Sister Grouping of Chimpanzees and Humans as Revealed by Genome-Wide Phylogenetic Analysis of Brain Gene Expression Profiles

Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiolo...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 101; no. 9; pp. 2957 - 2962
Main Authors Uddin, Monica, Wildman, Derek E., Liu, Guozhen, Xu, Wenbo, Johnson, Robert M., Hof, Patrick R., Kapatos, Gregory, Grossman, Lawrence I., Goodman, Morris
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.03.2004
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.0308725100

Cover

Abstract Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy.
AbstractList Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of approximately 45,000 probe sets on microarray chips representing transcripts of all or most human genes, approximately 16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy.Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of approximately 45,000 probe sets on microarray chips representing transcripts of all or most human genes, approximately 16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy.
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy.
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of approximately 45,000 probe sets on microarray chips representing transcripts of all or most human genes, approximately 16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy.
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of {approx}45,000 probe sets on microarray chips representing transcripts of all or most human genes, {approx}16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. [PUBLICATION ABSTRACT]
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of [approx]45,000 probe sets on microarray chips representing transcripts of all or most human genes, [approx]16,000 were commonly detected in human ACC samples and comparable numbers, 14,000-15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy.
Author Johnson, Robert M.
Grossman, Lawrence I.
Liu, Guozhen
Hof, Patrick R.
Xu, Wenbo
Kapatos, Gregory
Uddin, Monica
Goodman, Morris
Wildman, Derek E.
AuthorAffiliation Center for Molecular Medicine and Genetics, Departments of ‡ Anatomy and Cell Biology, ¶ Biochemistry and Molecular Biology, and †† Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201; § Bioinformatics Facility, 5107 Biological Science Building, 5047 Gullen Mall, Detroit, MI 48202; and ∥ Department of Neurobiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
AuthorAffiliation_xml – name: Center for Molecular Medicine and Genetics, Departments of ‡ Anatomy and Cell Biology, ¶ Biochemistry and Molecular Biology, and †† Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201; § Bioinformatics Facility, 5107 Biological Science Building, 5047 Gullen Mall, Detroit, MI 48202; and ∥ Department of Neurobiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
Author_xml – sequence: 1
  givenname: Monica
  surname: Uddin
  fullname: Uddin, Monica
– sequence: 2
  givenname: Derek E.
  surname: Wildman
  fullname: Wildman, Derek E.
– sequence: 3
  givenname: Guozhen
  surname: Liu
  fullname: Liu, Guozhen
– sequence: 4
  givenname: Wenbo
  surname: Xu
  fullname: Xu, Wenbo
– sequence: 5
  givenname: Robert M.
  surname: Johnson
  fullname: Johnson, Robert M.
– sequence: 6
  givenname: Patrick R.
  surname: Hof
  fullname: Hof, Patrick R.
– sequence: 7
  givenname: Gregory
  surname: Kapatos
  fullname: Kapatos, Gregory
– sequence: 8
  givenname: Lawrence I.
  surname: Grossman
  fullname: Grossman, Lawrence I.
– sequence: 9
  givenname: Morris
  surname: Goodman
  fullname: Goodman, Morris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14976249$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQxi1URB9w5oKQxQFOaf2IY-fAoazKFqkSFQ9xtLzJZNerxA52UnURfzyOdtmWCsTJlub3jb6Z-Y7RgfMOEHpOySklkp_1zsRTwomSTFBCHqEjSkqaFXlJDtARIUxmKmf5ITqOcU0IKYUiT9AhzUtZsLw8Qj8_2zhAwPPgx966JfYNnq1s1xv3AyBi42p8OXbGpW_En-AGTAs1XmzwHJzvIPtma8DXq03rl-BgsBU-d6bdRBunVu-CsW5CAV_c9gFitN7h6-Ab20J8ih43po3wbPeeoK_vL77MLrOrj_MPs_OrrBJKDZlslKxUk1dEEtYwU0vOi6IpQRrFIU2kciEqIgQ1gijWVA3PjSmUqReqqCTlJ-jttm8_LjqoK3BDMK3ug-1M2GhvrP6z4uxKL_2N5oWQTCb9650--O8jxEF3NlbQtsaBH6OWVJJk6f8gLVkhS8YS-OoBuPZjSIuLmhGaU0bEZPvlfdt7v7-vlwCxBargYwzQ6MoOZkgrTlPYVlOip5ToKSX6LiVJd_ZAt2_9T8WbnZWpcEdTXWpWCqmbsW0HuB3umf47mYAXW2AdBx_2BOeSUq74L_rK4VE
CitedBy_id crossref_primary_10_1093_nar_gkl354
crossref_primary_10_1073_pnas_0911376106
crossref_primary_10_1111_j_1601_183X_2006_00195_x
crossref_primary_10_1016_j_jhevol_2012_12_003
crossref_primary_10_1093_gbe_evv132
crossref_primary_10_1002_evan_20131
crossref_primary_10_3390_life11050388
crossref_primary_10_1186_1471_2164_8_208
crossref_primary_10_1186_1471_2105_5_165
crossref_primary_10_1007_s11064_018_2546_3
crossref_primary_10_1016_j_trre_2006_05_006
crossref_primary_10_1002_cne_21792
crossref_primary_10_1371_journal_pbio_0030274
crossref_primary_10_1016_j_jhevol_2011_02_003
crossref_primary_10_1093_molbev_msw176
crossref_primary_10_1073_pnas_1019164108
crossref_primary_10_1002_cne_23074
crossref_primary_10_1073_pnas_0606337103
crossref_primary_10_1109_TCBB_2021_3136792
crossref_primary_10_1016_j_jhevol_2010_10_004
crossref_primary_10_1098_rspb_2009_1831
crossref_primary_10_1002_hbm_20494
crossref_primary_10_1002_evan_20080
crossref_primary_10_1038_sj_mp_4002095
crossref_primary_10_1093_gbe_evq002
crossref_primary_10_1146_annurev_anthro_36_081406_094339
crossref_primary_10_1007_s00239_010_9401_8
crossref_primary_10_1038_nrg2363
crossref_primary_10_1038_ng1705
crossref_primary_10_1038_nrg1940
crossref_primary_10_1093_gbe_evx028
crossref_primary_10_1007_s00439_005_1287_y
crossref_primary_10_1007_s12035_012_8262_0
crossref_primary_10_1111_j_1469_7580_2008_00868_x
crossref_primary_10_1038_s41380_020_0680_1
crossref_primary_10_1146_annurev_ecolsys_102209_144653
crossref_primary_10_1371_journal_pbio_1001214
crossref_primary_10_1016_j_cobeha_2017_02_003
crossref_primary_10_1152_physrev_00032_2007
crossref_primary_10_1177_026119290503300501
crossref_primary_10_1002_cne_23843
crossref_primary_10_5802_crbiol_92
crossref_primary_10_1111_j_1365_294X_2007_03201_x
crossref_primary_10_3280_PARA2017_002006
crossref_primary_10_15252_embj_201695810
crossref_primary_10_1016_j_humimm_2012_01_010
crossref_primary_10_3390_genes16020117
crossref_primary_10_1016_j_ympev_2010_12_006
crossref_primary_10_1002_humu_20420
crossref_primary_10_1016_j_mehy_2008_05_034
crossref_primary_10_1016_j_transproceed_2008_01_029
crossref_primary_10_1093_bib_bbv041
crossref_primary_10_1073_pnas_0605938103
crossref_primary_10_1002_ajpa_22778
crossref_primary_10_1038_s41586_021_03952_y
crossref_primary_10_1371_journal_pone_0003279
crossref_primary_10_1098_rspb_2010_2433
crossref_primary_10_1186_gb_2010_11_7_r78
crossref_primary_10_1371_journal_pone_0291943
crossref_primary_10_1002_jez_b_21000
crossref_primary_10_1158_0008_5472_CAN_07_5272
crossref_primary_10_1093_gbe_evq063
crossref_primary_10_1093_cercor_bhp062
crossref_primary_10_1073_pnas_0914626107
crossref_primary_10_1038_sj_hdy_6801000
crossref_primary_10_1177_026119291103900608
crossref_primary_10_1038_nature10532
crossref_primary_10_1111_j_1469_7580_2008_00865_x
crossref_primary_10_3390_ijms23073785
crossref_primary_10_1016_j_freeradbiomed_2019_03_016
crossref_primary_10_1002_ajhb_22394
crossref_primary_10_1093_molbev_msr009
crossref_primary_10_1111_j_1469_8137_2006_01662_x
crossref_primary_10_1002_ajpa_22900
crossref_primary_10_1007_s00429_014_0931_5
crossref_primary_10_1038_cmi_2010_16
crossref_primary_10_1073_pnas_1006183107
crossref_primary_10_1002_bies_20241
crossref_primary_10_1038_jhg_2013_55
crossref_primary_10_1016_j_gde_2004_08_007
crossref_primary_10_1371_journal_pcbi_1000777
crossref_primary_10_1093_cercor_bhs239
crossref_primary_10_1093_toxsci_kfi243
crossref_primary_10_1016_j_jhevol_2014_05_016
crossref_primary_10_1073_pnas_0712400105
crossref_primary_10_1073_pnas_1201894109
crossref_primary_10_1038_nrg1634
crossref_primary_10_1186_1471_2105_10_77
crossref_primary_10_1186_1471_2164_11_323
crossref_primary_10_1016_j_tins_2008_08_010
crossref_primary_10_1016_j_ymeth_2005_09_017
crossref_primary_10_1016_j_fas_2008_05_005
crossref_primary_10_1073_pnas_1212855109
crossref_primary_10_1146_annurev_psych_062220_051256
crossref_primary_10_1007_s00439_006_0270_6
crossref_primary_10_1016_j_cell_2017_06_036
crossref_primary_10_1186_gb_2008_9_8_r124
crossref_primary_10_1093_molbev_msp192
crossref_primary_10_1016_j_neuron_2015_03_035
crossref_primary_10_1073_pnas_0605843103
crossref_primary_10_1093_cercor_bhm089
crossref_primary_10_1111_j_1601_5215_2007_00204_x
crossref_primary_10_1007_s11598_006_9032_7
crossref_primary_10_1038_nrg1469
crossref_primary_10_1038_nrn3372
crossref_primary_10_1146_annurev_genom_9_081307_164420
crossref_primary_10_1111_j_1469_7580_2007_00840_x
crossref_primary_10_1007_s00439_006_0134_0
crossref_primary_10_1038_nrg1747
crossref_primary_10_1002_ajhb_20516
crossref_primary_10_1371_journal_pgen_0020080
crossref_primary_10_1016_j_ygeno_2005_01_012
crossref_primary_10_1007_s00438_007_0210_8
crossref_primary_10_2174_1874467217666230817092415
crossref_primary_10_1093_sysbio_syaa003
crossref_primary_10_1038_nature04103
crossref_primary_10_1002_cne_25387
crossref_primary_10_1146_annurev_genom_091212_153509
crossref_primary_10_1093_icb_icaa109
crossref_primary_10_1186_1746_4811_1_10
crossref_primary_10_1101_gr_3737405
crossref_primary_10_1016_j_neuron_2012_05_034
crossref_primary_10_1093_cercor_bht354
crossref_primary_10_1073_pnas_2411918121
crossref_primary_10_1126_science_aan3456
crossref_primary_10_1007_s00429_013_0662_z
crossref_primary_10_1016_j_jneumeth_2005_09_007
crossref_primary_10_1186_1471_2148_8_8
crossref_primary_10_1002_cne_20448
crossref_primary_10_1038_nrg2428
crossref_primary_10_1007_s11427_012_4350_7
crossref_primary_10_1101_gr_2538704
crossref_primary_10_1371_journal_pone_0017514
crossref_primary_10_1073_pnas_0509585102
crossref_primary_10_1093_nar_gkq817
crossref_primary_10_1016_j_gde_2014_09_001
crossref_primary_10_1186_1471_2164_8_344
crossref_primary_10_1146_annurev_anthro_102215_100009
crossref_primary_10_3389_fnmol_2016_00138
crossref_primary_10_1002_cfg_355
crossref_primary_10_1002_evan_21831
crossref_primary_10_1016_j_cell_2004_11_040
crossref_primary_10_1016_j_tig_2005_06_012
crossref_primary_10_1002_ajpa_20674
crossref_primary_10_1002_cne_23777
crossref_primary_10_1101_gr_3732505
crossref_primary_10_1128_JVI_80_9_4415_4421_2006
crossref_primary_10_1371_journal_pgen_1005661
crossref_primary_10_1186_s12915_023_01612_3
crossref_primary_10_1073_pnas_1201895109
crossref_primary_10_1007_s00439_014_1491_8
crossref_primary_10_1002_ajhb_21225
crossref_primary_10_1093_cercor_bhaa149
crossref_primary_10_1101_gad_305813_117
crossref_primary_10_1159_000358581
crossref_primary_10_1002_prca_200780047
crossref_primary_10_1371_journal_pgen_0030059
crossref_primary_10_1186_1476_4598_8_74
crossref_primary_10_1186_gb_2005_6_7_r57
Cites_doi 10.1086/302218
10.1038/75556
10.1002/1097-0029(20001001)51:1<45::AID-JEMT5>3.0.CO;2-O
10.1037/0735-7036.116.1.12
10.1126/science.288.5472.1835
10.1007/PL00006172
10.1093/nar/29.1.137
10.1126/science.278.5337.412
10.1073/pnas.2135499100
10.1007/BF01732758
10.1006/mpev.2000.0833
10.1016/0149-7634(85)90012-0
10.1073/pnas.1232172100
10.1126/science.1088821
10.1073/pnas.96.9.5268
10.1073/pnas.97.4.1944
10.1007/s10071-003-0183-x
10.1126/science.1089134
10.1002/cne.903550106
10.1016/S0304-3940(01)01964-4
10.1126/science.3116671
10.1073/pnas.87.1.256
10.1073/pnas.2133766100
10.1093/nar/gkg624
10.1093/oxfordjournals.molbev.a026144
10.1523/JNEUROSCI.10-04-01331.1990
10.1073/pnas.0931463100
10.1038/21415
10.1126/science.1068996
10.1006/mpev.2000.0890
10.1111/j.1749-6632.2001.tb03476.x
10.1126/science.675251
10.1016/0166-2236(89)90165-3
10.1016/S0168-9525(99)01882-X
10.1016/S0378-1119(01)00800-9
10.1006/geno.2002.6698
10.1101/gr.187601
10.1523/JNEUROSCI.11-07-01942.1991
10.1016/S0168-9525(02)00040-9
10.1093/genetics/165.2.747
10.1093/oxfordjournals.molbev.a004005
10.1093/oxfordjournals.molbev.a025798
10.1007/BF02099995
10.1007/BF02111285
10.1006/mpev.1998.0495
ContentType Journal Article
Copyright Copyright 1993/2004 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Mar 2, 2004
Copyright © 2004, The National Academy of Sciences 2004
Copyright_xml – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Mar 2, 2004
– notice: Copyright © 2004, The National Academy of Sciences 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0308725100
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
CrossRef
Virology and AIDS Abstracts
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Anthropology
EISSN 1091-6490
EndPage 2962
ExternalDocumentID PMC365727
751968181
14976249
10_1073_pnas_0308725100
101_9_2957
3371138
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM65580
– fundername: NIGMS NIH HHS
  grantid: R24 GM065580
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c588t-7f87c8f4c0702f2ad73366f9e7a83e5808455c0551a5082fcf34aa68adb86c713
ISSN 0027-8424
IngestDate Thu Aug 21 14:05:45 EDT 2025
Fri Sep 05 09:33:59 EDT 2025
Fri Sep 05 02:51:12 EDT 2025
Wed Aug 20 23:58:36 EDT 2025
Wed Feb 19 01:37:48 EST 2025
Thu Apr 24 22:55:11 EDT 2025
Tue Jul 01 03:59:42 EDT 2025
Wed Nov 11 00:29:41 EST 2020
Thu May 30 08:51:26 EDT 2019
Thu May 29 08:41:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c588t-7f87c8f4c0702f2ad73366f9e7a83e5808455c0551a5082fcf34aa68adb86c713
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Abbreviations: ACC, anterior cingulate cortex; ETC, electron transport chain; GO, Gene Ontology; OE, ontoexpress; mrca, most recent common ancestor.
Contributed by Morris Goodman, December 30, 2003
To whom correspondence should be addressed. E-mail: mgoodwayne@aol.com.
OpenAccessLink http://doi.org/10.1073/pnas.0308725100
PMID 14976249
PQID 201412051
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201412051
pnas_primary_101_9_2957_fulltext
jstor_primary_3371138
proquest_miscellaneous_71703367
crossref_citationtrail_10_1073_pnas_0308725100
pubmedcentral_primary_oai_pubmedcentral_nih_gov_365727
pnas_primary_101_9_2957
crossref_primary_10_1073_pnas_0308725100
pubmed_primary_14976249
proquest_miscellaneous_19267922
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-03-02
PublicationDateYYYYMMDD 2004-03-02
PublicationDate_xml – month: 03
  year: 2004
  text: 2004-03-02
  day: 02
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2004
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
(e_1_3_2_8_2) 1968; 1
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_1_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
(e_1_3_2_10_2) 2003; 45
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
14566573 - Primates. 2004 Jan;45(1):25-32
1648602 - J Neurosci. 1991 Jul;11(7):1942-58
10335655 - Mol Biol Evol. 1999 May;16(5):619-26
9115172 - J Mol Evol. 1997 May;44(5):477-91
11411161 - Ann N Y Acad Sci. 2001 May;935:107-17
2469224 - Trends Neurosci. 1989 Mar;12(3):94-101
9190060 - Mol Biol Evol. 1997 Jun;14(6):595-601
3125341 - J Mol Evol. 1987;26(1-2):99-121
12547510 - Trends Genet. 2003 Feb;19(2):63-5
11943455 - Gene. 2002 Mar 6;286(1):13-9
2296583 - Proc Natl Acad Sci U S A. 1990 Jan;87(1):256-9
12824416 - Nucleic Acids Res. 2003 Jul 1;31(13):3775-81
11002352 - Microsc Res Tech. 2000 Oct 1;51(1):45-53
9334292 - Science. 1997 Oct 17;278(5337):412-9
6267311 - J Mol Evol. 1981;17(4):197-213
7636011 - J Comp Neurol. 1995 Apr 24;355(1):27-37
10637631 - Trends Genet. 2000 Jan;16(1):44-7
3116671 - Science. 1987 Oct 16;238(4825):369-73
2109087 - J Mol Evol. 1990 Mar;30(3):260-6
11438383 - Neurosci Lett. 2001 Jul 20;307(3):139-42
14671302 - Science. 2003 Dec 12;302(5652):1960-3
10846167 - Science. 2000 Jun 9;288(5472):1835-8
11125071 - Nucleic Acids Res. 2001 Jan 1;29(1):137-40
9915940 - Am J Hum Genet. 1999 Jan;64(1):31-9
12766228 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7181-8
14557539 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13030-5
14551436 - Science. 2003 Oct 10;302(5643):290-2
14573485 - Genetics. 2003 Oct;165(2):747-57
12270909 - Mol Biol Evol. 2002 Oct;19(10):1812-5
10677559 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1944-8
10802651 - Nat Genet. 2000 May;25(1):25-9
4080283 - Neurosci Biobehav Rev. 1985 Winter;9(4):653-65
675251 - Science. 1978 Aug 18;201(4356):641-4
11829497 - Genomics. 2002 Feb;79(2):266-70
11083942 - Mol Phylogenet Evol. 2000 Nov;17(2):294-304
11435396 - Genome Res. 2001 Jul;11(7):1149-55
14561894 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12787-91
2158531 - J Neurosci. 1990 Apr;10(4):1331-40
10385119 - Nature. 1999 Jun 17;399(6737):682-5
11951044 - Science. 2002 Apr 12;296(5566):340-3
12898285 - Anim Cogn. 2003 Dec;6(4):213-23
9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98
10220455 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5268-73
11161739 - Mol Phylogenet Evol. 2001 Jan;18(1):26-36
11926680 - J Comp Psychol. 2002 Mar;116(1):12-26
12716970 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5873-8
References_xml – ident: e_1_3_2_32_2
  doi: 10.1086/302218
– ident: e_1_3_2_24_2
  doi: 10.1038/75556
– volume: 1
  start-page: 165
  year: 1968
  ident: e_1_3_2_8_2
  publication-title: Anim. Behav. Monogr.
– ident: e_1_3_2_22_2
  doi: 10.1002/1097-0029(20001001)51:1<45::AID-JEMT5>3.0.CO;2-O
– ident: e_1_3_2_13_2
  doi: 10.1037/0735-7036.116.1.12
– ident: e_1_3_2_21_2
  doi: 10.1126/science.288.5472.1835
– ident: e_1_3_2_41_2
  doi: 10.1007/PL00006172
– ident: e_1_3_2_50_2
– ident: e_1_3_2_31_2
  doi: 10.1093/nar/29.1.137
– ident: e_1_3_2_18_2
  doi: 10.1126/science.278.5337.412
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.2135499100
– ident: e_1_3_2_45_2
  doi: 10.1007/BF01732758
– ident: e_1_3_2_44_2
  doi: 10.1006/mpev.2000.0833
– ident: e_1_3_2_12_2
  doi: 10.1016/0149-7634(85)90012-0
– ident: e_1_3_2_1_2
  doi: 10.1073/pnas.1232172100
– ident: e_1_3_2_25_2
– ident: e_1_3_2_14_2
  doi: 10.1126/science.1088821
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.96.9.5268
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.97.4.1944
– ident: e_1_3_2_9_2
  doi: 10.1007/s10071-003-0183-x
– ident: e_1_3_2_40_2
  doi: 10.1126/science.1089134
– ident: e_1_3_2_17_2
  doi: 10.1002/cne.903550106
– ident: e_1_3_2_33_2
  doi: 10.1016/S0304-3940(01)01964-4
– ident: e_1_3_2_2_2
  doi: 10.1126/science.3116671
– ident: e_1_3_2_19_2
  doi: 10.1073/pnas.87.1.256
– ident: e_1_3_2_6_2
  doi: 10.1073/pnas.2133766100
– ident: e_1_3_2_29_2
  doi: 10.1093/nar/gkg624
– ident: e_1_3_2_43_2
  doi: 10.1093/oxfordjournals.molbev.a026144
– ident: e_1_3_2_39_2
  doi: 10.1523/JNEUROSCI.10-04-01331.1990
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.0931463100
– ident: e_1_3_2_7_2
  doi: 10.1038/21415
– ident: e_1_3_2_23_2
  doi: 10.1126/science.1068996
– ident: e_1_3_2_49_2
  doi: 10.1006/mpev.2000.0890
– ident: e_1_3_2_15_2
  doi: 10.1111/j.1749-6632.2001.tb03476.x
– ident: e_1_3_2_11_2
  doi: 10.1126/science.675251
– ident: e_1_3_2_37_2
  doi: 10.1016/0166-2236(89)90165-3
– volume: 45
  start-page: 25
  year: 2003
  ident: e_1_3_2_10_2
  publication-title: Primates
– ident: e_1_3_2_30_2
  doi: 10.1016/S0168-9525(99)01882-X
– ident: e_1_3_2_47_2
  doi: 10.1016/S0378-1119(01)00800-9
– ident: e_1_3_2_28_2
  doi: 10.1006/geno.2002.6698
– ident: e_1_3_2_26_2
  doi: 10.1101/gr.187601
– ident: e_1_3_2_38_2
  doi: 10.1523/JNEUROSCI.11-07-01942.1991
– ident: e_1_3_2_35_2
  doi: 10.1016/S0168-9525(02)00040-9
– ident: e_1_3_2_36_2
  doi: 10.1093/genetics/165.2.747
– ident: e_1_3_2_46_2
  doi: 10.1093/oxfordjournals.molbev.a004005
– ident: e_1_3_2_42_2
  doi: 10.1093/oxfordjournals.molbev.a025798
– ident: e_1_3_2_27_2
– ident: e_1_3_2_4_2
  doi: 10.1007/BF02099995
– ident: e_1_3_2_3_2
  doi: 10.1007/BF02111285
– ident: e_1_3_2_5_2
  doi: 10.1006/mpev.1998.0495
– reference: 14557539 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13030-5
– reference: 14566573 - Primates. 2004 Jan;45(1):25-32
– reference: 2469224 - Trends Neurosci. 1989 Mar;12(3):94-101
– reference: 9915940 - Am J Hum Genet. 1999 Jan;64(1):31-9
– reference: 12824416 - Nucleic Acids Res. 2003 Jul 1;31(13):3775-81
– reference: 10335655 - Mol Biol Evol. 1999 May;16(5):619-26
– reference: 10846167 - Science. 2000 Jun 9;288(5472):1835-8
– reference: 2296583 - Proc Natl Acad Sci U S A. 1990 Jan;87(1):256-9
– reference: 14551436 - Science. 2003 Oct 10;302(5643):290-2
– reference: 7636011 - J Comp Neurol. 1995 Apr 24;355(1):27-37
– reference: 11161739 - Mol Phylogenet Evol. 2001 Jan;18(1):26-36
– reference: 12547510 - Trends Genet. 2003 Feb;19(2):63-5
– reference: 11943455 - Gene. 2002 Mar 6;286(1):13-9
– reference: 12270909 - Mol Biol Evol. 2002 Oct;19(10):1812-5
– reference: 11083942 - Mol Phylogenet Evol. 2000 Nov;17(2):294-304
– reference: 11411161 - Ann N Y Acad Sci. 2001 May;935:107-17
– reference: 9115172 - J Mol Evol. 1997 May;44(5):477-91
– reference: 11435396 - Genome Res. 2001 Jul;11(7):1149-55
– reference: 3116671 - Science. 1987 Oct 16;238(4825):369-73
– reference: 11002352 - Microsc Res Tech. 2000 Oct 1;51(1):45-53
– reference: 14573485 - Genetics. 2003 Oct;165(2):747-57
– reference: 11926680 - J Comp Psychol. 2002 Mar;116(1):12-26
– reference: 2158531 - J Neurosci. 1990 Apr;10(4):1331-40
– reference: 9668008 - Mol Phylogenet Evol. 1998 Jun;9(3):585-98
– reference: 10677559 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1944-8
– reference: 11438383 - Neurosci Lett. 2001 Jul 20;307(3):139-42
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 14671302 - Science. 2003 Dec 12;302(5652):1960-3
– reference: 11125071 - Nucleic Acids Res. 2001 Jan 1;29(1):137-40
– reference: 4080283 - Neurosci Biobehav Rev. 1985 Winter;9(4):653-65
– reference: 2109087 - J Mol Evol. 1990 Mar;30(3):260-6
– reference: 11951044 - Science. 2002 Apr 12;296(5566):340-3
– reference: 10385119 - Nature. 1999 Jun 17;399(6737):682-5
– reference: 6267311 - J Mol Evol. 1981;17(4):197-213
– reference: 9190060 - Mol Biol Evol. 1997 Jun;14(6):595-601
– reference: 12898285 - Anim Cogn. 2003 Dec;6(4):213-23
– reference: 12716970 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5873-8
– reference: 11829497 - Genomics. 2002 Feb;79(2):266-70
– reference: 9334292 - Science. 1997 Oct 17;278(5337):412-9
– reference: 675251 - Science. 1978 Aug 18;201(4356):641-4
– reference: 3125341 - J Mol Evol. 1987;26(1-2):99-121
– reference: 1648602 - J Neurosci. 1991 Jul;11(7):1942-58
– reference: 12766228 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7181-8
– reference: 10637631 - Trends Genet. 2000 Jan;16(1):44-7
– reference: 14561894 - Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12787-91
– reference: 10220455 - Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5268-73
SSID ssj0009580
Score 2.2365456
Snippet Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2957
SubjectTerms Animals
Anthropology
Base Sequence
Biological Sciences
Brain
Brain - physiology
Chimpanzees
Chromosome Mapping
Evolution
Evolution, Molecular
Gene expression
Gene Expression Profiling
Genes
Genetic research
Genome
Genome, Human
Genomics
Hominidae - classification
Hominidae - genetics
Humans
Macaca
Monkeys & apes
Neurons
Oligonucleotide Array Sequence Analysis
Pan troglodytes
Pan troglodytes - classification
Pan troglodytes - genetics
Parsimony
Phylogenetics
Phylogeny
Primates
Primates - classification
Primates - genetics
Signal detection
Social Sciences
Title Sister Grouping of Chimpanzees and Humans as Revealed by Genome-Wide Phylogenetic Analysis of Brain Gene Expression Profiles
URI https://www.jstor.org/stable/3371138
http://www.pnas.org/content/101/9/2957.abstract
https://www.ncbi.nlm.nih.gov/pubmed/14976249
https://www.proquest.com/docview/201412051
https://www.proquest.com/docview/19267922
https://www.proquest.com/docview/71703367
https://pubmed.ncbi.nlm.nih.gov/PMC365727
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWFggLA8fOCyqUjZxmjjHFQ-tEFQrsRW9RXZqqxVsumpaISr-CX-WGT-StGwloIeoih03ynyZhzvzDSEvtVCRZOC5MRnFEKCwOBRxwsNUyTRKtVLMdG_4NErPx8mHyXDS6_3qZC2tV3JQbm6sK_kfqcI5kCtWyf6DZJtF4QR8B_nCESQMx7-S8WeU0bJvKjNc9nI5w7rHaqOUJV82Pfhq7CaDXE1gDYzDicysVyr8Pp8q3NsA_Qcqz1K3thwlErtH4FSFfQBsvqxJ6EIup7rr1V40VrD2OQcjv8l41pasOD1S98P-xahtgDyeTi2RAeqXNnMI9NXUbc--VUv1ta2Z-Dhfm-389WIzayvZJubkF1XJxdZWRmJyubq7mxAjhzyxRdWNenabHRaHeVfZ5pbb-g8rAGoLWxdXoh4YxkPw4Qwd6qqDiesrAwoIEMEcWNbUHeJtP3SL3I4zcMz8VlDD6MxtfZO7Z88blbHXO7-MxLRurS3vxybAIqsuzL8pwtlN1O14Ppf3yF0XstAzi79D0lPVfXLohUlPHHP5qwfkpwUk9YCkC007gKQASGoBSUVNPSCp_EE7gKRdQFIPSFzKABKnKtoCknpAHpHx-3eXb85D194jLIecr8JM86zkOinB6sQ6FlNk5kx1rjLBmYKny5PhsDwFl15AFBHrUrNEiJSLqeRpmUXsITmoFpV6TKjM8riET6LhInWqJZhNATpIQnSSy1wFZOAfe1E67ntswfKtMDkYGStQBEUrsoCcNBdcW9qX_VOPjBybeYxlUcR4QB6Zme3lUZEXiNmA0D0jhXYZXwE59mgonMKpixiTsmOwogF50YyCNcC_-ESlFuu6gHgthWcR75-RRWDjWZrh7RlstbfhMBqQdAt1zQRkot8eqeYzw0jP0iHEQU_2LnlM7rTv-1NysFqu1TNw5lfyuXmpfgPN5feh
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sister+grouping+of+chimpanzees+and+humans+as+revealed+by+genome-wide+phylogenetic+analysis+of+brain+gene+expression+profiles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Uddin%2C+Monica&rft.au=Wildman%2C+Derek+E&rft.au=Liu%2C+Guozhen&rft.au=Xu%2C+Wenbo&rft.date=2004-03-02&rft.issn=0027-8424&rft.volume=101&rft.issue=9&rft.spage=2957&rft_id=info:doi/10.1073%2Fpnas.0308725100&rft_id=info%3Apmid%2F14976249&rft.externalDocID=14976249
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F9.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F9.cover.gif