SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing

The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology resources Vol. 11; no. s1; pp. 81 - 92
Main Authors GERALDES, ARMANDO, PANG, JOHNSON, THIESSEN, NINA, CEZARD, TIMOTHEE, MOORE, RICHARD, ZHAO, YONGJUN, TAM, ANGELA, WANG, SHUCAI, FRIEDMANN, MICHAEL, BIROL, INANC, JONES, STEVEN J.M, CRONK, QUENTIN C.B, DOUGLAS, CARL J
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1755-0998
1755-098X
1755-0998
DOI10.1111/j.1755-0998.2010.02960.x

Cover

Abstract The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high-throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26 595 genes that are expressed in developing secondary xylem. More than two-thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar.
AbstractList The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high-throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26,595 genes that are expressed in developing secondary xylem. More than two-thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar.
The western black cottonwood ( Populus trichocarpa ) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high‐throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26 595 genes that are expressed in developing secondary xylem. More than two‐thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar.
The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high-throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26595 genes that are expressed in developing secondary xylem. More than two-thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar. [PUBLICATION ABSTRACT]
The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high-throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26,595 genes that are expressed in developing secondary xylem. More than two-thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar.The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high-throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26,595 genes that are expressed in developing secondary xylem. More than two-thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar.
The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high-throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26595 genes that are expressed in developing secondary xylem. More than two-thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar.
Author BIROL, INANC
JONES, STEVEN J. M.
THIESSEN, NINA
WANG, SHUCAI
CEZARD, TIMOTHEE
TAM, ANGELA
MOORE, RICHARD
PANG, JOHNSON
FRIEDMANN, MICHAEL
ZHAO, YONGJUN
CRONK, QUENTIN C. B.
GERALDES, ARMANDO
DOUGLAS, CARL J.
Author_xml – sequence: 1
  fullname: GERALDES, ARMANDO
– sequence: 2
  fullname: PANG, JOHNSON
– sequence: 3
  fullname: THIESSEN, NINA
– sequence: 4
  fullname: CEZARD, TIMOTHEE
– sequence: 5
  fullname: MOORE, RICHARD
– sequence: 6
  fullname: ZHAO, YONGJUN
– sequence: 7
  fullname: TAM, ANGELA
– sequence: 8
  fullname: WANG, SHUCAI
– sequence: 9
  fullname: FRIEDMANN, MICHAEL
– sequence: 10
  fullname: BIROL, INANC
– sequence: 11
  fullname: JONES, STEVEN J.M
– sequence: 12
  fullname: CRONK, QUENTIN C.B
– sequence: 13
  fullname: DOUGLAS, CARL J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21429165$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAQxyNURB_wFSASB8phFz_iRw4goapdEGUpaiskLoPjdYq3WTvYCd399jhNW6EeoL7Ymvn9ZzyP3WzLeWeyLMdoitN5s5xiwdgElaWcEpSsiJQcTdePsp07x9Zf7-1sN8YlQhyVoniSbRNckBJztpP9OJ2f5Asbtf9twia3Lq8apS9z7bvOuyvvF_n-iW_7po95F6z-6bUKrXqdV5u8Heyqs94ll3JRB9t2fmXyYKL51Runrbt4mj2uVRPNs5t7Lzs_Ojw7-DA5_jL7ePD-eKKZLNGEEFVjXiiDVMFITWsuNTWGaYkZrgpKaykrKgqM60oIprCUilBeCMUQJQtE97JXY9w2-JQ7drBKVZmmUc74PoLkiMqyFPT_JEsUQ5Incv-fJOY8fYEwNqAv76FL3weXKgZMCo4E5UIk6vkN1Vcrs4A22JUKG7idRwLejYAOPsZgatC2u25x6rBtACMYFgCWMMwWhtnCsABwvQCwTgHkvQC3OR4gfTtKr2xjNg_WwefD-fBK-smot7Ez6zu9CpfABRUMvs1n8BWJo0-zMwbfE_9i5GvlQV0EG-H8NEWmCJeFKBmhfwCskt5c
CitedBy_id crossref_primary_10_1007_s12686_015_0510_y
crossref_primary_10_1111_1755_0998_12191
crossref_primary_10_1007_s00438_017_1410_5
crossref_primary_10_1111_j_1469_8137_2012_04258_x
crossref_primary_10_3390_d6020283
crossref_primary_10_1111_mec_12969
crossref_primary_10_1007_s11056_012_9338_4
crossref_primary_10_3390_plants2020279
crossref_primary_10_1093_database_bas013
crossref_primary_10_1111_1755_0998_12039
crossref_primary_10_1111_1755_0998_12513
crossref_primary_10_1073_pnas_1211990110
crossref_primary_10_1111_pbr_12117
crossref_primary_10_1186_s12864_015_1761_4
crossref_primary_10_1111_nph_12014
crossref_primary_10_17660_ActaHortic_2021_1318_25
crossref_primary_10_1002_ece3_1928
crossref_primary_10_1007_s11295_016_0975_1
crossref_primary_10_1155_2017_8614160
crossref_primary_10_4161_fly_22353
crossref_primary_10_7717_peerj_3702
crossref_primary_10_1007_s12374_016_0438_0
crossref_primary_10_1111_nph_12419
crossref_primary_10_1111_nph_12815
crossref_primary_10_3389_fpls_2015_00388
crossref_primary_10_1111_eva_13345
crossref_primary_10_3906_biy_1502_23
crossref_primary_10_1007_s11240_018_1426_5
crossref_primary_10_1186_s12864_015_1390_y
crossref_primary_10_3390_plants11223037
crossref_primary_10_1007_s10592_021_01394_7
crossref_primary_10_1016_j_foreco_2012_11_004
crossref_primary_10_1111_1755_0998_12242
crossref_primary_10_1371_journal_pone_0142864
crossref_primary_10_1371_journal_pone_0049018
crossref_primary_10_1111_1755_0998_12003
crossref_primary_10_1016_j_tplants_2015_10_002
crossref_primary_10_1038_nrg3012
crossref_primary_10_1128_AEM_00134_16
crossref_primary_10_1186_s12864_018_5239_z
crossref_primary_10_1093_treephys_tps081
crossref_primary_10_1111_nph_12601
crossref_primary_10_1371_journal_pone_0259278
crossref_primary_10_3390_f14061129
crossref_primary_10_1104_pp_113_228783
crossref_primary_10_1007_s11295_013_0615_y
crossref_primary_10_3389_fgene_2021_763841
crossref_primary_10_1007_s11738_017_2563_x
crossref_primary_10_1111_j_1365_294X_2011_05413_x
crossref_primary_10_1093_bioinformatics_btz038
crossref_primary_10_1111_mec_13198
crossref_primary_10_3390_ijms141224581
crossref_primary_10_1093_g3journal_jkab316
crossref_primary_10_1002_tax_606002
crossref_primary_10_1371_journal_pone_0104960
crossref_primary_10_1111_1755_0998_12056
crossref_primary_10_1111_j_1755_0998_2010_02979_x
crossref_primary_10_3389_fpls_2014_00262
crossref_primary_10_1080_02723646_2016_1162597
crossref_primary_10_34133_plantphenomics_0072
crossref_primary_10_1007_s11295_012_0547_y
crossref_primary_10_1002_biot_201400194
crossref_primary_10_3390_plants12040852
crossref_primary_10_1016_j_ympev_2011_12_007
crossref_primary_10_15406_freij_2018_02_00044
crossref_primary_10_1007_s00122_016_2736_9
crossref_primary_10_1021_acs_jproteome_5b00823
crossref_primary_10_1093_sysbio_syt061
crossref_primary_10_1186_s12864_018_4791_x
crossref_primary_10_1111_nph_13277
crossref_primary_10_1007_s12374_013_0135_1
crossref_primary_10_1186_s12870_020_02577_z
crossref_primary_10_1007_s12374_015_0575_x
crossref_primary_10_1038_srep19254
crossref_primary_10_1186_gb_2013_14_6_120
crossref_primary_10_1111_nph_12422
crossref_primary_10_1186_1471_2164_13_280
crossref_primary_10_1186_1471_2164_14_359
crossref_primary_10_1038_srep05054
crossref_primary_10_1371_journal_pone_0205835
crossref_primary_10_1139_gen_2017_0143
crossref_primary_10_1111_nph_15777
Cites_doi 10.1126/science.1158441
10.1038/nmeth.1223
10.1093/bioinformatics/btp352
10.1093/nar/25.14.2745
10.1111/j.1469-8137.2009.02779.x
10.1016/0040-5809(75)90020-9
10.1038/nrg2776
10.1093/bioinformatics/btp324
10.1111/j.1469-1809.1949.tb02451.x
10.1128/EC.00123-10
10.1038/nmeth.1226
10.1038/nature07509
10.1007/s10592-005-9073-x
10.1534/genetics.108.090431
10.1111/j.1365-294X.2010.04546.x
10.1101/gr.8.3.175
10.1101/gr.8.3.186
10.1146/annurev.arplant.58.032806.103956
10.1111/j.1365-294X.2006.02885.x
10.1016/j.tplants.2005.03.001
10.1016/j.pbi.2007.01.011
10.1146/annurev-genom-082908-145957
10.1111/j.1469-8137.2005.01369.x
10.1104/pp.109.149716
10.1038/nrg1877
10.1139/X08-190
10.1146/annurev.arplant.043008.092125
10.1038/nbt.1621
10.1101/gr.093302.109
10.1038/nrg2484
10.1101/gr.078212.108
10.1111/j.1469-8137.2009.03174.x
10.1126/science.1128691
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2011 Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2011 Blackwell Publishing Ltd.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
7X8
7T7
DOI 10.1111/j.1755-0998.2010.02960.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitleList MEDLINE
CrossRef
Entomology Abstracts
MEDLINE - Academic

Genetics Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1755-0998
EndPage 92
ExternalDocumentID 2851588581
21429165
10_1111_j_1755_0998_2010_02960_x
MEN2960
ark_67375_WNG_Q07FKGT5_Z
US201301947952
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7S9
L.6
7X8
7T7
ID FETCH-LOGICAL-c5890-22af164ae0a452f3f68c3ee5c8151b433f88b37411fb775a188a23647a5032d03
IEDL.DBID DR2
ISSN 1755-0998
1755-098X
IngestDate Fri Jul 11 04:26:46 EDT 2025
Thu Jul 10 22:05:28 EDT 2025
Thu Jul 10 23:16:49 EDT 2025
Fri Jul 25 10:33:42 EDT 2025
Wed Feb 19 01:53:37 EST 2025
Tue Jul 01 01:18:48 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Jan 22 16:28:24 EST 2025
Sun Sep 21 06:19:49 EDT 2025
Wed Dec 27 19:02:29 EST 2023
IsPeerReviewed true
IsScholarly true
Issue s1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2011 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5890-22af164ae0a452f3f68c3ee5c8151b433f88b37411fb775a188a23647a5032d03
Notes http://dx.doi.org/10.1111/j.1755-0998.2010.02960.x
istex:0B683BABB49339BACACD1925EA2A240434D90A30
ark:/67375/WNG-Q07FKGT5-Z
ArticleID:MEN2960
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21429165
PQID 1246073677
PQPubID 1096410
PageCount 12
ParticipantIDs proquest_miscellaneous_860389973
proquest_miscellaneous_859735086
proquest_miscellaneous_1663642556
proquest_journals_1246073677
pubmed_primary_21429165
crossref_citationtrail_10_1111_j_1755_0998_2010_02960_x
crossref_primary_10_1111_j_1755_0998_2010_02960_x
wiley_primary_10_1111_j_1755_0998_2010_02960_x_MEN2960
istex_primary_ark_67375_WNG_Q07FKGT5_Z
fao_agris_US201301947952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular ecology resources
PublicationTitleAlternate Mol Ecol Resour
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621-628.
Savolainen O, Pyhajarvi T (2007) Genomic diversity in forest trees. Current Opinion in Plant Biology, 10, 162-167.
Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Genetics, 10, 135-151.
Wright S (1951) The genetical structure of populations. Annals of Eugenics, 15, 323-354.
Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57-63.
Gilchrist EJ, Haughn GW, Ying CC et al. (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Molecular Ecology, 15, 1367-1378.
Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 18, 1851-1858.
Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754-1760.
Xie CY, Ying CC, Yanchuk AD, Holowachuk DL (2009) Ecotypic mode of regional differentiation caused by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific Northwest coast. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 39, 519-526.
Breen AL, Glenn E, Yeager A, Olson MS (2009) Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae). New Phytologist, 182, 763-773.
Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nature Reviews Genetics, 11, 345-355.
Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, 8, 175-185.
Nagalakshmi U, Wang Z, Waern K et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344-1349.
Filichkin SA, Priest HD, Givan SA et al. (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20, 45-58.
Tuskan GA, DiFazio S, Jansson S et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596-1604.
Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Research, 25, 2745-2751.
Trapnell C, Williams BA, Pertea G et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511-515.
Nowrousian M (2010) Next-generation sequencing techniques for eucaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryotic Cell, 9, 1300-1310.
Olson MS, Robertson AL, Takebayashi N, Silim S, Scroeder WR, Tiffin P (2010) Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytologist, 186, 526-536.
Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics, 180, 329-340.
Wang ET, Sandberg R, Luo SJ et al. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470-476.
Cloonan N, Forrest ARR, Kolle G et al. (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods, 5, 613-619.
Carroll A, Somerville C (2009) Cellulosic biofuels. Annual Review of Plant Biology, 60, 165-182.
Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256-276.
Groover AT (2005) What genes make a tree a tree? Trends in Plant Science, 10, 210-214.
Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8, 186-194.
Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.
Cronk QC (2005) Plant eco-devo: the potential of poplar as a model organism. New Phytologist, 166, 39-48.
Keller SR, Olson MS, Silim S, Schroeder W, Tiffin P (2010) Genomic diversity, population structure, and migration following rapid range expansion in the Balsam Poplar, Populus balsamifera. Molecular Ecology, 19, 1212-1226.
Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annual Review of Plant Biology, 58, 435-458.
Zenoni S, Ferrarini A, Giacomelli E et al. (2010) Characterization of transcriptional complexity during berry development in vitis vinifera using RNA-Seq. Plant Physiology, 152, 1787-1795.
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365-386.
Whitham TG, Bailey JK, Schweitzer JA et al. (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 7, 510-523.
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11-15.
2010; 11
2009; 25
2010; 19
2009; 182
2009; 60
2008; 18
1997; 25
2006; 15
2006; 7
2010; 186
2008; 5
2000; 132
2008; 320
2007; 10
2006; 313
1987; 19
2007; 58
2008; 180
2010; 20
2009; 10
2005; 166
2010; 28
2010; 152
2005; 10
2008; 456
1951; 15
1975; 7
2010; 9
1998; 8
2009; 39
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Rozen S (e_1_2_7_25_1) 2000; 132
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – reference: Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, 8, 175-185.
– reference: Cronk QC (2005) Plant eco-devo: the potential of poplar as a model organism. New Phytologist, 166, 39-48.
– reference: Olson MS, Robertson AL, Takebayashi N, Silim S, Scroeder WR, Tiffin P (2010) Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytologist, 186, 526-536.
– reference: Tuskan GA, DiFazio S, Jansson S et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596-1604.
– reference: Wang ET, Sandberg R, Luo SJ et al. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470-476.
– reference: Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256-276.
– reference: Wright S (1951) The genetical structure of populations. Annals of Eugenics, 15, 323-354.
– reference: Nowrousian M (2010) Next-generation sequencing techniques for eucaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryotic Cell, 9, 1300-1310.
– reference: Breen AL, Glenn E, Yeager A, Olson MS (2009) Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae). New Phytologist, 182, 763-773.
– reference: Xie CY, Ying CC, Yanchuk AD, Holowachuk DL (2009) Ecotypic mode of regional differentiation caused by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific Northwest coast. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 39, 519-526.
– reference: Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annual Review of Plant Biology, 58, 435-458.
– reference: Whitham TG, Bailey JK, Schweitzer JA et al. (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 7, 510-523.
– reference: Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Research, 25, 2745-2751.
– reference: Filichkin SA, Priest HD, Givan SA et al. (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20, 45-58.
– reference: Groover AT (2005) What genes make a tree a tree? Trends in Plant Science, 10, 210-214.
– reference: Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Genetics, 10, 135-151.
– reference: Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57-63.
– reference: Nagalakshmi U, Wang Z, Waern K et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344-1349.
– reference: Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754-1760.
– reference: Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8, 186-194.
– reference: Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621-628.
– reference: Savolainen O, Pyhajarvi T (2007) Genomic diversity in forest trees. Current Opinion in Plant Biology, 10, 162-167.
– reference: Keller SR, Olson MS, Silim S, Schroeder W, Tiffin P (2010) Genomic diversity, population structure, and migration following rapid range expansion in the Balsam Poplar, Populus balsamifera. Molecular Ecology, 19, 1212-1226.
– reference: Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nature Reviews Genetics, 11, 345-355.
– reference: Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics, 180, 329-340.
– reference: Zenoni S, Ferrarini A, Giacomelli E et al. (2010) Characterization of transcriptional complexity during berry development in vitis vinifera using RNA-Seq. Plant Physiology, 152, 1787-1795.
– reference: Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.
– reference: Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 18, 1851-1858.
– reference: Trapnell C, Williams BA, Pertea G et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511-515.
– reference: Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365-386.
– reference: Carroll A, Somerville C (2009) Cellulosic biofuels. Annual Review of Plant Biology, 60, 165-182.
– reference: Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11-15.
– reference: Cloonan N, Forrest ARR, Kolle G et al. (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods, 5, 613-619.
– reference: Gilchrist EJ, Haughn GW, Ying CC et al. (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Molecular Ecology, 15, 1367-1378.
– volume: 15
  start-page: 323
  year: 1951
  end-page: 354
  article-title: The genetical structure of populations
  publication-title: Annals of Eugenics
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 10
  start-page: 210
  year: 2005
  end-page: 214
  article-title: What genes make a tree a tree?
  publication-title: Trends in Plant Science
– volume: 7
  start-page: 256
  year: 1975
  end-page: 276
  article-title: On the number of segregating sites in genetical models without recombination
  publication-title: Theoretical Population Biology
– volume: 152
  start-page: 1787
  year: 2010
  end-page: 1795
  article-title: Characterization of transcriptional complexity during berry development in vitis vinifera using RNA‐Seq
  publication-title: Plant Physiology
– volume: 313
  start-page: 1596
  year: 2006
  end-page: 1604
  article-title: The genome of black cottonwood, (Torr. & Gray)
  publication-title: Science
– volume: 8
  start-page: 186
  year: 1998
  end-page: 194
  article-title: Base‐calling of automated sequencer traces using phred. II. Error probabilities
  publication-title: Genome Research
– volume: 132
  start-page: 365
  year: 2000
  end-page: 386
  article-title: Primer3 on the WWW for general users and for biologist programmers
  publication-title: Methods in Molecular Biology
– volume: 39
  start-page: 519
  year: 2009
  end-page: 526
  article-title: Ecotypic mode of regional differentiation caused by restricted gene migration: a case in black cottonwood ( ) along the Pacific Northwest coast
  publication-title: Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere
– volume: 58
  start-page: 435
  year: 2007
  end-page: 458
  article-title: Populus: a model system for plant biology
  publication-title: Annual Review of Plant Biology
– volume: 19
  start-page: 1212
  year: 2010
  end-page: 1226
  article-title: Genomic diversity, population structure, and migration following rapid range expansion in the Balsam Poplar,
  publication-title: Molecular Ecology
– volume: 10
  start-page: 162
  year: 2007
  end-page: 167
  article-title: Genomic diversity in forest trees
  publication-title: Current Opinion in Plant Biology
– volume: 9
  start-page: 1300
  year: 2010
  end-page: 1310
  article-title: Next‐generation sequencing techniques for eucaryotic microorganisms: sequencing‐based solutions to biological problems
  publication-title: Eukaryotic Cell
– volume: 166
  start-page: 39
  year: 2005
  end-page: 48
  article-title: Plant eco‐devo: the potential of poplar as a model organism
  publication-title: New Phytologist
– volume: 15
  start-page: 1367
  year: 2006
  end-page: 1378
  article-title: Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of
  publication-title: Molecular Ecology
– volume: 25
  start-page: 2745
  year: 1997
  end-page: 2751
  article-title: PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence‐based resequencing
  publication-title: Nucleic Acids Research
– volume: 5
  start-page: 621
  year: 2008
  end-page: 628
  article-title: Mapping and quantifying mammalian transcriptomes by RNA‐Seq
  publication-title: Nature Methods
– volume: 186
  start-page: 526
  year: 2010
  end-page: 536
  article-title: Nucleotide diversity and linkage disequilibrium in balsam poplar ( )
  publication-title: New Phytologist
– volume: 60
  start-page: 165
  year: 2009
  end-page: 182
  article-title: Cellulosic biofuels
  publication-title: Annual Review of Plant Biology
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  article-title: Fast and accurate short read alignment with burrows‐wheeler transform
  publication-title: Bioinformatics
– volume: 10
  start-page: 57
  year: 2009
  end-page: 63
  article-title: RNA‐Seq: a revolutionary tool for transcriptomics
  publication-title: Nature Reviews Genetics
– volume: 11
  start-page: 345
  year: 2010
  end-page: 355
  article-title: Alternative splicing and evolution: diversification, exon definition and function
  publication-title: Nature Reviews Genetics
– volume: 19
  start-page: 11
  year: 1987
  end-page: 15
  article-title: A rapid DNA isolation procedure from small quantities of fresh leaf tissues
  publication-title: Phytochemical Bulletin
– volume: 20
  start-page: 45
  year: 2010
  end-page: 58
  article-title: Genome‐wide mapping of alternative splicing in Arabidopsis thaliana
  publication-title: Genome Research
– volume: 182
  start-page: 763
  year: 2009
  end-page: 773
  article-title: Nucleotide diversity among natural populations of a North American poplar ( , Salicaceae)
  publication-title: New Phytologist
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  article-title: Transcript assembly and quantification by RNA‐Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nature Biotechnology
– volume: 8
  start-page: 175
  year: 1998
  end-page: 185
  article-title: Base‐calling of automated sequencer traces using phred. I. Accuracy assessment
  publication-title: Genome Research
– volume: 5
  start-page: 613
  year: 2008
  end-page: 619
  article-title: Stem cell transcriptome profiling via massive‐scale mRNA sequencing
  publication-title: Nature Methods
– volume: 320
  start-page: 1344
  year: 2008
  end-page: 1349
  article-title: The transcriptional landscape of the yeast genome defined by RNA sequencing
  publication-title: Science
– volume: 456
  start-page: 470
  year: 2008
  end-page: 476
  article-title: Alternative isoform regulation in human tissue transcriptomes
  publication-title: Nature
– volume: 18
  start-page: 1851
  year: 2008
  end-page: 1858
  article-title: Mapping short DNA sequencing reads and calling variants using mapping quality scores
  publication-title: Genome Research
– volume: 180
  start-page: 329
  year: 2008
  end-page: 340
  article-title: Multilocus patterns of nucleotide polymorphism and the demographic history of
  publication-title: Genetics
– volume: 10
  start-page: 135
  year: 2009
  end-page: 151
  article-title: Applications of new sequencing technologies for transcriptome analysis
  publication-title: Annual Review of Genomics and Human Genetics
– volume: 7
  start-page: 510
  year: 2006
  end-page: 523
  article-title: A framework for community and ecosystem genetics: from genes to ecosystems
  publication-title: Nature Reviews Genetics
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1158441
– ident: e_1_2_7_4_1
  doi: 10.1038/nmeth.1223
– ident: e_1_2_7_18_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_7_22_1
  doi: 10.1093/nar/25.14.2745
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1469-8137.2009.02779.x
– ident: e_1_2_7_31_1
  doi: 10.1016/0040-5809(75)90020-9
– ident: e_1_2_7_15_1
  doi: 10.1038/nrg2776
– volume: 132
  start-page: 365
  year: 2000
  ident: e_1_2_7_25_1
  article-title: Primer3 on the WWW for general users and for biologist programmers
  publication-title: Methods in Molecular Biology
– ident: e_1_2_7_16_1
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1469-1809.1949.tb02451.x
– ident: e_1_2_7_23_1
  doi: 10.1128/EC.00123-10
– ident: e_1_2_7_20_1
  doi: 10.1038/nmeth.1226
– ident: e_1_2_7_29_1
  doi: 10.1038/nature07509
– ident: e_1_2_7_6_1
  doi: 10.1007/s10592-005-9073-x
– ident: e_1_2_7_12_1
  doi: 10.1534/genetics.108.090431
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1365-294X.2010.04546.x
– ident: e_1_2_7_8_1
  doi: 10.1101/gr.8.3.175
– ident: e_1_2_7_7_1
  doi: 10.1101/gr.8.3.186
– ident: e_1_2_7_13_1
  doi: 10.1146/annurev.arplant.58.032806.103956
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-294X.2006.02885.x
– ident: e_1_2_7_11_1
  doi: 10.1016/j.tplants.2005.03.001
– ident: e_1_2_7_26_1
  doi: 10.1016/j.pbi.2007.01.011
– ident: e_1_2_7_19_1
  doi: 10.1146/annurev-genom-082908-145957
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1469-8137.2005.01369.x
– ident: e_1_2_7_35_1
  doi: 10.1104/pp.109.149716
– ident: e_1_2_7_32_1
  doi: 10.1038/nrg1877
– ident: e_1_2_7_34_1
  doi: 10.1139/X08-190
– ident: e_1_2_7_3_1
  doi: 10.1146/annurev.arplant.043008.092125
– ident: e_1_2_7_27_1
  doi: 10.1038/nbt.1621
– ident: e_1_2_7_9_1
  doi: 10.1101/gr.093302.109
– ident: e_1_2_7_30_1
  doi: 10.1038/nrg2484
– ident: e_1_2_7_17_1
  doi: 10.1101/gr.078212.108
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1469-8137.2009.03174.x
– ident: e_1_2_7_28_1
  doi: 10.1126/science.1128691
SSID ssj0060974
Score 2.321105
Snippet The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of...
The western black cottonwood ( Populus trichocarpa ) was the first tree to have its genome fully sequenced and has emerged as the model species for the study...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms alternative splicing
Biofuels
Candidate species
Chromosome Mapping
evolution
Evolution & development
exons
Gene Expression Profiling
Genes
Genetics
Genome, Plant
Genomes
Genomics
high-throughput nucleotide sequencing
introns
lignocellulose
mRNA
next generation sequencing
Polymorphism, Single Nucleotide
Populus
Populus - genetics
Populus trichocarpa
secondary xylem
Sequence Analysis, DNA
single nucleotide polymorphism
transcriptome
transcriptomics
trees
wood
Xylem
Xylem - genetics
Title SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing
URI https://api.istex.fr/ark:/67375/WNG-Q07FKGT5-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1755-0998.2010.02960.x
https://www.ncbi.nlm.nih.gov/pubmed/21429165
https://www.proquest.com/docview/1246073677
https://www.proquest.com/docview/1663642556
https://www.proquest.com/docview/859735086
https://www.proquest.com/docview/860389973
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-0IPjitzZtlRVE9CFHks1-5FH0rkXpUW0PD1_W3WRX5TQpvTvo-dc7s8kFr1Qp4ltgP0gmM7O_2Z39DSHPZAkY3rgill5BgFJ5EatKmTjPfZrJTPkyxcvJh2NxMMnfTvm0y3_CuzAtP0S_4YaWEfw1Grix800jl5zHgHDWGVoZoPEB4smUCaTRf_OhZ5ISSREImbshanohqeeyiTZWquveNIBfUfTnl4HRTWwbFqfRbTJbf1abkzIbLBd2UP68wPj4f777DrnVYVj6qlW6u-Saq--RG8PAf726Tz4fj48o3vbF7NAV_VZTi7uEFFkgmpDjQ18cYd2w5ZxifYCvDR4CmZfUruhpX08MmmAVDT6t-eEo3pIKSd-w1D4gk9Hw5PVB3BVyiEuuiiTOMuMhLDMuMTnPPPNClcw5XirAGzZnzCtlGWCb1FspuUmVMoHY3vCEZVXCHpKtuqndNqEAaIzhVnibuLzIeZGUFatSz6wTntsyInL903TZsZxjsY3v-rdoB-SnUX4a5aeD_PR5RNJ-5GnL9HGFMdugF9p8AYesJ8cZHgOnRS4LnkXkeVCWfi5zNsMkOsn1x_G-fp_I0bv9E64_RWRvrU268x9zDahLgPMVUkbkad8Mlo_HOaZ2zRL6AFiE6JFzERH6hz4K4kUGGPxvXUTgWJQsIo9aXe5fGen4IHzgERFBI68sF304HOPTzr8O3CU32817TPbbI1uLs6V7DOhvYZ8Eu_4FEVJG6Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMEL37DAACMhBA-pkjj-yCNC7Qpbq8FaUe3F2KkNaKOZtlZa-eu5c9KITgNNiLdItqP4cnf-nX3-HSEvZQkY3rgill5BgDL1IlZTZeI892kmM-XLFC8nD4aiP84_TPikKQeEd2Fqfoh2ww0tI_hrNHDckF63csl5DBBnlaKVARzvAKC8Fo7rECF9armkRFIESuZmjJqcS-u56E1ra9VVbypAsCj8s4vg6Dq6DctT7zY5Wk2szko57CzmtlP-PMf5-J9mfofcamAsfVvr3V1yxc3ukevdQIG9vE--7A_3KF74xQTRJf0-oxY3CikSQVQhzYe-3sPSYYtTiiUCvlV4DmTeULukx21JMWiChTS4teqHo3hRKuR9w2r7gIx73dG7ftzUcohLrookzjLjITIzLjHwazzzQpXMOV4qgBw2Z8wrZRnAm9RbKblJlTKB297whGXThD0kG7Nq5jYJBUxjDLfC28TlRc6LpJyyaeqZdcJzW0ZErv6aLhuic6y3caR_C3hAfhrlp1F-OshPn0UkbUce12QflxizCYqhzVfwyXq8n-FJcFrksuBZRF4FbWnfZU4OMY9Ocv15uK0_JrK3sz3i-iAiWyt10o0LOdUAvAT4XyFlRF60zWD8eKJjZq5aQB_AixBAci4iQv_QR0HIyACG_62LCDSLkkXkUa3M7ScjIx9EEDwiIqjkpeWiB90hPj3-14HPyY3-aLCrd98Pd56Qm_VePub-bZGN-cnCPQUwOLfPgpH_AorASwc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMQL37DAACMhBA-pkjj-yCOCdoOxqrBNVLwYO7EBFZpqa6WVv547J43oNNCEeIsUO0ou9_E7-_w7Qp7KEjC8cUUsvYIEpfIiVpUycZ77NJOZ8mWKh5P3hmLnMH875uO2_gnPwjT8EN2CG1pG8Ndo4LPKrxu55DwGhLOq0MoAjfcAT17KBURNBEgfOiopkRSBkbmdo8anqnrOetJaqLroTQ0AFmV_chYaXQe3IToNrpPJ6ruaopRJbzG3vfLnKcrH__PhN8i1FsTSl43W3SQX3PQWudwPBNjL2-Tz_nBE8bgvlocu6bcptbhMSJEGog5FPvT5CBuHLY4pNgj4WuMukHlB7ZLOuoZicAvCaHBq9Q9H8ZhUqPqGWHuHHA76B6924raTQ1xyVSRxlhkPeZlxicl55pkXqmTO8VIB4LA5Y14pywDcpN5KyU2qlAnM9oYnLKsSdpdsTOup2yQUEI0x3ApvE5cXOS-SsmJV6pl1wnNbRkSufpouW5pz7LbxXf-W7oD8NMpPo_x0kJ8-iUjazZw1VB_nmLMJeqHNF_DI-nA_w33gtMhlwbOIPAvK0j3LHE2wik5y_XG4rd8ncrC7fcD1p4hsrbRJtw7kWAPsEuB9hZQRedLdBtPH_RwzdfUCxgBahPSRcxER-ocxChJGBiD8b0NEIFmULCL3Gl3uXhn5-CB_4BERQSPPLRe91x_i1f1_nfiYXBm9Huh3b4a7D8jVZiEfC_-2yMb8aOEeAhKc20fBxH8BT29Jtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SNP+discovery+in+black+cottonwood+%28+Populus+trichocarpa+%29+by+population+transcriptome+resequencing&rft.jtitle=Molecular+ecology+resources&rft.au=GERALDES%2C+ARMANDO&rft.au=PANG%2C+JOHNSON&rft.au=THIESSEN%2C+NINA&rft.au=CEZARD%2C+TIMOTHEE&rft.date=2011-03-01&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=11&rft.issue=s1&rft.spage=81&rft.epage=92&rft_id=info:doi/10.1111%2Fj.1755-0998.2010.02960.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1755_0998_2010_02960_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-0998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-0998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-0998&client=summon