Sister Grouping of Chimpanzees and Humans as Revealed by Genome-Wide Phylogenetic Analysis of Brain Gene Expression Profiles
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiolo...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 101; no. 9; pp. 2957 - 2962 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.03.2004
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.0308725100 |
Cover
Abstract | Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. |
---|---|
AbstractList | Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of approximately 45,000 probe sets on microarray chips representing transcripts of all or most human genes, approximately 16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy.Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of approximately 45,000 probe sets on microarray chips representing transcripts of all or most human genes, approximately 16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of approximately 45,000 probe sets on microarray chips representing transcripts of all or most human genes, approximately 16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of {approx}45,000 probe sets on microarray chips representing transcripts of all or most human genes, {approx}16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. [PUBLICATION ABSTRACT] Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of [approx]45,000 probe sets on microarray chips representing transcripts of all or most human genes, [approx]16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. |
Author | Johnson, Robert M. Grossman, Lawrence I. Liu, Guozhen Hof, Patrick R. Xu, Wenbo Kapatos, Gregory Uddin, Monica Goodman, Morris Wildman, Derek E. |
AuthorAffiliation | Center for Molecular Medicine and Genetics, Departments of ‡ Anatomy and Cell Biology, ¶ Biochemistry and Molecular Biology, and †† Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201; § Bioinformatics Facility, 5107 Biological Science Building, 5047 Gullen Mall, Detroit, MI 48202; and ∥ Department of Neurobiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029 |
AuthorAffiliation_xml | – name: Center for Molecular Medicine and Genetics, Departments of ‡ Anatomy and Cell Biology, ¶ Biochemistry and Molecular Biology, and †† Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201; § Bioinformatics Facility, 5107 Biological Science Building, 5047 Gullen Mall, Detroit, MI 48202; and ∥ Department of Neurobiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029 |
Author_xml | – sequence: 1 givenname: Monica surname: Uddin fullname: Uddin, Monica – sequence: 2 givenname: Derek E. surname: Wildman fullname: Wildman, Derek E. – sequence: 3 givenname: Guozhen surname: Liu fullname: Liu, Guozhen – sequence: 4 givenname: Wenbo surname: Xu fullname: Xu, Wenbo – sequence: 5 givenname: Robert M. surname: Johnson fullname: Johnson, Robert M. – sequence: 6 givenname: Patrick R. surname: Hof fullname: Hof, Patrick R. – sequence: 7 givenname: Gregory surname: Kapatos fullname: Kapatos, Gregory – sequence: 8 givenname: Lawrence I. surname: Grossman fullname: Grossman, Lawrence I. – sequence: 9 givenname: Morris surname: Goodman fullname: Goodman, Morris |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14976249$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstv1DAQxi1URB9w5oKQxQFOaf2IY-fAoazKFqkSFQ9xtLzJZNerxA52UnURfzyOdtmWCsTJlub3jb6Z-Y7RgfMOEHpOySklkp_1zsRTwomSTFBCHqEjSkqaFXlJDtARIUxmKmf5ITqOcU0IKYUiT9AhzUtZsLw8Qj8_2zhAwPPgx966JfYNnq1s1xv3AyBi42p8OXbGpW_En-AGTAs1XmzwHJzvIPtma8DXq03rl-BgsBU-d6bdRBunVu-CsW5CAV_c9gFitN7h6-Ab20J8ih43po3wbPeeoK_vL77MLrOrj_MPs_OrrBJKDZlslKxUk1dEEtYwU0vOi6IpQRrFIU2kciEqIgQ1gijWVA3PjSmUqReqqCTlJ-jttm8_LjqoK3BDMK3ug-1M2GhvrP6z4uxKL_2N5oWQTCb9650--O8jxEF3NlbQtsaBH6OWVJJk6f8gLVkhS8YS-OoBuPZjSIuLmhGaU0bEZPvlfdt7v7-vlwCxBargYwzQ6MoOZkgrTlPYVlOip5ToKSX6LiVJd_ZAt2_9T8WbnZWpcEdTXWpWCqmbsW0HuB3umf47mYAXW2AdBx_2BOeSUq74L_rK4VE |
CitedBy_id | crossref_primary_10_1093_nar_gkl354 crossref_primary_10_1073_pnas_0911376106 crossref_primary_10_1111_j_1601_183X_2006_00195_x crossref_primary_10_1016_j_jhevol_2012_12_003 crossref_primary_10_1093_gbe_evv132 crossref_primary_10_1002_evan_20131 crossref_primary_10_3390_life11050388 crossref_primary_10_1186_1471_2164_8_208 crossref_primary_10_1186_1471_2105_5_165 crossref_primary_10_1007_s11064_018_2546_3 crossref_primary_10_1016_j_trre_2006_05_006 crossref_primary_10_1002_cne_21792 crossref_primary_10_1371_journal_pbio_0030274 crossref_primary_10_1016_j_jhevol_2011_02_003 crossref_primary_10_1093_molbev_msw176 crossref_primary_10_1073_pnas_1019164108 crossref_primary_10_1002_cne_23074 crossref_primary_10_1073_pnas_0606337103 crossref_primary_10_1109_TCBB_2021_3136792 crossref_primary_10_1016_j_jhevol_2010_10_004 crossref_primary_10_1098_rspb_2009_1831 crossref_primary_10_1002_hbm_20494 crossref_primary_10_1002_evan_20080 crossref_primary_10_1038_sj_mp_4002095 crossref_primary_10_1093_gbe_evq002 crossref_primary_10_1146_annurev_anthro_36_081406_094339 crossref_primary_10_1007_s00239_010_9401_8 crossref_primary_10_1038_nrg2363 crossref_primary_10_1038_ng1705 crossref_primary_10_1038_nrg1940 crossref_primary_10_1093_gbe_evx028 crossref_primary_10_1007_s00439_005_1287_y crossref_primary_10_1007_s12035_012_8262_0 crossref_primary_10_1111_j_1469_7580_2008_00868_x crossref_primary_10_1038_s41380_020_0680_1 crossref_primary_10_1146_annurev_ecolsys_102209_144653 crossref_primary_10_1371_journal_pbio_1001214 crossref_primary_10_1016_j_cobeha_2017_02_003 crossref_primary_10_1152_physrev_00032_2007 crossref_primary_10_1177_026119290503300501 crossref_primary_10_1002_cne_23843 crossref_primary_10_5802_crbiol_92 crossref_primary_10_1111_j_1365_294X_2007_03201_x crossref_primary_10_3280_PARA2017_002006 crossref_primary_10_15252_embj_201695810 crossref_primary_10_1016_j_humimm_2012_01_010 crossref_primary_10_3390_genes16020117 crossref_primary_10_1016_j_ympev_2010_12_006 crossref_primary_10_1002_humu_20420 crossref_primary_10_1016_j_mehy_2008_05_034 crossref_primary_10_1016_j_transproceed_2008_01_029 crossref_primary_10_1093_bib_bbv041 crossref_primary_10_1073_pnas_0605938103 crossref_primary_10_1002_ajpa_22778 crossref_primary_10_1038_s41586_021_03952_y crossref_primary_10_1371_journal_pone_0003279 crossref_primary_10_1098_rspb_2010_2433 crossref_primary_10_1186_gb_2010_11_7_r78 crossref_primary_10_1371_journal_pone_0291943 crossref_primary_10_1002_jez_b_21000 crossref_primary_10_1158_0008_5472_CAN_07_5272 crossref_primary_10_1093_gbe_evq063 crossref_primary_10_1093_cercor_bhp062 crossref_primary_10_1073_pnas_0914626107 crossref_primary_10_1038_sj_hdy_6801000 crossref_primary_10_1177_026119291103900608 crossref_primary_10_1038_nature10532 crossref_primary_10_1111_j_1469_7580_2008_00865_x crossref_primary_10_3390_ijms23073785 crossref_primary_10_1016_j_freeradbiomed_2019_03_016 crossref_primary_10_1002_ajhb_22394 crossref_primary_10_1093_molbev_msr009 crossref_primary_10_1111_j_1469_8137_2006_01662_x crossref_primary_10_1002_ajpa_22900 crossref_primary_10_1007_s00429_014_0931_5 crossref_primary_10_1038_cmi_2010_16 crossref_primary_10_1073_pnas_1006183107 crossref_primary_10_1002_bies_20241 crossref_primary_10_1038_jhg_2013_55 crossref_primary_10_1016_j_gde_2004_08_007 crossref_primary_10_1371_journal_pcbi_1000777 crossref_primary_10_1093_cercor_bhs239 crossref_primary_10_1093_toxsci_kfi243 crossref_primary_10_1016_j_jhevol_2014_05_016 crossref_primary_10_1073_pnas_0712400105 crossref_primary_10_1073_pnas_1201894109 crossref_primary_10_1038_nrg1634 crossref_primary_10_1186_1471_2105_10_77 crossref_primary_10_1186_1471_2164_11_323 crossref_primary_10_1016_j_tins_2008_08_010 crossref_primary_10_1016_j_ymeth_2005_09_017 crossref_primary_10_1016_j_fas_2008_05_005 crossref_primary_10_1073_pnas_1212855109 crossref_primary_10_1146_annurev_psych_062220_051256 crossref_primary_10_1007_s00439_006_0270_6 crossref_primary_10_1016_j_cell_2017_06_036 crossref_primary_10_1186_gb_2008_9_8_r124 crossref_primary_10_1093_molbev_msp192 crossref_primary_10_1016_j_neuron_2015_03_035 crossref_primary_10_1073_pnas_0605843103 crossref_primary_10_1093_cercor_bhm089 crossref_primary_10_1111_j_1601_5215_2007_00204_x crossref_primary_10_1007_s11598_006_9032_7 crossref_primary_10_1038_nrg1469 crossref_primary_10_1038_nrn3372 crossref_primary_10_1146_annurev_genom_9_081307_164420 crossref_primary_10_1111_j_1469_7580_2007_00840_x crossref_primary_10_1007_s00439_006_0134_0 crossref_primary_10_1038_nrg1747 crossref_primary_10_1002_ajhb_20516 crossref_primary_10_1371_journal_pgen_0020080 crossref_primary_10_1016_j_ygeno_2005_01_012 crossref_primary_10_1007_s00438_007_0210_8 crossref_primary_10_2174_1874467217666230817092415 crossref_primary_10_1093_sysbio_syaa003 crossref_primary_10_1038_nature04103 crossref_primary_10_1002_cne_25387 crossref_primary_10_1146_annurev_genom_091212_153509 crossref_primary_10_1093_icb_icaa109 crossref_primary_10_1186_1746_4811_1_10 crossref_primary_10_1101_gr_3737405 crossref_primary_10_1016_j_neuron_2012_05_034 crossref_primary_10_1093_cercor_bht354 crossref_primary_10_1073_pnas_2411918121 crossref_primary_10_1126_science_aan3456 crossref_primary_10_1007_s00429_013_0662_z crossref_primary_10_1016_j_jneumeth_2005_09_007 crossref_primary_10_1186_1471_2148_8_8 crossref_primary_10_1002_cne_20448 crossref_primary_10_1038_nrg2428 crossref_primary_10_1007_s11427_012_4350_7 crossref_primary_10_1101_gr_2538704 crossref_primary_10_1371_journal_pone_0017514 crossref_primary_10_1073_pnas_0509585102 crossref_primary_10_1093_nar_gkq817 crossref_primary_10_1016_j_gde_2014_09_001 crossref_primary_10_1186_1471_2164_8_344 crossref_primary_10_1146_annurev_anthro_102215_100009 crossref_primary_10_3389_fnmol_2016_00138 crossref_primary_10_1002_cfg_355 crossref_primary_10_1002_evan_21831 crossref_primary_10_1016_j_cell_2004_11_040 crossref_primary_10_1016_j_tig_2005_06_012 crossref_primary_10_1002_ajpa_20674 crossref_primary_10_1002_cne_23777 crossref_primary_10_1101_gr_3732505 crossref_primary_10_1128_JVI_80_9_4415_4421_2006 crossref_primary_10_1371_journal_pgen_1005661 crossref_primary_10_1186_s12915_023_01612_3 crossref_primary_10_1073_pnas_1201895109 crossref_primary_10_1007_s00439_014_1491_8 crossref_primary_10_1002_ajhb_21225 crossref_primary_10_1093_cercor_bhaa149 crossref_primary_10_1101_gad_305813_117 crossref_primary_10_1159_000358581 crossref_primary_10_1002_prca_200780047 crossref_primary_10_1371_journal_pgen_0030059 crossref_primary_10_1186_1476_4598_8_74 crossref_primary_10_1186_gb_2005_6_7_r57 |
Cites_doi | 10.1086/302218 10.1038/75556 10.1002/1097-0029(20001001)51:1<45::AID-JEMT5>3.0.CO;2-O 10.1037/0735-7036.116.1.12 10.1126/science.288.5472.1835 10.1007/PL00006172 10.1093/nar/29.1.137 10.1126/science.278.5337.412 10.1073/pnas.2135499100 10.1007/BF01732758 10.1006/mpev.2000.0833 10.1016/0149-7634(85)90012-0 10.1073/pnas.1232172100 10.1126/science.1088821 10.1073/pnas.96.9.5268 10.1073/pnas.97.4.1944 10.1007/s10071-003-0183-x 10.1126/science.1089134 10.1002/cne.903550106 10.1016/S0304-3940(01)01964-4 10.1126/science.3116671 10.1073/pnas.87.1.256 10.1073/pnas.2133766100 10.1093/nar/gkg624 10.1093/oxfordjournals.molbev.a026144 10.1523/JNEUROSCI.10-04-01331.1990 10.1073/pnas.0931463100 10.1038/21415 10.1126/science.1068996 10.1006/mpev.2000.0890 10.1111/j.1749-6632.2001.tb03476.x 10.1126/science.675251 10.1016/0166-2236(89)90165-3 10.1016/S0168-9525(99)01882-X 10.1016/S0378-1119(01)00800-9 10.1006/geno.2002.6698 10.1101/gr.187601 10.1523/JNEUROSCI.11-07-01942.1991 10.1016/S0168-9525(02)00040-9 10.1093/genetics/165.2.747 10.1093/oxfordjournals.molbev.a004005 10.1093/oxfordjournals.molbev.a025798 10.1007/BF02099995 10.1007/BF02111285 10.1006/mpev.1998.0495 |
ContentType | Journal Article |
Copyright | Copyright 1993/2004 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Mar 2, 2004 Copyright © 2004, The National Academy of Sciences 2004 |
Copyright_xml | – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Mar 2, 2004 – notice: Copyright © 2004, The National Academy of Sciences 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0308725100 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Anthropology |
EISSN | 1091-6490 |
EndPage | 2962 |
ExternalDocumentID | PMC365727 751968181 14976249 10_1073_pnas_0308725100 101_9_2957 3371138 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM65580 – fundername: NIGMS NIH HHS grantid: R24 GM065580 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c588t-7f87c8f4c0702f2ad73366f9e7a83e5808455c0551a5082fcf34aa68adb86c713 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 14:05:45 EDT 2025 Fri Sep 05 09:33:59 EDT 2025 Fri Sep 05 02:51:12 EDT 2025 Wed Aug 20 23:58:36 EDT 2025 Wed Feb 19 01:37:48 EST 2025 Thu Apr 24 22:55:11 EDT 2025 Tue Jul 01 03:59:42 EDT 2025 Wed Nov 11 00:29:41 EST 2020 Thu May 30 08:51:26 EDT 2019 Thu May 29 08:41:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c588t-7f87c8f4c0702f2ad73366f9e7a83e5808455c0551a5082fcf34aa68adb86c713 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Abbreviations: ACC, anterior cingulate cortex; ETC, electron transport chain; GO, Gene Ontology; OE, ontoexpress; mrca, most recent common ancestor. Contributed by Morris Goodman, December 30, 2003 To whom correspondence should be addressed. E-mail: mgoodwayne@aol.com. |
OpenAccessLink | http://doi.org/10.1073/pnas.0308725100 |
PMID | 14976249 |
PQID | 201412051 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_201412051 pnas_primary_101_9_2957_fulltext jstor_primary_3371138 proquest_miscellaneous_71703367 crossref_citationtrail_10_1073_pnas_0308725100 pubmedcentral_primary_oai_pubmedcentral_nih_gov_365727 pnas_primary_101_9_2957 crossref_primary_10_1073_pnas_0308725100 pubmed_primary_14976249 proquest_miscellaneous_19267922 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-03-02 |
PublicationDateYYYYMMDD | 2004-03-02 |
PublicationDate_xml | – month: 03 year: 2004 text: 2004-03-02 day: 02 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2004 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 (e_1_3_2_8_2) 1968; 1 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_1_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 (e_1_3_2_10_2) 2003; 45 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 14566573 - Primates. 2004 Jan;45(1):25-32 1648602 - J Neurosci. 1991 Jul;11(7):1942-58 10335655 - Mol Biol Evol. 1999 May;16(5):619-26 9115172 - J Mol Evol. 1997 May;44(5):477-91 11411161 - Ann N Y Acad Sci. 2001 May;935:107-17 2469224 - Trends Neurosci. 1989 Mar;12(3):94-101 9190060 - Mol Biol Evol. 1997 Jun;14(6):595-601 3125341 - J Mol Evol. 1987;26(1-2):99-121 12547510 - Trends Genet. 2003 Feb;19(2):63-5 11943455 - Gene. 2002 Mar 6;286(1):13-9 2296583 - Proc Natl Acad Sci U S A. 1990 Jan;87(1):256-9 12824416 - Nucleic Acids Res. 2003 Jul 1;31(13):3775-81 11002352 - Microsc Res Tech. 2000 Oct 1;51(1):45-53 9334292 - Science. 1997 Oct 17;278(5337):412-9 6267311 - J Mol Evol. 1981;17(4):197-213 7636011 - J Comp Neurol. 1995 Apr 24;355(1):27-37 10637631 - Trends Genet. 2000 Jan;16(1):44-7 3116671 - Science. 1987 Oct 16;238(4825):369-73 2109087 - J Mol Evol. 1990 Mar;30(3):260-6 11438383 - Neurosci Lett. 2001 Jul 20;307(3):139-42 14671302 - Science. 2003 Dec 12;302(5652):1960-3 10846167 - Science. 2000 Jun 9;288(5472):1835-8 11125071 - Nucleic Acids Res. 2001 Jan 1;29(1):137-40 9915940 - Am J Hum Genet. 1999 Jan;64(1):31-9 12766228 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7181-8 14557539 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13030-5 14551436 - Science. 2003 Oct 10;302(5643):290-2 14573485 - Genetics. 2003 Oct;165(2):747-57 12270909 - Mol Biol Evol. 2002 Oct;19(10):1812-5 10677559 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1944-8 10802651 - Nat Genet. 2000 May;25(1):25-9 4080283 - Neurosci Biobehav Rev. 1985 Winter;9(4):653-65 675251 - Science. 1978 Aug 18;201(4356):641-4 11829497 - Genomics. 2002 Feb;79(2):266-70 11083942 - Mol Phylogenet Evol. 2000 Nov;17(2):294-304 11435396 - Genome Res. 2001 Jul;11(7):1149-55 14561894 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12787-91 2158531 - J Neurosci. 1990 Apr;10(4):1331-40 10385119 - Nature. 1999 Jun 17;399(6737):682-5 11951044 - Science. 2002 Apr 12;296(5566):340-3 12898285 - Anim Cogn. 2003 Dec;6(4):213-23 9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98 10220455 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5268-73 11161739 - Mol Phylogenet Evol. 2001 Jan;18(1):26-36 11926680 - J Comp Psychol. 2002 Mar;116(1):12-26 12716970 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5873-8 |
References_xml | – ident: e_1_3_2_32_2 doi: 10.1086/302218 – ident: e_1_3_2_24_2 doi: 10.1038/75556 – volume: 1 start-page: 165 year: 1968 ident: e_1_3_2_8_2 publication-title: Anim. Behav. Monogr. – ident: e_1_3_2_22_2 doi: 10.1002/1097-0029(20001001)51:1<45::AID-JEMT5>3.0.CO;2-O – ident: e_1_3_2_13_2 doi: 10.1037/0735-7036.116.1.12 – ident: e_1_3_2_21_2 doi: 10.1126/science.288.5472.1835 – ident: e_1_3_2_41_2 doi: 10.1007/PL00006172 – ident: e_1_3_2_50_2 – ident: e_1_3_2_31_2 doi: 10.1093/nar/29.1.137 – ident: e_1_3_2_18_2 doi: 10.1126/science.278.5337.412 – ident: e_1_3_2_34_2 doi: 10.1073/pnas.2135499100 – ident: e_1_3_2_45_2 doi: 10.1007/BF01732758 – ident: e_1_3_2_44_2 doi: 10.1006/mpev.2000.0833 – ident: e_1_3_2_12_2 doi: 10.1016/0149-7634(85)90012-0 – ident: e_1_3_2_1_2 doi: 10.1073/pnas.1232172100 – ident: e_1_3_2_25_2 – ident: e_1_3_2_14_2 doi: 10.1126/science.1088821 – ident: e_1_3_2_16_2 doi: 10.1073/pnas.96.9.5268 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.97.4.1944 – ident: e_1_3_2_9_2 doi: 10.1007/s10071-003-0183-x – ident: e_1_3_2_40_2 doi: 10.1126/science.1089134 – ident: e_1_3_2_17_2 doi: 10.1002/cne.903550106 – ident: e_1_3_2_33_2 doi: 10.1016/S0304-3940(01)01964-4 – ident: e_1_3_2_2_2 doi: 10.1126/science.3116671 – ident: e_1_3_2_19_2 doi: 10.1073/pnas.87.1.256 – ident: e_1_3_2_6_2 doi: 10.1073/pnas.2133766100 – ident: e_1_3_2_29_2 doi: 10.1093/nar/gkg624 – ident: e_1_3_2_43_2 doi: 10.1093/oxfordjournals.molbev.a026144 – ident: e_1_3_2_39_2 doi: 10.1523/JNEUROSCI.10-04-01331.1990 – ident: e_1_3_2_48_2 doi: 10.1073/pnas.0931463100 – ident: e_1_3_2_7_2 doi: 10.1038/21415 – ident: e_1_3_2_23_2 doi: 10.1126/science.1068996 – ident: e_1_3_2_49_2 doi: 10.1006/mpev.2000.0890 – ident: e_1_3_2_15_2 doi: 10.1111/j.1749-6632.2001.tb03476.x – ident: e_1_3_2_11_2 doi: 10.1126/science.675251 – ident: e_1_3_2_37_2 doi: 10.1016/0166-2236(89)90165-3 – volume: 45 start-page: 25 year: 2003 ident: e_1_3_2_10_2 publication-title: Primates – ident: e_1_3_2_30_2 doi: 10.1016/S0168-9525(99)01882-X – ident: e_1_3_2_47_2 doi: 10.1016/S0378-1119(01)00800-9 – ident: e_1_3_2_28_2 doi: 10.1006/geno.2002.6698 – ident: e_1_3_2_26_2 doi: 10.1101/gr.187601 – ident: e_1_3_2_38_2 doi: 10.1523/JNEUROSCI.11-07-01942.1991 – ident: e_1_3_2_35_2 doi: 10.1016/S0168-9525(02)00040-9 – ident: e_1_3_2_36_2 doi: 10.1093/genetics/165.2.747 – ident: e_1_3_2_46_2 doi: 10.1093/oxfordjournals.molbev.a004005 – ident: e_1_3_2_42_2 doi: 10.1093/oxfordjournals.molbev.a025798 – ident: e_1_3_2_27_2 – ident: e_1_3_2_4_2 doi: 10.1007/BF02099995 – ident: e_1_3_2_3_2 doi: 10.1007/BF02111285 – ident: e_1_3_2_5_2 doi: 10.1006/mpev.1998.0495 – reference: 14557539 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13030-5 – reference: 14566573 - Primates. 2004 Jan;45(1):25-32 – reference: 2469224 - Trends Neurosci. 1989 Mar;12(3):94-101 – reference: 9915940 - Am J Hum Genet. 1999 Jan;64(1):31-9 – reference: 12824416 - Nucleic Acids Res. 2003 Jul 1;31(13):3775-81 – reference: 10335655 - Mol Biol Evol. 1999 May;16(5):619-26 – reference: 10846167 - Science. 2000 Jun 9;288(5472):1835-8 – reference: 2296583 - Proc Natl Acad Sci U S A. 1990 Jan;87(1):256-9 – reference: 14551436 - Science. 2003 Oct 10;302(5643):290-2 – reference: 7636011 - J Comp Neurol. 1995 Apr 24;355(1):27-37 – reference: 11161739 - Mol Phylogenet Evol. 2001 Jan;18(1):26-36 – reference: 12547510 - Trends Genet. 2003 Feb;19(2):63-5 – reference: 11943455 - Gene. 2002 Mar 6;286(1):13-9 – reference: 12270909 - Mol Biol Evol. 2002 Oct;19(10):1812-5 – reference: 11083942 - Mol Phylogenet Evol. 2000 Nov;17(2):294-304 – reference: 11411161 - Ann N Y Acad Sci. 2001 May;935:107-17 – reference: 9115172 - J Mol Evol. 1997 May;44(5):477-91 – reference: 11435396 - Genome Res. 2001 Jul;11(7):1149-55 – reference: 3116671 - Science. 1987 Oct 16;238(4825):369-73 – reference: 11002352 - Microsc Res Tech. 2000 Oct 1;51(1):45-53 – reference: 14573485 - Genetics. 2003 Oct;165(2):747-57 – reference: 11926680 - J Comp Psychol. 2002 Mar;116(1):12-26 – reference: 2158531 - J Neurosci. 1990 Apr;10(4):1331-40 – reference: 9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98 – reference: 10677559 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1944-8 – reference: 11438383 - Neurosci Lett. 2001 Jul 20;307(3):139-42 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 14671302 - Science. 2003 Dec 12;302(5652):1960-3 – reference: 11125071 - Nucleic Acids Res. 2001 Jan 1;29(1):137-40 – reference: 4080283 - Neurosci Biobehav Rev. 1985 Winter;9(4):653-65 – reference: 2109087 - J Mol Evol. 1990 Mar;30(3):260-6 – reference: 11951044 - Science. 2002 Apr 12;296(5566):340-3 – reference: 10385119 - Nature. 1999 Jun 17;399(6737):682-5 – reference: 6267311 - J Mol Evol. 1981;17(4):197-213 – reference: 9190060 - Mol Biol Evol. 1997 Jun;14(6):595-601 – reference: 12898285 - Anim Cogn. 2003 Dec;6(4):213-23 – reference: 12716970 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5873-8 – reference: 11829497 - Genomics. 2002 Feb;79(2):266-70 – reference: 9334292 - Science. 1997 Oct 17;278(5337):412-9 – reference: 675251 - Science. 1978 Aug 18;201(4356):641-4 – reference: 3125341 - J Mol Evol. 1987;26(1-2):99-121 – reference: 1648602 - J Neurosci. 1991 Jul;11(7):1942-58 – reference: 12766228 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7181-8 – reference: 10637631 - Trends Genet. 2000 Jan;16(1):44-7 – reference: 14561894 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12787-91 – reference: 10220455 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5268-73 |
SSID | ssj0009580 |
Score | 2.2365456 |
Snippet | Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2957 |
SubjectTerms | Animals Anthropology Base Sequence Biological Sciences Brain Brain - physiology Chimpanzees Chromosome Mapping Evolution Evolution, Molecular Gene expression Gene Expression Profiling Genes Genetic research Genome Genome, Human Genomics Hominidae - classification Hominidae - genetics Humans Macaca Monkeys & apes Neurons Oligonucleotide Array Sequence Analysis Pan troglodytes Pan troglodytes - classification Pan troglodytes - genetics Parsimony Phylogenetics Phylogeny Primates Primates - classification Primates - genetics Signal detection Social Sciences |
Title | Sister Grouping of Chimpanzees and Humans as Revealed by Genome-Wide Phylogenetic Analysis of Brain Gene Expression Profiles |
URI | https://www.jstor.org/stable/3371138 http://www.pnas.org/content/101/9/2957.abstract https://www.ncbi.nlm.nih.gov/pubmed/14976249 https://www.proquest.com/docview/201412051 https://www.proquest.com/docview/19267922 https://www.proquest.com/docview/71703367 https://pubmed.ncbi.nlm.nih.gov/PMC365727 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWFggLA8fOCyqUjZxmjjHFQ-tEFQrsRW9RXZqqxVsumpaISr-CX-WGT-StGwloIeoih03ynyZhzvzDSEvtVCRZOC5MRnFEKCwOBRxwsNUyTRKtVLMdG_4NErPx8mHyXDS6_3qZC2tV3JQbm6sK_kfqcI5kCtWyf6DZJtF4QR8B_nCESQMx7-S8WeU0bJvKjNc9nI5w7rHaqOUJV82Pfhq7CaDXE1gDYzDicysVyr8Pp8q3NsA_Qcqz1K3thwlErtH4FSFfQBsvqxJ6EIup7rr1V40VrD2OQcjv8l41pasOD1S98P-xahtgDyeTi2RAeqXNnMI9NXUbc--VUv1ta2Z-Dhfm-389WIzayvZJubkF1XJxdZWRmJyubq7mxAjhzyxRdWNenabHRaHeVfZ5pbb-g8rAGoLWxdXoh4YxkPw4Qwd6qqDiesrAwoIEMEcWNbUHeJtP3SL3I4zcMz8VlDD6MxtfZO7Z88blbHXO7-MxLRurS3vxybAIqsuzL8pwtlN1O14Ppf3yF0XstAzi79D0lPVfXLohUlPHHP5qwfkpwUk9YCkC007gKQASGoBSUVNPSCp_EE7gKRdQFIPSFzKABKnKtoCknpAHpHx-3eXb85D194jLIecr8JM86zkOinB6sQ6FlNk5kx1rjLBmYKny5PhsDwFl15AFBHrUrNEiJSLqeRpmUXsITmoFpV6TKjM8riET6LhInWqJZhNATpIQnSSy1wFZOAfe1E67ntswfKtMDkYGStQBEUrsoCcNBdcW9qX_VOPjBybeYxlUcR4QB6Zme3lUZEXiNmA0D0jhXYZXwE59mgonMKpixiTsmOwogF50YyCNcC_-ESlFuu6gHgthWcR75-RRWDjWZrh7RlstbfhMBqQdAt1zQRkot8eqeYzw0jP0iHEQU_2LnlM7rTv-1NysFqu1TNw5lfyuXmpfgPN5feh |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sister+grouping+of+chimpanzees+and+humans+as+revealed+by+genome-wide+phylogenetic+analysis+of+brain+gene+expression+profiles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Uddin%2C+Monica&rft.au=Wildman%2C+Derek+E&rft.au=Liu%2C+Guozhen&rft.au=Xu%2C+Wenbo&rft.date=2004-03-02&rft.issn=0027-8424&rft.volume=101&rft.issue=9&rft.spage=2957&rft_id=info:doi/10.1073%2Fpnas.0308725100&rft_id=info%3Apmid%2F14976249&rft.externalDocID=14976249 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F9.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F9.cover.gif |