基于双侧图像识别的单株苹果树产量估测模型

利用普通数码相机获取成熟期苹果树图像进行产量估测,具有成本低、操作简单等特点,其关键是估测模型的建立。该文分别按东南和西北2个方向获取富士苹果成熟期的40株果树的80幅图像,通过果实特征提取,获取东南方向识别出的图斑数量(参数1)、西北方向识别出的图斑数量(参数2)、东南方向识别出的图斑像素面积(参数3)、西北识别出的图斑像素面积(参数4),分别以识别出的4个参数及双方向图斑数量之和(参数5)、双方向图斑像素面积之和(参数6)共6个参数为自变量,以获取的单株产量信息为因变量,以奇数组20株果树为建模数据集建立线性回归模型。结果表明以参数5构建的产量估测模型的决定系数R2最高为0.81,相对均方...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 11; pp. 132 - 138
Main Author 钱建平 李明 杨信廷 吴保国 张勇 王衍安
Format Journal Article
LanguageChinese
Published 北京市农林科学院国家农业信息化工程技术研究中心,北京 100097%北京林业大学信息学院,北京100083%山东农业大学生命科学学院,泰安 271018 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.11.017

Cover

Abstract 利用普通数码相机获取成熟期苹果树图像进行产量估测,具有成本低、操作简单等特点,其关键是估测模型的建立。该文分别按东南和西北2个方向获取富士苹果成熟期的40株果树的80幅图像,通过果实特征提取,获取东南方向识别出的图斑数量(参数1)、西北方向识别出的图斑数量(参数2)、东南方向识别出的图斑像素面积(参数3)、西北识别出的图斑像素面积(参数4),分别以识别出的4个参数及双方向图斑数量之和(参数5)、双方向图斑像素面积之和(参数6)共6个参数为自变量,以获取的单株产量信息为因变量,以奇数组20株果树为建模数据集建立线性回归模型。结果表明以参数5构建的产量估测模型的决定系数R2最高为0.81,相对均方根差(NRMSE)值最低为0.11,说明以该参数构建的模型其估测效果最好;进一步利用以参数5构建的估测模型对偶数组20株果树进行验证,其NRMSE值为0.16,估测结果较好,但也存在估测产量较大波动的情况。深入讨论引起估测偏差的情况,后期研究应重点提高逆光、弱光照条件下的成熟期苹果的识别率,及解决由于单果因遮挡被分离而被识别为多果的情况和多果因重叠被识别为单果的情况,以提高识别效果,进而提高产量模型估测效果。
AbstractList 利用普通数码相机获取成熟期苹果树图像进行产量估测,具有成本低、操作简单等特点,其关键是估测模型的建立。该文分别按东南和西北2个方向获取富士苹果成熟期的40株果树的80幅图像,通过果实特征提取,获取东南方向识别出的图斑数量(参数1)、西北方向识别出的图斑数量(参数2)、东南方向识别出的图斑像素面积(参数3)、西北识别出的图斑像素面积(参数4),分别以识别出的4个参数及双方向图斑数量之和(参数5)、双方向图斑像素面积之和(参数6)共6个参数为自变量,以获取的单株产量信息为因变量,以奇数组20株果树为建模数据集建立线性回归模型。结果表明以参数5构建的产量估测模型的决定系数R2最高为0.81,相对均方根差(NRMSE)值最低为0.11,说明以该参数构建的模型其估测效果最好;进一步利用以参数5构建的估测模型对偶数组20株果树进行验证,其NRMSE值为0.16,估测结果较好,但也存在估测产量较大波动的情况。深入讨论引起估测偏差的情况,后期研究应重点提高逆光、弱光照条件下的成熟期苹果的识别率,及解决由于单果因遮挡被分离而被识别为多果的情况和多果因重叠被识别为单果的情况,以提高识别效果,进而提高产量模型估测效果。
TP242.62; 利用普通数码相机获取成熟期苹果树图像进行产量估测,具有成本低、操作简单等特点,其关键是估测模型的建立.该文分别按东南和西北2个方向获取富士苹果成熟期的40株果树的80幅图像,通过果实特征提取,获取东南方向识别出的图斑数量(参数1)、西北方向识别出的图斑数量(参数2)、东南方向识别出的图斑像素面积(参数3)、西北识别出的图斑像素面积(参数4),分别以识别出的4个参数及双方向图斑数量之和(参数5)、双方向图斑像素面积之和(参数6)共6个参数为自变量,以获取的单株产量信息为因变量,以奇数组20株果树为建模数据集建立线性回归模型.结果表明以参数5构建的产量估测模型的决定系数R2最高为0.81,相对均方根差(NRMSE)值最低为0.11,说明以该参数构建的模型其估测效果最好;进一步利用以参数5构建的估测模型对偶数组20株果树进行验证,其NRMSE值为0.16,估测结果较好,但也存在估测产量较大波动的情况.深入讨论引起估测偏差的情况,后期研究应重点提高逆光、弱光照条件下的成熟期苹果的识别率,及解决由于单果因遮挡被分离而被识别为多果的情况和多果因重叠被识别为单果的情况,以提高识别效果,进而提高产量模型估测效果.
Abstract_FL Apples yield estimation with a common digital camera to get mature fruits, has the advantages of low lost, simple operation and other characteristics. Key to the estimation is the establishment of an estimation model. In this paper, 80 images from 40 Fuji trees were acquired from the southeast and northwest directions using a Cannon G7 camera. By fruit feature extraction, 4 parameters were identified, which were identification patch number from southeast direction (parameter 1), identification patch number from northwest direction (parameter 2), patch pixels area from southeast direction (parameter 3) and patch pixels area from northwest direction (parameter 4). A total of 6 parameters, including the above-mention 4 parameters along with the sum of patch number from two directions (parameter 5) and the sum of patch pixels area from two directions (parameter 6) acted as independent variables and single tree yield information acted as the dependent variable. With 20 fruit trees used as the modeling data set, the linear regression model was constructed based on the independent variables and dependent variable. The results showed that the yield estimation model with parameter 5 had the best effects with the highest R2 of 0.81 and the lowest NRMSE (Normal Root Mean Squared Error) value of 0.43. Further, additional 20 fruit trees were verified using the yield estimation model with parameter 5. The estimation result was good with a NRMSE value of 0.59, but there were also fluctuations between estimation yield and actual yield. In the verified 20 fruit trees, there were 10 trees whose estimated yield was higher than the actual yield, and the deviation value of No. 2 tree was maximum of 14.02. There were also 10 trees whose estimated yield was lower than the actual yield, and the deviation value of No. 30 was maximum of 17.79. The reason of estimation errors was discussed. Later studies should focus on improving mature apple recognition rates in conditions of backlighting and weak light, and solve the error recognition in conditions of single apple occlusion and multi apples overlapping. The research will help improve recognition effects and then improve model estimation effects.
Author 钱建平 李明 杨信廷 吴保国 张勇 王衍安
AuthorAffiliation 北京市农林科学院国家农业信息化工程技术研究中心,北京100097 北京林业大学信息学院,北京100083 山东农业大学生命科学学院,泰安271018
AuthorAffiliation_xml – name: 北京市农林科学院国家农业信息化工程技术研究中心,北京 100097%北京林业大学信息学院,北京100083%山东农业大学生命科学学院,泰安 271018
Author_xml – sequence: 1
  fullname: 钱建平 李明 杨信廷 吴保国 张勇 王衍安
BookMark eNo9jz9Lw0Achm-oYK39EILglHi_XHK5Axcp_oOCg-7lLsnVFL1qg2hnxQpVi4OLSq1TRQddHCzST5OL9VtYqTi98PLwvLwzKKfrOkJoHrBNOOWLNTtOEm0Dxo5FGXDbwUBsABuDn0P5_34aFZMkltgD4mPsQh4tmYdBOrgynYt02Dd3Q3PSGb2emfOXr9tTc3mT9Z5H7Y-se5_1rtNB_7vVST_fsvd29vRouu1ZNKXEbhIV_7KAtlZXtkvrVnlzbaO0XLYCj3GLSSKxL5kfecpxIioDxljoKhGGAntKUSUDAOmGRAgWCFcS5mIehb5PeMglKaCFifVIaCV0tVKrHzb0eK-im9XgWP5-BcDAx-TchAx26rp6EI_Z_Ua8JxrNiksdSgnH5Ac7NG8T
ClassificationCodes TP242.62
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2013.11.017
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Yield estimation model of single tree of Fuji apples based on bilateral image identification
DocumentTitle_FL Yield estimation model of single tree of Fuji apples based on bilateral image identification
EndPage 138
ExternalDocumentID nygcxb201311019
46266390
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c589-8b3b07b87e5f22e6bc888d4fadda05ff6fbc11b4d3aa8ca4b38409ed7739d9b3
ISSN 1002-6819
IngestDate Thu May 29 04:04:17 EDT 2025
Wed Feb 14 10:41:46 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords yield estimation
image identification
models
模型
linear regression
富士苹果
Fuji apples
图像识别
线性回归
产量估测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589-8b3b07b87e5f22e6bc888d4fadda05ff6fbc11b4d3aa8ca4b38409ed7739d9b3
Notes 11-2047/S
Apples yield estimation with a common digital camera to get mature fruits, has the advantages of low lost, simple operation and other characteristics. Key to the estimation is the establishment of an estimation model. In this paper, 80 images from 40 Fuji trees were acquired from the southeast and northwest directions using a Cannon G7 camera. By fruit feature extraction, 4 parameters were identified, which were identification patch number from southeast direction (parameter 1), identification patch number from northwest direction (parameter 2), patch pixels area from southeast direction (parameter 3) and patch pixels area from northwest direction (parameter 4). A total of 6 parameters, including the above-mention 4 parameters along with the sum of patch number from two directions (parameter 5) and the sum of patch pixels area from two directions (parameter 6) acted as independent variables and single tree yield information acted as the dependent variable. With 20 fruit trees used as the modeling dat
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201311019
chongqing_primary_46266390
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2013
Publisher 北京市农林科学院国家农业信息化工程技术研究中心,北京 100097%北京林业大学信息学院,北京100083%山东农业大学生命科学学院,泰安 271018
Publisher_xml – name: 北京市农林科学院国家农业信息化工程技术研究中心,北京 100097%北京林业大学信息学院,北京100083%山东农业大学生命科学学院,泰安 271018
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.013428
Snippet 利用普通数码相机获取成熟期苹果树图像进行产量估测,具有成本低、操作简单等特点,其关键是估测模型的建立。该文分别按东南和西北2个方向获取富士苹果成熟期的40株果树的80幅...
TP242.62; 利用普通数码相机获取成熟期苹果树图像进行产量估测,具有成本低、操作简单等特点,其关键是估测模型的建立.该文分别按东南和西北2个方向获取富士苹果成熟期的40株...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 132
SubjectTerms 产量估测
图像识别
富士苹果
模型
线性回归
Title 基于双侧图像识别的单株苹果树产量估测模型
URI http://lib.cqvip.com/qk/90712X/201311/46266390.html
https://d.wanfangdata.com.cn/periodical/nygcxb201311019
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELaSICFAQjxFwkNXxFW0YR_2ri3ReO_2FFLQEKR0p_U-LtUFQiJBWhAgBThR0AAKoQqCAhoKIpRfc3uEf8GMz7mcUBQBzcr3eTwz9uzZY689JmRaBrnHNcucQPuZw8qIO0KE2mFZxNI8Y3lamt0Wt8K5O2x-kS-OjZ8a2bW0tqpns_VDz5X8j1UBA7viKdl_sOyQKQCQBvvCEywMz7-yMU04lU0aK5owfIoEEdGkom6QhKrI0MSYxqwAcxNBFdCEBoF0TJOISijODNKgktMkpMqlSiGxgOISEZlQWbdZ0rNCUYSkIjKcAanT2EWamGNBJAYRnlEjAWTUGzbiQsMTCgrUAZA4ooqjSsqIBkQ1qAqRlQBxfP8dQbHSp7HhHcemGThqGgczRtuGaRBIAJ9kHwKmKKxpdcJy0YzRzqUxs3lAZ5utYfKgUlDlxNRIIHmErFE5UzdhyBUgcnQVZXD81Xb5OCaEwnbcdkywqzD23fdGenjPLscW9pc4bBwKZCjNOIQSZocScCdhMItBYwfnVf-I9M1gcgkOoztOjvm4uoRBS2_OHzi3Hs7fh72vhzcfeAennn2MaRAeTB65F-DVBcMNT_i5n5tv_1ab42Taqnr9KEUx6MjScqd9D1wpc7KtU6ad9ogTtnCGnLazp5oa_BXOkrH1pXPkpGqv2AgyxXlyo3q_09t5WXWf93a3q7e71aPu3pcn1bPPP988rl687m992tv43t9819961dvZ_vW02_vxtf9to__xQ7W5cYHcbiYL9TnHXhHiZFxIR-hAu5EWUcFL3y9CnQkhclbCoJ26vCzDUmeep1kepKnIUqYDXM8o8igKZC51cJFMdJY7xSVSy6CbKjTGJtIp-OiFFG5QgnfrlnkpCl9MkqlhK7TuDgLBtPYNNklqtllatne43-o8bGcPtG_CWcE0auqo8pfJCd_csoIre1fIxOrKWnEVfN1Vfc28Ar8BHDyBnQ
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8F%8C%E4%BE%A7%E5%9B%BE%E5%83%8F%E8%AF%86%E5%88%AB%E7%9A%84%E5%8D%95%E6%A0%AA%E8%8B%B9%E6%9E%9C%E6%A0%91%E4%BA%A7%E9%87%8F%E4%BC%B0%E6%B5%8B%E6%A8%A1%E5%9E%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%92%B1%E5%BB%BA%E5%B9%B3+%E6%9D%8E%E6%98%8E+%E6%9D%A8%E4%BF%A1%E5%BB%B7+%E5%90%B4%E4%BF%9D%E5%9B%BD+%E5%BC%A0%E5%8B%87+%E7%8E%8B%E8%A1%8D%E5%AE%89&rft.date=2013&rft.issn=1002-6819&rft.volume=29&rft.issue=11&rft.spage=132&rft.epage=138&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.11.017&rft.externalDocID=46266390
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg