Best bang for your buck: GPU nodes for GROMACS biomolecular simulations

The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interf...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 36; no. 26; pp. 1990 - 2008
Main Authors Kutzner, Carsten, Páll, Szilárd, Fechner, Martin, Esztermann, Ansgar, de Groot, Bert L., Grubmüller, Helmut
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 05.10.2015
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0192-8651
1096-987X
1096-987X
DOI10.1002/jcc.24030

Cover

Abstract The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Molecular dynamics (MD) simulation is a crucial tool for the study of (bio)molecules. MD simulations typically run for weeks or months even on modern computer clusters. Choosing the optimal hardware for carrying out these simulations can increase the trajectory output twofold or threefold. With GROMACS, the maximum amount of MD trajectory for a fixed budget is produced using nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources.
AbstractList The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime.
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime.The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime.
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Molecular dynamics (MD) simulation is a crucial tool for the study of (bio)molecules. MD simulations typically run for weeks or months even on modern computer clusters. Choosing the optimal hardware for carrying out these simulations can increase the trajectory output twofold or threefold. With GROMACS, the maximum amount of MD trajectory for a fixed budget is produced using nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources.
Author Páll, Szilárd
Grubmüller, Helmut
Esztermann, Ansgar
Kutzner, Carsten
Fechner, Martin
de Groot, Bert L.
AuthorAffiliation 1 Theoretical and Computational Biophysics Department Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
2 Theoretical and Computational Biophysics KTH Royal Institute of Technology 17121 Stockholm Sweden
AuthorAffiliation_xml – name: 2 Theoretical and Computational Biophysics KTH Royal Institute of Technology 17121 Stockholm Sweden
– name: 1 Theoretical and Computational Biophysics Department Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
Author_xml – sequence: 1
  givenname: Carsten
  surname: Kutzner
  fullname: Kutzner, Carsten
  email: ckutzne@gwdg.de
  organization: Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
– sequence: 2
  givenname: Szilárd
  surname: Páll
  fullname: Páll, Szilárd
  organization: Theoretical and Computational Biophysics, KTH Royal Institute of Technology, Stockholm, 17121, Sweden
– sequence: 3
  givenname: Martin
  surname: Fechner
  fullname: Fechner, Martin
  organization: Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
– sequence: 4
  givenname: Ansgar
  surname: Esztermann
  fullname: Esztermann, Ansgar
  organization: Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
– sequence: 5
  givenname: Bert L.
  surname: de Groot
  fullname: de Groot, Bert L.
  organization: Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
– sequence: 6
  givenname: Helmut
  surname: Grubmüller
  fullname: Grubmüller, Helmut
  organization: Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26238484$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173956$$DView record from Swedish Publication Index
BookMark eNp9kV1v0zAUhi00xLrBBX8AReIGkLL5I1_eBVLJIHwMhihj3FmOc9K5TeJiJ5T-e0xbKlYBV0fyec7ro-ccoYPOdIDQQ4JPCMb0dKbUCY0ww3fQiGCehDxLvx6gESachlkSk0N05NwMY8ziJLqHDmlCWRZl0QgVL8D1QSm7aVAbG6zMYINyUPOzoPh4FXSmArduFJ8u34_zSVBq05oG1NBIGzjd-tpr07n76G4tGwcPtvUYXb16-Tl_HV5cFm_y8UWo4ozjkAOtagU0TSmUteIQVUTJDMcgZe17WRlDkmIAzpKskhJz7t8gUhXgSGaSHaNnm9yhW8jVUjaNWFjdSrsSBItfNoS3IdY2PBxuYLeExVDuSCO1ONdfxsLYqZj3N4KkjMeJ559veA-3UCnoeiubW2O3O52-EVPzXcQ4ogRTH_BkG2DNt8GbFa12CppGdmAG5__BPMUpZalHH--hM---8-48RQjhUUaYpx79udFuld8H9MDpBlDWOGehFkr365P4BXXzVylP9yb-J3CbvtQNrP4Nird5vqdcux5-7CaknYskZWksrj8U4t2EFfH5dSIm7Cf2b9j2
CODEN JCCHDD
CitedBy_id crossref_primary_10_1007_s42485_019_00020_y
crossref_primary_10_2298_JSC231125012B
crossref_primary_10_3389_fimmu_2023_1112816
crossref_primary_10_1371_journal_pone_0183889
crossref_primary_10_5334_jors_268
crossref_primary_10_1021_acs_jpca_0c05769
crossref_primary_10_1063_5_0145197
crossref_primary_10_3390_life11050385
crossref_primary_10_1038_s41565_024_01657_7
crossref_primary_10_1002_jcc_26011
crossref_primary_10_1063_5_0250793
crossref_primary_10_1021_acs_jcim_1c00598
crossref_primary_10_1021_acs_jcim_1c01445
crossref_primary_10_7717_peerj_7425
crossref_primary_10_1021_acs_jpcb_7b12546
crossref_primary_10_1016_j_xphs_2020_09_010
crossref_primary_10_1021_acs_jcim_2c00044
crossref_primary_10_1080_07391102_2023_2212815
crossref_primary_10_1021_acs_jpcb_4c01957
crossref_primary_10_1039_D1MD00140J
crossref_primary_10_1177_10943420211008288
crossref_primary_10_1016_j_jhazmat_2022_129517
crossref_primary_10_1038_s41467_024_46207_w
crossref_primary_10_1021_acs_jctc_3c00777
crossref_primary_10_3390_molecules28247997
crossref_primary_10_1021_acs_langmuir_8b03212
crossref_primary_10_3390_molecules29061338
crossref_primary_10_1021_acs_jctc_5b01022
crossref_primary_10_1080_07391102_2022_2163427
crossref_primary_10_1021_acs_jpcb_9b11753
crossref_primary_10_3390_cryst14060532
crossref_primary_10_1016_j_bpj_2023_01_025
crossref_primary_10_1177_10943420231213013
crossref_primary_10_3389_fmicb_2021_665041
crossref_primary_10_3390_ijms17071083
crossref_primary_10_3390_ph17050549
crossref_primary_10_1002_jcc_25796
crossref_primary_10_1007_s42979_024_02958_3
crossref_primary_10_1021_acssuschemeng_4c05394
crossref_primary_10_1063_5_0018516
crossref_primary_10_1007_s00894_022_05369_4
crossref_primary_10_1063_5_0019045
crossref_primary_10_1557_mrc_2019_54
crossref_primary_10_1002_wcms_1494
crossref_primary_10_1039_D1GC00097G
crossref_primary_10_1021_acs_jcim_9b00351
crossref_primary_10_1016_j_mtchem_2018_12_007
crossref_primary_10_4103_pm_pm_99_20
crossref_primary_10_1063_1_4943287
crossref_primary_10_1002_prot_25306
crossref_primary_10_1002_slct_202401597
crossref_primary_10_1016_j_jmgm_2022_108282
crossref_primary_10_1021_acs_jpcb_2c07929
crossref_primary_10_1002_chem_202000495
crossref_primary_10_1021_acs_jctc_0c00290
crossref_primary_10_1021_acs_jpcb_9b06624
crossref_primary_10_1002_wcms_1444
crossref_primary_10_1080_07391102_2023_2252084
crossref_primary_10_1021_jacs_8b10840
crossref_primary_10_1016_j_ymeth_2018_04_010
crossref_primary_10_1021_acsomega_1c07359
crossref_primary_10_1039_D1CP00531F
crossref_primary_10_1021_acsami_4c12187
crossref_primary_10_1007_s12268_018_0892_y
crossref_primary_10_1021_acsptsci_2c00148
crossref_primary_10_3389_fmolb_2024_1472252
crossref_primary_10_1002_jcc_25228
crossref_primary_10_1016_j_ymeth_2020_02_009
crossref_primary_10_1021_acs_jcim_4c02113
crossref_primary_10_3390_molecules28010413
crossref_primary_10_1146_annurev_biophys_070317_033349
crossref_primary_10_1016_j_cpc_2017_05_003
crossref_primary_10_1063_1674_0068_cjcp2009163
crossref_primary_10_1021_acscatal_1c01062
crossref_primary_10_1038_s41598_017_11736_6
crossref_primary_10_1007_s00894_021_04957_0
crossref_primary_10_1021_acs_jcim_0c01236
crossref_primary_10_1021_acs_jpcb_4c02863
crossref_primary_10_1016_j_molliq_2023_121340
crossref_primary_10_1080_00222348_2021_1945080
crossref_primary_10_1021_acsami_7b18717
crossref_primary_10_3390_membranes11100747
crossref_primary_10_1002_jcc_26545
crossref_primary_10_3389_fmolb_2019_00117
crossref_primary_10_1016_j_bbamem_2016_02_007
crossref_primary_10_1021_acs_jcim_2c01444
crossref_primary_10_1021_acs_jpca_9b10998
crossref_primary_10_3389_fmicb_2024_1402963
crossref_primary_10_1038_s41524_019_0209_9
crossref_primary_10_1080_00319104_2023_2263897
crossref_primary_10_7124_FEEO_v22_942
crossref_primary_10_1080_07391102_2024_2325109
crossref_primary_10_1016_j_synbio_2024_05_008
crossref_primary_10_1016_j_tibs_2020_02_010
crossref_primary_10_1021_acs_jctc_1c00145
crossref_primary_10_1021_acs_jpcb_1c03011
crossref_primary_10_1021_acs_jpcb_2c00353
crossref_primary_10_1016_j_polymer_2020_122881
crossref_primary_10_1007_s00894_023_05558_9
crossref_primary_10_1039_D4MD00869C
crossref_primary_10_1016_j_cofs_2016_08_003
crossref_primary_10_1021_acs_jpcb_0c09824
crossref_primary_10_18632_oncotarget_27700
crossref_primary_10_1021_acs_jcim_7b00132
crossref_primary_10_1021_acs_jctc_2c00932
crossref_primary_10_3390_molecules23123269
crossref_primary_10_1016_j_ijbiomac_2024_137059
crossref_primary_10_1073_pnas_1816909116
crossref_primary_10_3389_fpls_2021_732701
crossref_primary_10_1016_j_bbamem_2015_12_032
crossref_primary_10_1016_j_orgel_2019_105571
crossref_primary_10_1155_2022_5314179
crossref_primary_10_1016_j_sbi_2016_06_007
crossref_primary_10_3390_catal8050192
crossref_primary_10_1021_acs_jpcb_2c02406
crossref_primary_10_1021_acs_jpcb_3c03946
crossref_primary_10_1002_mgg3_1344
crossref_primary_10_1080_07391102_2023_2166119
crossref_primary_10_3389_fimmu_2023_1100188
crossref_primary_10_1021_acs_langmuir_9b03086
crossref_primary_10_1063_5_0023460
crossref_primary_10_1016_j_molstruc_2022_133676
crossref_primary_10_1073_pnas_2407479121
crossref_primary_10_1021_acsomega_3c07740
crossref_primary_10_1016_j_heliyon_2024_e40774
crossref_primary_10_1021_acs_jcim_0c01010
crossref_primary_10_1002_jcc_24786
crossref_primary_10_1177_1094342019826667
crossref_primary_10_3390_molecules28196795
crossref_primary_10_1002_1873_3468_15077
crossref_primary_10_1002_cbic_202300373
crossref_primary_10_1021_acs_jctc_9b00450
crossref_primary_10_1021_acs_jpcb_2c04454
crossref_primary_10_1016_j_molliq_2023_122127
crossref_primary_10_1039_C7CP08185E
crossref_primary_10_31857_S2308114723700231
crossref_primary_10_3390_microorganisms8010059
crossref_primary_10_1063_1_5058804
crossref_primary_10_1016_j_bbamem_2018_04_013
crossref_primary_10_1063_5_0198777
crossref_primary_10_1016_j_isci_2022_104948
crossref_primary_10_1021_acssuschemeng_4c04974
crossref_primary_10_1021_acs_jctc_7b01175
crossref_primary_10_1134_S1811238223700285
crossref_primary_10_1063_5_0014500
crossref_primary_10_1002_mats_202100066
crossref_primary_10_1158_1541_7786_MCR_20_1017
crossref_primary_10_1159_000503450
crossref_primary_10_1002_jcc_25823
crossref_primary_10_1021_acs_jcim_2c01596
crossref_primary_10_1016_j_molliq_2020_112870
crossref_primary_10_1021_acs_jcim_4c01100
crossref_primary_10_1021_acs_langmuir_0c02777
crossref_primary_10_4236_ajmb_2021_111001
crossref_primary_10_1021_acs_jpcb_1c07769
crossref_primary_10_1002_cpe_5136
crossref_primary_10_1016_j_bpj_2020_07_027
crossref_primary_10_1093_carcin_bgaa091
crossref_primary_10_1016_j_jbc_2021_101271
crossref_primary_10_1146_annurev_physchem_061020_053438
crossref_primary_10_3389_fchem_2023_1103792
crossref_primary_10_1016_j_biochi_2024_03_004
crossref_primary_10_1039_D3CP01770B
crossref_primary_10_1016_j_cpc_2018_10_018
crossref_primary_10_1021_acs_jpclett_0c02785
crossref_primary_10_1021_acs_jcim_1c00286
crossref_primary_10_1021_acs_jcim_6b00498
crossref_primary_10_1063_5_0133966
crossref_primary_10_3390_ijms25094918
crossref_primary_10_1007_s00894_018_3720_x
crossref_primary_10_1021_acs_jctc_9b00630
crossref_primary_10_1016_j_bpj_2017_02_016
crossref_primary_10_1039_D0CP05407K
crossref_primary_10_1080_23746149_2024_2358196
crossref_primary_10_1021_acs_jpcb_3c03411
crossref_primary_10_1021_acs_jcim_1c00169
crossref_primary_10_1021_acs_jcim_8b00108
crossref_primary_10_3390_cells10051052
Cites_doi 10.1002/jcc.21645
10.1021/ct9000685
10.1016/j.cpc.2011.10.012
10.1002/jcc.20289
10.1016/j.cpc.2013.06.003
10.1002/jcc.21773
10.1038/nsmb.2690
10.1063/1.470117
10.1021/ct700301q
10.1002/wcms.1121
10.1093/bioinformatics/btt055
10.1002/jcc.21287
10.1021/ct400140n
ContentType Journal Article
Copyright 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Oct 5, 2015
Copyright_xml – notice: 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Oct 5, 2015
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
5PM
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ADTOC
UNPAY
DOI 10.1002/jcc.24030
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Computer Science Collection

MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2008
ExternalDocumentID 10.1002/jcc.24030
oai_DiVA_org_kth_173956
PMC5042102
3804531451
26238484
10_1002_jcc_24030
JCC24030
ark_67375_WNG_KS3G5DW6_S
Genre news
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: DFG priority programme “Software for Exascale Computing” (SPP 1648)
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
RWI
RWK
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
5PM
.Y3
186
31~
6TJ
ABDPE
ABEFU
ABEML
ACSCC
ADTPV
AFDQA
AFFNX
AGHNM
AI.
AOWAS
ASPBG
AVWKF
AZFZN
BDRZF
BTSUX
D8T
D8V
FEDTE
HF~
HVGLF
M21
PALCI
RIWAO
RJQFR
SAMSI
VH1
ZCG
ZY4
ZZAVC
ADTOC
AIQQE
UNPAY
ID FETCH-LOGICAL-c5890-9e2dfce2772ebfc9e4d1ca805eaafe2d8b5e670ee9368daa099d8be4cde04a8a3
IEDL.DBID UNPAY
ISSN 0192-8651
1096-987X
IngestDate Sun Oct 26 04:14:49 EDT 2025
Thu Aug 21 06:35:23 EDT 2025
Thu Aug 21 14:13:18 EDT 2025
Fri Jul 11 12:26:14 EDT 2025
Fri Jul 25 19:04:58 EDT 2025
Thu Apr 03 06:52:59 EDT 2025
Wed Oct 01 02:49:01 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Wed Jan 22 16:55:22 EST 2025
Sun Sep 21 06:20:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords MD
energy efficiency
hybrid parallelization
molecular dynamics
GPU
parallel computing
benchmark
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
http://doi.wiley.com/10.1002/tdm_license_1.1
2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5890-9e2dfce2772ebfc9e4d1ca805eaafe2d8b5e670ee9368daa099d8be4cde04a8a3
Notes istex:78A0AAF823C22979C9FD50D60A1B920B33161192
ark:/67375/WNG-KS3G5DW6-S
ArticleID:JCC24030
DFG priority programme "Software for Exascale Computing" (SPP 1648)
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.24030
PMID 26238484
PQID 1711194813
PQPubID 48816
PageCount 19
ParticipantIDs unpaywall_primary_10_1002_jcc_24030
swepub_primary_oai_DiVA_org_kth_173956
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5042102
proquest_miscellaneous_1709707237
proquest_journals_1711194813
pubmed_primary_26238484
crossref_citationtrail_10_1002_jcc_24030
crossref_primary_10_1002_jcc_24030
wiley_primary_10_1002_jcc_24030_JCC24030
istex_primary_ark_67375_WNG_KS3G5DW6_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 5, 2015
PublicationDateYYYYMMDD 2015-10-05
PublicationDate_xml – month: 10
  year: 2015
  text: October 5, 2015
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
– name: Hoboken
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References W. M. Brown, A. Kohlmeyer, S. J. Plimpton, A. N. Tharrington, Comput. Phys. Commun. 2012, 183, 449.
R. C. Walker, R. M. Betz, In XSEDE '13 Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery; ACM: New York, NY, 2013.
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435.
L. Bock, C. Blau, G. Schröder, I. Davydov, N. Fischer, H. Stark, M. Rodnina, A. Vaiana, H. Grubmüller, Nat. Struct. Mol. Biol. 2013, 20, 1390.
U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, J. Chem. Phys. 1995, 103, 8577.
C. C. Gruber, J. Pleiss, J. Comput. Chem. 2010, 32, 600.
B. R. Brooks, C. L. Brooks, III, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
G. Shi, J. Enos, M. Showerman, V. Kindratenko, In 2009 Symposium on Application Accelerators in High Performance Computing (SAAHPC'09), University of Illinois at Urbana-Champaign: Urbana, IL, 2009.
M. J. Abraham, J. E. Gready, J. Comput. Chem. 2011, 32, 2031.
R. Salomon-Ferrer, D. Case, R. Walker, WIREs Comput. Mol. Sci. 2013, 3, 198.
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. Shirts, J. Smith, P. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 2013, 29, 845.
S. Páll, B. Hess, Comput. Phys. Commun. 2013, 184, 2641.
C. Kutzner, R. Apostolov, B. Hess, H. Grubmüller, In Parallel Computing: Accelerating Computational Science and Engineering (CSE); M. Bader, A. Bode, H. J. Bungartz, Eds.; IOS Press: Amsterdam/Netherlands, 2014; pp. 722-730.
I. S. Haque, V. S. Pande, In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing; Stanford University: Stanford, CA, 2010.
C. L. Wennberg, T. Murtola, B. Hess, E. Lindahl, J. Chem. Theory Comput. 2013, 9, 3527.
S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl. In International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden; S. Markidis, E. Laure, Eds.; Springer International Publishing: Switzerland, 2015; pp. 1-25.
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015.
M. Harvey, G. Giupponi, G. D. Fabritiis, J. Chem. Theory Comput. 2009, 5, 1632.
2012; 183
2013; 29
2010; 32
2009; 30
2013; 3
2010
2013; 20
2009
2006
2011; 32
2013; 184
2015
1995; 103
2009; 5
2014
2008; 4
2013
2005; 26
2013; 9
e_1_2_8_17_1
Shi G. (e_1_2_8_18_1) 2009
e_1_2_8_13_1
Haque I. S. (e_1_2_8_20_1) 2010
e_1_2_8_15_1
e_1_2_8_16_1
Páll S. (e_1_2_8_10_1) 2015
Walker R. C. (e_1_2_8_19_1) 2013
e_1_2_8_3_1
e_1_2_8_2_1
Kutzner C. (e_1_2_8_14_1) 2014
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Abraham M. J. (e_1_2_8_11_1) 2015
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_1_1
References_xml – reference: U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, J. Chem. Phys. 1995, 103, 8577.
– reference: R. C. Walker, R. M. Betz, In XSEDE '13 Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery; ACM: New York, NY, 2013.
– reference: M. J. Abraham, J. E. Gready, J. Comput. Chem. 2011, 32, 2031.
– reference: S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. Shirts, J. Smith, P. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 2013, 29, 845.
– reference: C. Kutzner, R. Apostolov, B. Hess, H. Grubmüller, In Parallel Computing: Accelerating Computational Science and Engineering (CSE); M. Bader, A. Bode, H. J. Bungartz, Eds.; IOS Press: Amsterdam/Netherlands, 2014; pp. 722-730.
– reference: S. Páll, B. Hess, Comput. Phys. Commun. 2013, 184, 2641.
– reference: S. Páll, M. J. Abraham, C. Kutzner, B. Hess, E. Lindahl. In International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden; S. Markidis, E. Laure, Eds.; Springer International Publishing: Switzerland, 2015; pp. 1-25.
– reference: M. Harvey, G. Giupponi, G. D. Fabritiis, J. Chem. Theory Comput. 2009, 5, 1632.
– reference: B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4, 435.
– reference: G. Shi, J. Enos, M. Showerman, V. Kindratenko, In 2009 Symposium on Application Accelerators in High Performance Computing (SAAHPC'09), University of Illinois at Urbana-Champaign: Urbana, IL, 2009.
– reference: W. M. Brown, A. Kohlmeyer, S. J. Plimpton, A. N. Tharrington, Comput. Phys. Commun. 2012, 183, 449.
– reference: I. S. Haque, V. S. Pande, In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing; Stanford University: Stanford, CA, 2010.
– reference: J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
– reference: R. Salomon-Ferrer, D. Case, R. Walker, WIREs Comput. Mol. Sci. 2013, 3, 198.
– reference: C. L. Wennberg, T. Murtola, B. Hess, E. Lindahl, J. Chem. Theory Comput. 2013, 9, 3527.
– reference: C. C. Gruber, J. Pleiss, J. Comput. Chem. 2010, 32, 600.
– reference: B. R. Brooks, C. L. Brooks, III, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
– reference: L. Bock, C. Blau, G. Schröder, I. Davydov, N. Fischer, H. Stark, M. Rodnina, A. Vaiana, H. Grubmüller, Nat. Struct. Mol. Biol. 2013, 20, 1390.
– reference: M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015.
– start-page: 722
  year: 2014
  end-page: 730
– volume: 184
  start-page: 2641
  year: 2013
  publication-title: Comput. Phys. Commun.
– volume: 9
  start-page: 3527
  year: 2013
  publication-title: J. Chem. Theory Comput.
– year: 2009
– volume: 20
  start-page: 1390
  year: 2013
  publication-title: Nat. Struct. Mol. Biol.
– volume: 29
  start-page: 845
  year: 2013
  publication-title: Bioinformatics
– volume: 4
  start-page: 435
  year: 2008
  publication-title: J. Chem. Theory Comput.
– volume: 26
  start-page: 1781
  year: 2005
  publication-title: J. Comput. Chem.
– year: 2006
– volume: 32
  start-page: 600
  year: 2010
  publication-title: J. Comput. Chem.
– year: 2015
  publication-title: SoftwareX
– volume: 183
  start-page: 449
  year: 2012
  publication-title: Comput. Phys. Commun.
– volume: 30
  start-page: 1545
  year: 2009
  publication-title: J. Comput. Chem.
– volume: 103
  start-page: 8577
  year: 1995
  publication-title: J. Chem. Phys.
– start-page: 1
  year: 2015
  end-page: 25
– volume: 32
  start-page: 2031
  year: 2011
  publication-title: J. Comput. Chem.
– volume: 5
  start-page: 1632
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 3
  start-page: 198
  year: 2013
  publication-title: WIREs Comput. Mol. Sci.
– year: 2014
– year: 2010
– year: 2013
– start-page: 722
  volume-title: In Parallel Computing: Accelerating Computational Science and Engineering (CSE)
  year: 2014
  ident: e_1_2_8_14_1
– ident: e_1_2_8_17_1
  doi: 10.1002/jcc.21645
– ident: e_1_2_8_5_1
  doi: 10.1021/ct9000685
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cpc.2011.10.012
– ident: e_1_2_8_6_1
  doi: 10.1002/jcc.20289
– year: 2015
  ident: e_1_2_8_11_1
  publication-title: SoftwareX
– ident: e_1_2_8_3_1
– ident: e_1_2_8_22_1
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cpc.2013.06.003
– volume-title: In 2009 Symposium on Application Accelerators in High Performance Computing (SAAHPC'09)
  year: 2009
  ident: e_1_2_8_18_1
– ident: e_1_2_8_21_1
  doi: 10.1002/jcc.21773
– ident: e_1_2_8_16_1
  doi: 10.1038/nsmb.2690
– volume-title: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
  year: 2010
  ident: e_1_2_8_20_1
– ident: e_1_2_8_12_1
– ident: e_1_2_8_13_1
  doi: 10.1063/1.470117
– start-page: 1
  volume-title: In International Conference on Exascale Applications and Software, EASC 2014, Stockholm
  year: 2015
  ident: e_1_2_8_10_1
– ident: e_1_2_8_7_1
  doi: 10.1021/ct700301q
– volume-title: In XSEDE ‘13 Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery
  year: 2013
  ident: e_1_2_8_19_1
– ident: e_1_2_8_2_1
  doi: 10.1002/wcms.1121
– ident: e_1_2_8_8_1
  doi: 10.1093/bioinformatics/btt055
– ident: e_1_2_8_1_1
  doi: 10.1002/jcc.21287
– ident: e_1_2_8_15_1
  doi: 10.1021/ct400140n
SSID ssj0003564
Score 2.5738513
SecondaryResourceType review_article
Snippet The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing...
SourceID unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1990
SubjectTerms Analytical chemistry
benchmark
Benchmarking
Benchmarks
Central processing units
Computer Simulation
CPUs
energy efficiency
GPU
hybrid parallelization
Molecular chemistry
molecular dynamics
Molecular Dynamics Simulation
parallel computing
Simulation
Software
Software and Updates
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLaq9lA4IHZCCwqLUC-hGTtOHDgNKU1V1FIxDO3N8pZ2mGmmmswI-u95dhYUURC3KH6Wrbf5c2J_D6HXAjYVVEkdaBXpABC4CZiMaABLm0yoKgriDo8fHccH4-jwjJ6tofftXZiaH6L74GYjw-VrG-BCVru_SUO_K_XWksnBfn1jADjGujeOTro0TGjNHQUQJmAxHbS0QiHe7br2FqMNq9efNyHNPw9MNrSit9HmqrwS1z_EbNZHt2552r-L7jS40h_WjnAPrZnyPtrM2nJuD1D-AcbypSjPfcCp_jV08OVKTd_5-cnYL-faVK4h__L5aJiNfHsvvy2d61eTy6bMV_UQjfc_fs0OgqaKQqAoS8MgNVgXymCA0UYWKjWRHijBQmqEKKCNSWriJDQmJTHTQgBkhHcmUtqEkWCCPELr5bw0T5BPwwLbilW6YCwiBjNNNNM4LAiTMsaFh3ZadXLVUIzbShczXpMjYw6a507zHnrZiV7VvBo3Cb1xNukkxGJqD6IllJ8e5_zTiOR07zTmIw9tt0bjTQxWfJBAHrdkNMRDL7pm0Lr9JSJKM19ZmTBNwgSTxEOPaxt3g2FAhixikYeSnvU7AcvM3W8pJxeOoZtCKgTkBvOv_aTXZW_ybcjni3M-XV7ABAjsUD30qvOjf6ljx3nY3yX4YZa5h6f_L7qFbgEIdHS0Id1G68vFyjwDoLWUz11A_QKzHCLo
  priority: 102
  providerName: Wiley-Blackwell
Title Best bang for your buck: GPU nodes for GROMACS biomolecular simulations
URI https://api.istex.fr/ark:/67375/WNG-KS3G5DW6-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24030
https://www.ncbi.nlm.nih.gov/pubmed/26238484
https://www.proquest.com/docview/1711194813
https://www.proquest.com/docview/1709707237
https://pubmed.ncbi.nlm.nih.gov/PMC5042102
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173956
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.24030
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: ADMLS
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0192-8651
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C9mHwwP0SGFO4CO0lJXXixOWttKzT0Eq10a08Gcd2ttKSVr0Ixq_n2LmIwkBIvERRfJzYx-fYn2P7OwAvBE4qqEyUp2SoPETg2mNJSD0c2pKYyjQN7Obxw360PwwPRnRUxDk1Z2Fyfojqh5vxDNtfGwefqzTv54vVffLqs5QNQyiHc_Z6RBGM16A-7A_aH_ND0ujrkQ3A2ESg7uHselRyC_2cd2NEqhvlfrsMbv6-a7LgFr0OW-tsLi6-iul0E-LaMWrvJnwqa5dvTZk01qukIb__Qvz4H9W_BTcK_Oq2c4O7DVd0dge2OmXYuLvQe4PVcRORnbmIh90LzOAmazl57fYGQzebKb20Cb2j94ftzrFrzv-XIXrd5fhLEU5seQ-Ge28_dPa9IlqDJylr-V5LE5VKTRCu6ySVLR2qphTMp1qIFNNYQnUU-1q3gogpIRCa4jMdSqX9UDAR3IdaNsv0Q3CpnxITGUuljIWBJkwFiinipwFLkoikDuyWLcZlQWVuImpMeU7CTDhqhlvNOPCsEp3n_B2XCb20zV5JiMXEbHiLKT_t9_i746BHu6cRP3Zgu7QLXvj6kjdjHC8M6U3gwNMqGbVull5EpmdrI-O3Yj8mQezAg9yMqo8RRKAsZKED8YaBVQKGAXwzJRufWyZwil0uIkQsf26KG1m645M2ny3O-GR1jgUIcCbswPPKVP-mjl1reX-W4Aedjr159E8vfAzXEGdaxlufbkNttVjrJ4jlVskOXCXhAK_dI7JT-O4Pl0lJVw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLam7aHwgLgTGBAuQnsJS31JHMRL6VjKtpaJrmxvlmM7W2lJp14E-_ccOxdUMRBvUXwsR-fmz479HYReS1hUMJXpQCuqA0DgJuAZZQFMbVnMVJ4Td3i8P4h6I3pwxs420Pv6LkzJD9FsuNnIcPnaBrjdkN79zRr6Tam3lk0OFuxbNGpHdumF6XGThwkryaMAwwQ8Yu2aVyjEu03Xtdloyyr253VQ888TkxWv6E3UWhWX8uqHnE7X4a2bn_Zvo1sVsPQ7pSfcQRumuIta3bqe2z2UfoCx_EwW5z4AVf8KOvjZSk3e-enxyC9m2ixcQ_rlc7_THfr2Yn5dO9dfjL9Xdb4W99Fo_-NJtxdUZRQCxXgSBonBOlcGA442Wa4SQ3VbSR4yI2UObTxjJopDYxIScS0lYEZ4Z6jSJqSSS_IAbRazwjxCPgtzbEtW6ZxzSgzmmmiucZgTnmURzj20U6tTqIpj3Ja6mIqSHRkL0LxwmvfQy0b0siTWuE7ojbNJIyHnE3sSLWbidJCKwyFJ2d5pJIYe2q6NJqogXIh2DIncstEQD71omkHr9p-ILMxsZWXCJA5jTGIPPSxt3AyGARpyyqmH4jXrNwKWmnu9pRhfOIpuBrkQoBt8f-kna132xl87YjY_F5PlBXwAgSWqh141fvQvdew4D_u7hDjodt3D4_8XfY5avZP-kTj6NDh8gm4AInTctCHbRpvL-co8BdS1zJ654PoFW54mVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTWLsgTssMCBchPaSLo3jxEG8lJZ2bKxM68r2gizfspWWtOpFMH49x85lKgyEeItyjpX4-Bz7c3L8HYRecthUECmUp2SoPEDg2qMiJB4sbSImMk2xTR4_6Ea7_XDvlJyuoDflWZicH6L64GYiw87XJsD1RKU7l6yhX6SsGTY52LCvhSShJqGvdXRJHoVJTh4FGMajEamXvEJ-sFM1XVqN1oxhv18FNX_PmCx4RTfQ-iKb8ItvfDRahrd2fWrfRJ_LnuVpKcPaYi5q8scvpI__2_Vb6EYBXN1G7mm30YrO7qD1Zlkv7i7qvIW-uIJnZy4AYfcCGrhiIYev3c5h383GSs-soHP08aDR7Lnm4H9Zm9edDb4WdcRm91C__e64uesVZRo8SWjie4kOVCp1ADhdi1QmOlR1yalPNOcpyKggOop9rRMcUcU5YFK4p0OptB9yyvF9tJqNM72JXOKngSmJpVJKQ6wDqrCiKvBTTIWIgtRB2-VwMVlwmJtSGiOWsy8HDCzDrGUc9LxSneTEHVcpvbJjXmnw6dBkusWEnXQ7bL-HO6R1ErGeg7ZKp2BFkM9YPYaFwrDdYAc9q8RgdfPPhWd6vDA6fhL7cYBjBz3Ifah6WADQk4Y0dFC85F2VgqH-XpZkg3NLAU5grgVoCO-f--FSk9bgU4ONp2dsOD-HF8CwBXbQi8pP_2aObet2f9Zge82mvXj476pP0bXDVpt9eN_df4SuA-C01Lc-2UKr8-lCPwZQNxdPbOz-BPpBRnU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h9mHwML5ZYKDwIbSXlDSJE5e30rFOQysTpaw8GX9lKy1p1TaC8ddzdj5EYSAk3qL4nNiXO_t3sf07gGccgwoihfKUjJSHCFx7VETEw6lNJESmaWg3jx8P4sNRdDQm4zLPqTkLU_BD1D_cjGfY8do4-EKlxThfru4HLz5L2TKEchizN2OCYLwBzdHgpPuxOCSNvh7bBIxtBOoeRtfjilvo57obM1LTKPfbZXDz912TJbfoNdjKswW_-Mpns02Ia-eog-vwqepdsTVl2srXoiW__0L8-B_dvwHbJX51u4XB3YQrOrsFW70qbdxt6L_C7riCZ2cu4mH3Aiu4IpfTl27_ZORmc6VXtqD_7u1xtzd0zfn_KkWvu5p8KdOJre7A6OD1-96hV2Zr8CShHd_r6EClUgcI17VIZUdHqi059YnmPMUyKoiOE1_rThhTxTlCU7ynI6m0H3HKw7vQyOaZ3gGX-GlgMmOplNIo1AFVoaIq8NOQChEHqQN71RdjsqQyNxk1ZqwgYQ4YaoZZzTjwpBZdFPwdlwk9t5-9luDLqdnwlhB2OuizN8OwT_ZPYzZ0YLeyC1b6-oq1E5wvDOlN6MDjuhi1bpZeeKbnuZHxO4mfBGHiwL3CjOqXBYhAaUQjB5INA6sFDAP4Zkk2ObdM4ASHXESI2P7CFDeq7E8-dNl8ecam63NsQIiRsANPa1P9mzr2rOX9WYId9Xr24v4_PfABXEWcaRlvfbILjfUy1w8Ry63Fo9JffwA4zkeX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Best+bang+for+your+buck%3A+GPU+nodes+for+GROMACS+biomolecular+simulations&rft.jtitle=Journal+of+computational+chemistry&rft.au=Kutzner%2C+Carsten&rft.au=P%C3%A1ll%2C+Szil%C3%A1rd&rft.au=Fechner%2C+Martin&rft.au=Esztermann%2C+Ansgar&rft.date=2015-10-05&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=36&rft.issue=26&rft.spage=1990&rft.epage=2008&rft_id=info:doi/10.1002%2Fjcc.24030&rft_id=info%3Apmid%2F26238484&rft.externalDocID=PMC5042102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon