol Chem. 1994 Jul 29;269(30):19321-30 – reference: 15916951 - Curr Biol. 2005 May 24;15(10):942-7 – reference: 23222540 - Nature. 2013 Jan 24;493(7433):561-4 – reference: 22211105 - Int J Biol Sci. 2012;8(1):59-65 – reference: 23079716 - Mol Biol Rep. 2013 Feb;40(2):1905-10 – reference: 12150998 - Cell. 2002 Jul 12;110(1):69-80 – reference: 20202486 - Biochim Biophys Acta. 2010 May-Jun;1799(5-6):353-64 – reference: 23146438 - Curr Opin Chem Biol. 2012 Dec;16(5-6):488-97 – reference: 12351676 - Science. 2002 Nov 1;298(5595):1039-43 – reference: 21606357 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9490-5 – reference: 21465172 - Breast Cancer Res Treat. 2012 Jan;131(1):65-73 – reference: 23620515 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7922-7 – reference: 6421821 - J Biol Chem. 1984 Mar 10;259(5):3308-17 – reference: 19478141 - Science. 2009 Jul 3;325(5936):93-6 – reference: 12882516 - Prog Nucleic Acid Res Mol Biol. 2003;73:107-36 – reference: 22751464 - Cancer Res. 2012 Sep 1;72(17):4574-86 – reference: 22121020 - Nature. 2011 Dec 22;480(7378):557-60 – reference: 19369267 - Cancer Res. 2009 Apr 15;69(8):3634-41 – reference: 16618801 - Genes Dev. 2006 May 1;20(9):1123-36 – reference: 22371497 - J Biol Chem. 2012 Apr 6;287(15):12195-203 – reference: 11371615 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6611-6 |
SSID | ssj0009580 |
Score | 2.531557 |
Snippet | O-linked N -acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain... O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain... The present study identifies a cross-talk of two important posttranslational modifications, revealing that enhancer of zeste homolog 2 (EZH2) O-GlcNAcylation... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1355 |
SubjectTerms | Acetylglucosamine - metabolism Biological Sciences Breast cancer Cell lines Chromatin DNA Methylation Down-Regulation Enhancer of Zeste Homolog 2 Protein Epigenetics Gene expression regulation Gene Knockdown Techniques Genes, Tumor Suppressor Histones Humans Mass spectroscopy Methylation methyltransferases microarray technology mutants Mutation N-Acetylglucosaminyltransferases - genetics N-Acetylglucosaminyltransferases - metabolism neoplasms Polycomb Repressive Complex 2 - metabolism post-translational modification Protein Stability Proteins serine Small interfering RNA Stem cells transcription (genetics) tumor suppressor genes Tumors |
Title | O-GlcNAcylation regulates EZH2 protein stability and function |
URI | https://www.jstor.org/stable/23769049 http://www.pnas.org/content/111/4/1355.abstract https://www.ncbi.nlm.nih.gov/pubmed/24474760 https://www.proquest.com/docview/1494990687 https://www.proquest.com/docview/1492713432 https://www.proquest.com/docview/1803091798 https://pubmed.ncbi.nlm.nih.gov/PMC3910655 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Selected full-text) customDbUrl: eissn: 1091-6490 dateEnd: 20250330 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250330 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYYKAgITRUubROYieP1dQRodJNWis6XiLHddZIUzrW5gH-Jv5Izh9J2lIm4CWqbNd1fZf7sO9-h9DbGQulFFmGu5nPsbppwhGTAvssiwLBezOqz3Q_j2g88T9Ng2mr9XMtaqlcpR3xY2deyf9QFdqAripL9h8oW08KDfAZ6AtPoDA8_4rG5_jjjRj1xXcT0Na-M4Xl5bI9-BqTtsZgyAt1XKBDYA3UktJkNTWsWXpRq7FlFTQwqk4J-03OiRUEyzZuX4yaCsan89Lc3Of4cl42uWXDhYkAzvGXpvFK6oOcqxzHy7xpjpelMWiLaxyXVp3a04ieimCpsrvXwLx3rm1dDBNQjb5Jnu5II3nBcMHUN7VDa9FsBXG-fvCgBW3PM-i-v2kAEFmqbHHBlx1wtEFc0WqSDazt0XlyNhkOk_FgOt7sNbqdgOlEwZrsvbv9hlWNMnWXbwu27KEHhFFKqrOhGuI5NAlP9s9VQFLM-7C1nA0baC_jiyoYViHswtBd3s520O6aFTR-jB5Z98XtG148QC1ZPEEH1d67JxbF_P1TtM2cbs2crmJO1zKnWzOnC8zpVsz5DE3OBuPTGNtaHVgEYbTCVIQpUe5ql0oOOsHzmJQeCWYkJSyKuEIGFIxTjwkwuiOeppSDb0ICOaO9LKXeIdovFoU8Qi6nKQsFIVmUhn4QiTTzWCZkj0vOQGHMHNSpdi8RFshe1VO5SXRABfMStYdJs90OOqm_cGswXP489AjIkfBr0LDJ5JIo_EXlJIEZ7KBDTaN6ChVPFoGD7aDnepZ6anCp_UQxqIOOKzomVmzAj2k8qC4NmYPe1N0g1NVNHS_kotRjiEry9sg9Y0J1O6rwBtUCNGs0S_N95jPadRDbYJp6gAKV3-wp8rkGl_fAfwDGf3H_0l-ih83bf4z2V3elfAXW-Sp9rV-KXziD4Rg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=O-GlcNAcylation+regulates+EZH2+protein+stability+and+function&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chu%2C+Chi-Shuen&rft.au=Lo%2C+Pei-Wen&rft.au=Yeh%2C+Yi-Hsien&rft.au=Hsu%2C+Pang-Hung&rft.date=2014-01-28&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=4&rft.spage=1355&rft_id=info:doi/10.1073%2Fpnas.1323226111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3207865511 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F4.cover.gif |