Validity of modulation and optimal settings for advanced voxel-based morphometry
Voxel-based morphometry (VBM) is a widely-used structural neuroimaging technique for comparing meso- and macroscopic regional brain volumes between patients and controls in vivo, but some of its steps, particularly the modulation, lack an experimental validation. The aims of this study were two-fold...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 86; pp. 81 - 90 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.02.2014
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2013.07.084 |
Cover
Abstract | Voxel-based morphometry (VBM) is a widely-used structural neuroimaging technique for comparing meso- and macroscopic regional brain volumes between patients and controls in vivo, but some of its steps, particularly the modulation, lack an experimental validation. The aims of this study were two-fold: a) to assess the effects of modulation to detect mesoscopic (i.e. between microscopic and macroscopic) abnormalities on published, classic VBM; and b) to suggest a set of potentially optimal settings for detecting mesoscopic abnormalities with new, advanced, high-resolution diffeomorphic VBM normalization algorithms. Sensitivity and false positive rate after modulating or not in classic VBM using different software packages and spatial statistics, and after setting a range of different parameters in advanced VBM (ANTS-SyN), were calculated in 10 VBM comparisons of 32 altered vs. 32 unaltered gray matter images from different healthy controls. Simulated brain abnormalities comprised mesoscopic volume differences mainly due to cortical thinning. In classic VBM, modulation was associated with a substantial decrease of the sensitivity to detect mesoscopic abnormalities (p<0.001). Optimal settings for advanced VBM included the omission of modulation, the use of large smoothing kernels, and the application of voxel-based or threshold-free cluster enhancement (TFCE) spatial statistics. The modulation-related decrease in sensitivity was due to an increase in variance, and it was more severe in higher-resolution normalization algorithms. Findings from this study suggest the use of unmodulated VBM to detect mesoscopic abnormalities such as cortical thinning.
•Modulation in voxel-based morphometry (VBM) has not been experimentally validated.•We assessed the effects of modulation on the efficacy to detect cortical thinning.•Ten VBM comparisons and different software packages and statistics were used.•Modulation was associated to a decrease of the sensitivity to detect abnormalities.•Optimal settings also included large smoothing and voxel-based or TFCE statistics. |
---|---|
AbstractList | Voxel-based morphometry (VBM) is a widely-used structural neuroimaging technique for comparing meso- and macroscopic regional brain volumes between patients and controls in vivo, but some of its steps, particularly the modulation, lack an experimental validation. The aims of this study were two-fold: a) to assess the effects of modulation to detect mesoscopic (i.e. between microscopic and macroscopic) abnormalities on published, classic VBM; and b) to suggest a set of potentially optimal settings for detecting mesoscopic abnormalities with new, advanced, high-resolution diffeomorphic VBM normalization algorithms. Sensitivity and false positive rate after modulating or not in classic VBM using different software packages and spatial statistics, and after setting a range of different parameters in advanced VBM (ANTS-SyN), were calculated in 10 VBM comparisons of 32 altered vs. 32 unaltered gray matter images from different healthy controls. Simulated brain abnormalities comprised mesoscopic volume differences mainly due to cortical thinning. In classic VBM, modulation was associated with a substantial decrease of the sensitivity to detect mesoscopic abnormalities (p<0.001). Optimal settings for advanced VBM included the omission of modulation, the use of large smoothing kernels, and the application of voxel-based or threshold-free cluster enhancement (TFCE) spatial statistics. The modulation-related decrease in sensitivity was due to an increase in variance, and it was more severe in higher-resolution normalization algorithms. Findings from this study suggest the use of unmodulated VBM to detect mesoscopic abnormalities such as cortical thinning. Voxel-based morphometry (VBM) is a widely-used structural neuroimaging technique for comparing meso- and macroscopic regional brain volumes between patients and controls in vivo, but some of its steps, particularly the modulation, lack an experimental validation. The aims of this study were two-fold: a) to assess the effects of modulation to detect mesoscopic (i.e. between microscopic and macroscopic) abnormalities on published, classic VBM; and b) to suggest a set of potentially optimal settings for detecting mesoscopic abnormalities with new, advanced, high-resolution diffeomorphic VBM normalization algorithms. Sensitivity and false positive rate after modulating or not in classic VBM using different software packages and spatial statistics, and after setting a range of different parameters in advanced VBM (ANTS-SyN), were calculated in 10 VBM comparisons of 32 altered vs. 32 unaltered gray matter images from different healthy controls. Simulated brain abnormalities comprised mesoscopic volume differences mainly due to cortical thinning. In classic VBM, modulation was associated with a substantial decrease of the sensitivity to detect mesoscopic abnormalities (p<0.001). Optimal settings for advanced VBM included the omission of modulation, the use of large smoothing kernels, and the application of voxel-based or threshold-free cluster enhancement (TFCE) spatial statistics. The modulation-related decrease in sensitivity was due to an increase in variance, and it was more severe in higher-resolution normalization algorithms. Findings from this study suggest the use of unmodulated VBM to detect mesoscopic abnormalities such as cortical thinning.Voxel-based morphometry (VBM) is a widely-used structural neuroimaging technique for comparing meso- and macroscopic regional brain volumes between patients and controls in vivo, but some of its steps, particularly the modulation, lack an experimental validation. The aims of this study were two-fold: a) to assess the effects of modulation to detect mesoscopic (i.e. between microscopic and macroscopic) abnormalities on published, classic VBM; and b) to suggest a set of potentially optimal settings for detecting mesoscopic abnormalities with new, advanced, high-resolution diffeomorphic VBM normalization algorithms. Sensitivity and false positive rate after modulating or not in classic VBM using different software packages and spatial statistics, and after setting a range of different parameters in advanced VBM (ANTS-SyN), were calculated in 10 VBM comparisons of 32 altered vs. 32 unaltered gray matter images from different healthy controls. Simulated brain abnormalities comprised mesoscopic volume differences mainly due to cortical thinning. In classic VBM, modulation was associated with a substantial decrease of the sensitivity to detect mesoscopic abnormalities (p<0.001). Optimal settings for advanced VBM included the omission of modulation, the use of large smoothing kernels, and the application of voxel-based or threshold-free cluster enhancement (TFCE) spatial statistics. The modulation-related decrease in sensitivity was due to an increase in variance, and it was more severe in higher-resolution normalization algorithms. Findings from this study suggest the use of unmodulated VBM to detect mesoscopic abnormalities such as cortical thinning. Voxel-based morphometry (VBM) is a widely-used structural neuroimaging technique for comparing meso- and macroscopic regional brain volumes between patients and controls in vivo, but some of its steps, particularly the modulation, lack an experimental validation. The aims of this study were two-fold: a) to assess the effects of modulation to detect mesoscopic (i.e. between microscopic and macroscopic) abnormalities on published, classic VBM; and b) to suggest a set of potentially optimal settings for detecting mesoscopic abnormalities with new, advanced, high-resolution diffeomorphic VBM normalization algorithms. Sensitivity and false positive rate after modulating or not in classic VBM using different software packages and spatial statistics, and after setting a range of different parameters in advanced VBM (ANTS-SyN), were calculated in 10 VBM comparisons of 32 altered vs. 32 unaltered gray matter images from different healthy controls. Simulated brain abnormalities comprised mesoscopic volume differences mainly due to cortical thinning. In classic VBM, modulation was associated with a substantial decrease of the sensitivity to detect mesoscopic abnormalities (p<0.001). Optimal settings for advanced VBM included the omission of modulation, the use of large smoothing kernels, and the application of voxel-based or threshold-free cluster enhancement (TFCE) spatial statistics. The modulation-related decrease in sensitivity was due to an increase in variance, and it was more severe in higher-resolution normalization algorithms. Findings from this study suggest the use of unmodulated VBM to detect mesoscopic abnormalities such as cortical thinning. •Modulation in voxel-based morphometry (VBM) has not been experimentally validated.•We assessed the effects of modulation on the efficacy to detect cortical thinning.•Ten VBM comparisons and different software packages and statistics were used.•Modulation was associated to a decrease of the sensitivity to detect abnormalities.•Optimal settings also included large smoothing and voxel-based or TFCE statistics. |
Author | Canales-Rodríguez, Erick Jorge Salvador, Raymond Radua, Joaquim Pomarol-Clotet, Edith |
Author_xml | – sequence: 1 givenname: Joaquim surname: Radua fullname: Radua, Joaquim email: joaquim.radua@kcl.ac.uk organization: FIDMAG Research Unit, Barcelona, Spain – sequence: 2 givenname: Erick Jorge surname: Canales-Rodríguez fullname: Canales-Rodríguez, Erick Jorge organization: FIDMAG Research Unit, Barcelona, Spain – sequence: 3 givenname: Edith surname: Pomarol-Clotet fullname: Pomarol-Clotet, Edith organization: FIDMAG Research Unit, Barcelona, Spain – sequence: 4 givenname: Raymond surname: Salvador fullname: Salvador, Raymond organization: FIDMAG Research Unit, Barcelona, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28503353$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23933042$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2LFDEQhhtZcT_0L0iDCF66zed0chHXxS9Y0IN6Demkes2Y7oxJenD-vWlnloW5OKdU4KmnqHovq7MpTFBVNUYtRnj1et1OMMfgRn0HLUGYtqhrkWCPqguMJG8k78jZUnPaCIzleXWZ0hohJDETT6pzQiWliJGL6usP7Z11eVeHoR6Dnb3OLky1nmwdNrlM8HWCnN10l-ohxFrbrZ4M2Hob_oBvep1KPYa4-RlGyHH3tHo8aJ_g2eG9qr5_eP_t5lNz--Xj55vr28ZwIXJDe6EtM8PABSKCaNqTrqMUrySG8rekPMhY1vXadoApA84Nw7SXHcGSrOhV9Wrv3cTwe4aU1eiSAe_1BGFOCnOEOkGZZP9HmUQd4hwt1hdH6DrMcSqLFCGmvCglKdTzAzX3I1i1ieVOcafuz1qAlwdAJ6P9EMvJXHrgBEeUclq4N3vOxJBShEEZl_8FkKN2XmGklrzVWj3krZa8FepUybsIxJHgfsYJre_2rVBS2jqIKhkHS7QugsnKBneK5O2RxHg3ubLzL9idpvgLNWPfmg |
CitedBy_id | crossref_primary_10_1016_j_jad_2014_10_041 crossref_primary_10_1007_s00429_015_1121_9 crossref_primary_10_1016_j_jad_2015_07_020 crossref_primary_10_1016_j_parkreldis_2021_10_010 crossref_primary_10_1080_14459795_2018_1448427 crossref_primary_10_3389_fpsyg_2019_02479 crossref_primary_10_1111_acps_12440 crossref_primary_10_1016_j_jns_2016_12_030 crossref_primary_10_1016_j_pscychresns_2016_06_002 crossref_primary_10_1038_nn_4458 crossref_primary_10_1016_j_neuropsychologia_2015_02_007 crossref_primary_10_1038_s41598_018_32828_x crossref_primary_10_1186_s10194_017_0797_z crossref_primary_10_1016_j_nicl_2020_102199 crossref_primary_10_1016_j_schres_2019_08_034 crossref_primary_10_3389_fnhum_2024_1316117 crossref_primary_10_1016_j_neubiorev_2024_105791 crossref_primary_10_1073_pnas_1704831114 crossref_primary_10_3389_fnagi_2023_1158579 crossref_primary_10_3389_fpsyt_2023_1302255 crossref_primary_10_1016_j_pscychresns_2016_07_003 crossref_primary_10_1080_13651501_2020_1861632 crossref_primary_10_1080_1028415X_2018_1525477 crossref_primary_10_1089_brain_2014_0320 crossref_primary_10_1148_radiol_2017161732 crossref_primary_10_1016_j_rpsm_2023_01_001 crossref_primary_10_1016_j_jmbbm_2023_105681 crossref_primary_10_1016_j_neuroimage_2013_09_059 crossref_primary_10_31202_ecjse_728049 crossref_primary_10_1007_s12021_024_09687_1 crossref_primary_10_3233_JAD_220551 crossref_primary_10_1007_s00429_013_0677_5 crossref_primary_10_1016_j_smrv_2015_03_001 crossref_primary_10_3389_fnins_2017_00132 crossref_primary_10_1038_s41598_021_81915_z crossref_primary_10_1093_schbul_sbx114 crossref_primary_10_1016_j_drugalcdep_2017_02_028 crossref_primary_10_1111_acps_12848 crossref_primary_10_1093_brain_awx269 crossref_primary_10_1038_srep39818 crossref_primary_10_3389_fnins_2021_708387 crossref_primary_10_1016_j_euroneuro_2017_12_117 crossref_primary_10_1192_bjp_bp_114_159087 crossref_primary_10_1002_hbm_22384 crossref_primary_10_1016_j_nicl_2021_102888 crossref_primary_10_3174_ajnr_A4779 crossref_primary_10_3389_fonc_2020_573512 crossref_primary_10_1016_j_cortex_2015_02_019 crossref_primary_10_1016_j_neuroimage_2016_09_029 crossref_primary_10_1007_s00406_024_01872_2 crossref_primary_10_1007_s12311_020_01157_z crossref_primary_10_1186_s13195_024_01604_7 crossref_primary_10_1016_j_neuroimage_2015_09_021 crossref_primary_10_1016_j_nic_2019_09_001 crossref_primary_10_1016_j_nicl_2016_06_002 crossref_primary_10_1016_j_nicl_2019_101858 crossref_primary_10_1016_j_jpsychires_2015_08_015 crossref_primary_10_1038_s41598_021_83491_8 crossref_primary_10_1002_hbm_23864 crossref_primary_10_2139_ssrn_4097565 crossref_primary_10_1002_hbm_25327 crossref_primary_10_1038_s42003_022_03880_1 crossref_primary_10_1136_jnnp_2015_312690 crossref_primary_10_1148_radiol_2015142541 crossref_primary_10_1016_j_bpsc_2016_01_001 crossref_primary_10_1080_23273798_2015_1068944 crossref_primary_10_1016_j_neuroimage_2023_120387 crossref_primary_10_3389_fvets_2018_00172 crossref_primary_10_1016_j_neuroimage_2014_06_029 crossref_primary_10_1007_s11682_019_00248_8 crossref_primary_10_3389_fnhum_2024_1276057 crossref_primary_10_1016_j_pscychresns_2016_04_005 crossref_primary_10_1007_s12021_018_9410_0 crossref_primary_10_1038_s41380_023_02343_1 crossref_primary_10_1016_j_neuroimage_2018_05_065 crossref_primary_10_1016_j_neuroimage_2021_118869 crossref_primary_10_1007_s11682_013_9256_x crossref_primary_10_1111_jnc_16054 crossref_primary_10_1016_j_neuroimage_2016_05_026 crossref_primary_10_1080_23273798_2016_1250926 crossref_primary_10_1038_nprot_2015_014 crossref_primary_10_3389_fneur_2025_1510115 crossref_primary_10_1111_adb_12743 crossref_primary_10_1038_npp_2014_5 crossref_primary_10_1371_journal_pone_0158867 |
Cites_doi | 10.1016/j.schres.2012.01.038 10.1192/bjp.bp.108.055046 10.2967/jnumed.107.042820 10.1016/j.neuroimage.2007.10.051 10.1006/nimg.2001.0786 10.1016/j.neuroimage.2008.12.037 10.1002/hbm.10062 10.1109/42.906424 10.3174/ajnr.A1939 10.1006/nimg.2001.0961 10.1002/hbm.20540 10.1001/archgenpsychiatry.2010.70 10.1016/j.neuroimage.2009.09.062 10.1001/archgenpsychiatry.2011.27 10.2307/2344614 10.1109/42.750253 10.1016/j.schres.2010.12.020 10.1016/j.media.2007.06.004 10.1186/1744-9081-8-46 10.1016/j.neuroimage.2013.01.058 10.1006/nimg.1998.0395 10.2174/1573405054038726 10.1017/S0033291710002187 10.1016/j.neuroimage.2010.12.049 10.1073/pnas.200033797 10.1016/j.neuroimage.2006.05.014 10.1016/j.neuroimage.2004.01.041 10.1093/schbul/sbr134 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F 10.1006/nimg.2000.0582 10.1016/j.neuroimage.2010.09.088 10.1016/j.eurpsy.2011.04.001 10.1016/j.neubiorev.2012.07.012 10.1016/j.neuroimage.2005.10.054 10.1016/j.neuroimage.2007.07.007 10.1016/j.neubiorev.2013.03.006 10.1016/j.neuroimage.2004.07.030 10.1006/nimg.2002.1153 10.1016/j.neuroimage.2008.03.061 10.1016/j.pscychresns.2013.07.008 10.1176/appi.ajp.2011.11020281 10.2307/1932409 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. 2015 INIST-CNRS 2013. Copyright Elsevier Limited Feb 1, 2014 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: 2013. – notice: Copyright Elsevier Limited Feb 1, 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2013.07.084 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 90 |
ExternalDocumentID | 3268821321 23933042 28503353 10_1016_j_neuroimage_2013_07_084 S1053811913008562 |
Genre | Validation Studies Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACLOT ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT ~HD ALIPV IQODW AGRNS CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c588t-3b8ad4cff580282a3b277331691e282d21e20cd47bad7e134e55c413b97219263 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Sun Sep 28 02:56:30 EDT 2025 Sun Sep 28 10:29:21 EDT 2025 Wed Aug 13 06:14:02 EDT 2025 Mon Jul 21 05:50:13 EDT 2025 Wed Apr 02 07:16:15 EDT 2025 Wed Oct 01 02:58:14 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Fri Feb 23 02:36:05 EST 2024 Tue Aug 26 16:31:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Normalization Threshold-free cluster enhancement Cluster-based statistics Diffeomorphic registration Modulation Voxel-based morphometry Morphometry |
Language | English |
License | CC BY 4.0 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-3b8ad4cff580282a3b277331691e282d21e20cd47bad7e134e55c413b97219263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 23933042 |
PQID | 1513507892 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1500783494 proquest_miscellaneous_1490705506 proquest_journals_1513507892 pubmed_primary_23933042 pascalfrancis_primary_28503353 crossref_citationtrail_10_1016_j_neuroimage_2013_07_084 crossref_primary_10_1016_j_neuroimage_2013_07_084 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_07_084 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_07_084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Mechelli, Price, Friston, Ashburner (bb0160) 2005; 1 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bb0125) 2001; 14 Zhang, Brady, Smith (bb0245) 2001; 20 Bora, Fornito, Radua, Walterfang, Seal, Wood, Yucel, Velakoulis, Pantelis (bb0055) 2011; 127 Ashburner, Friston (bb0020) 2000; 11 Radua, van den Heuvel, Surguladze, Mataix-Cols (bb0200) 2010; 67 Friston, Ashburner, Kiebel, Nichols, Penny (bb0110) 2007 Matsunari, Samuraki, Chen, Yanase, Takeda, Ono, Yoshita, Matsuda, Yamada, Kinuya (bb0155) 2007; 48 Smith, Nichols (bb0225) 2009; 44 Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier, Song, Jenkinson, Lepage, Rueckert, Thompson, Vercauteren, Woods, Mann, Parsey (bb0145) 2009; 46 Lansley, Mataix-Cols, Grau, Radua, Sastre-Garriga (bb0150) 2013; 37 Palaniyappan, Balain, Radua, Liddle (bb0175) 2012; 137 Radua, Via, Catani, Mataix-Cols (bb0205) 2011; 41 Dice (bb0090) 1945; 26 Hayasaka, Phan, Liberzon, Worsley, Nichols (bb0130) 2004; 22 Dale, Fischl, Sereno (bb0080) 1999; 9 Borgwardt, Radua, Mechelli, Fusar-Poli (bb0060) 2012; 8 Nelder, Wedderburn (bb0170) 1972; 135 Bullmore, Suckling, Overmeyer, Rabe-Hesketh, Taylor, Brammer (bb0065) 1999; 18 Dashjamts, Yoshiura, Hiwatashi, Togao, Yamashita, Ohyagi, Monji, Kamano, Kawashima, Kira, Honda (bb0085) 2012; 103 Salmond, Ashburner, Vargha-Khadem, Connelly, Gadian, Friston (bb0215) 2002; 17 Worsley, Andermann, Koulis, MacDonald, Evans (bb0235) 1999; 8 Ashburner, Friston (bb0030) 2003 Radua, Mataix-Cols, Phillips, El-Hage, Kronhaus, Cardoner, Surguladze (bb0195) 2012; 27 Ashburner, Friston (bb0025) 2001; 14 Via, Radua, Cardoner, Happe, Mataix-Cols (bb0230) 2011; 68 Smith (bb0220) 2002; 17 Cooper, Barker, Radua, Fusar-Poli, Lawrie (bb0075) 2014; 221 Eckert, Tenforde, Galaburda, Bellugi, Korenberg, Mills, Reiss (bb0095) 2006; 32 Canales-Rodriguez, Radua, Pomarol-Clotet, Sarro, Aleman-Gomez, Iturria-Medina, Salvador (bb0070) 2013; 72C Ashburner, Friston (bb0035) 2011; 55 Acosta-Cabronero, Williams, Pereira, Pengas, Nestor (bb0005) 2008; 39 R. Core Team (bb0180) 2013 Xu, Groth, Pearlson, Schretlen, Calhoun (bb0240) 2009; 30 Fein, Landman, Tran, Barakos, Moon, Di Sclafani, Shumway (bb0100) 2006; 30 Fusar-Poli, Radua, McGuire, Borgwardt (bb0115) 2012; 38 Nakao, Radua, Rubia, Mataix-Cols (bb0165) 2011; 168 Bates, Maechler, Bolker (bb0050) 2012 Fischl, Dale (bb0105) 2000; 97 Henley, Ridgway, Scahill, Kloppel, Tabrizi, Fox, Kassubek (bb0135) 2010; 31 Avants, Epstein, Grossman, Gee (bb0040) 2008; 12 Avants, Yushkevich, Pluta, Minkoff, Korczykowski, Detre, Gee (bb0045) 2010; 49 Salimi-Khorshidi, Smith, Nichols (bb0210) 2011; 54 Radua, Borgwardt, Crescini, Mataix-Cols, Meyer-Lindenberg, McGuire, Fusar-Poli (bb0185) 2012; 36 Andersson, Jenkinson, Smith (bb0010) 2007 Ashburner (bb0015) 2007; 38 Keller, Wilke, Wieshmann, Sluming, Roberts (bb0140) 2004; 23 Radua, Mataix-Cols (bb0190) 2009; 195 Good, Ashburner, Frackowiak (bb0120) 2001; 157 Radua (10.1016/j.neuroimage.2013.07.084_bb0190) 2009; 195 Mechelli (10.1016/j.neuroimage.2013.07.084_bb0160) 2005; 1 Good (10.1016/j.neuroimage.2013.07.084_bb0125) 2001; 14 Fusar-Poli (10.1016/j.neuroimage.2013.07.084_bb0115) 2012; 38 Canales-Rodriguez (10.1016/j.neuroimage.2013.07.084_bb0070) 2013; 72C Bullmore (10.1016/j.neuroimage.2013.07.084_bb0065) 1999; 18 Acosta-Cabronero (10.1016/j.neuroimage.2013.07.084_bb0005) 2008; 39 Andersson (10.1016/j.neuroimage.2013.07.084_bb0010) 2007 Ashburner (10.1016/j.neuroimage.2013.07.084_bb0030) 2003 Borgwardt (10.1016/j.neuroimage.2013.07.084_bb0060) 2012; 8 Bates (10.1016/j.neuroimage.2013.07.084_bb0050) 2012 Hayasaka (10.1016/j.neuroimage.2013.07.084_bb0130) 2004; 22 Smith (10.1016/j.neuroimage.2013.07.084_bb0220) 2002; 17 Smith (10.1016/j.neuroimage.2013.07.084_bb0225) 2009; 44 Bora (10.1016/j.neuroimage.2013.07.084_bb0055) 2011; 127 Friston (10.1016/j.neuroimage.2013.07.084_bb0110) 2007 Nakao (10.1016/j.neuroimage.2013.07.084_bb0165) 2011; 168 Via (10.1016/j.neuroimage.2013.07.084_bb0230) 2011; 68 Dashjamts (10.1016/j.neuroimage.2013.07.084_bb0085) 2012; 103 Ashburner (10.1016/j.neuroimage.2013.07.084_bb0035) 2011; 55 Lansley (10.1016/j.neuroimage.2013.07.084_bb0150) 2013; 37 Nelder (10.1016/j.neuroimage.2013.07.084_bb0170) 1972; 135 Fein (10.1016/j.neuroimage.2013.07.084_bb0100) 2006; 30 Salmond (10.1016/j.neuroimage.2013.07.084_bb0215) 2002; 17 Dale (10.1016/j.neuroimage.2013.07.084_bb0080) 1999; 9 Matsunari (10.1016/j.neuroimage.2013.07.084_bb0155) 2007; 48 R. Core Team (10.1016/j.neuroimage.2013.07.084_bb0180) 2013 Keller (10.1016/j.neuroimage.2013.07.084_bb0140) 2004; 23 Worsley (10.1016/j.neuroimage.2013.07.084_bb0235) 1999; 8 Palaniyappan (10.1016/j.neuroimage.2013.07.084_bb0175) 2012; 137 Xu (10.1016/j.neuroimage.2013.07.084_bb0240) 2009; 30 Radua (10.1016/j.neuroimage.2013.07.084_bb0195) 2012; 27 Henley (10.1016/j.neuroimage.2013.07.084_bb0135) 2010; 31 Good (10.1016/j.neuroimage.2013.07.084_bb0120) 2001; 157 Avants (10.1016/j.neuroimage.2013.07.084_bb0040) 2008; 12 Ashburner (10.1016/j.neuroimage.2013.07.084_bb0015) 2007; 38 Radua (10.1016/j.neuroimage.2013.07.084_bb0205) 2011; 41 Ashburner (10.1016/j.neuroimage.2013.07.084_bb0025) 2001; 14 Zhang (10.1016/j.neuroimage.2013.07.084_bb0245) 2001; 20 Ashburner (10.1016/j.neuroimage.2013.07.084_bb0020) 2000; 11 Radua (10.1016/j.neuroimage.2013.07.084_bb0185) 2012; 36 Radua (10.1016/j.neuroimage.2013.07.084_bb0200) 2010; 67 Eckert (10.1016/j.neuroimage.2013.07.084_bb0095) 2006; 32 Fischl (10.1016/j.neuroimage.2013.07.084_bb0105) 2000; 97 Dice (10.1016/j.neuroimage.2013.07.084_bb0090) 1945; 26 Cooper (10.1016/j.neuroimage.2013.07.084_bb0075) 2014; 221 Salimi-Khorshidi (10.1016/j.neuroimage.2013.07.084_bb0210) 2011; 54 Klein (10.1016/j.neuroimage.2013.07.084_bb0145) 2009; 46 Avants (10.1016/j.neuroimage.2013.07.084_bb0045) 2010; 49 |
References_xml | – volume: 27 start-page: 605 year: 2012 end-page: 611 ident: bb0195 article-title: A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps publication-title: Eur. Psychiatry – volume: 8 start-page: 46 year: 2012 ident: bb0060 article-title: Why are psychiatric imaging methods clinically unreliable? Conclusions and practical guidelines for authors, editors and reviewers publication-title: Behav. Brain Funct. – volume: 54 start-page: 2006 year: 2011 end-page: 2019 ident: bb0210 article-title: Adjusting the effect of nonstationarity in cluster-based and TFCE inference publication-title: NeuroImage – volume: 157 start-page: 797 year: 2001 end-page: 806 ident: bb0120 article-title: Computational neuroanatomy: new perspectives for neuroradiology publication-title: Rev. Neurol. (Paris) – year: 2012 ident: bb0050 article-title: lme4: linear mixed-effects models using S4 classes publication-title: R Package Version 0.999999-0 – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bb0020 article-title: Voxel-based morphometry — the methods publication-title: NeuroImage – volume: 37 start-page: 819 year: 2013 end-page: 830 ident: bb0150 article-title: Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability publication-title: Neurosci. Biobehav. Rev. – volume: 72C start-page: 214 year: 2013 end-page: 226 ident: bb0070 article-title: Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry publication-title: NeuroImage – volume: 221 start-page: 69 year: 2014 end-page: 77 ident: bb0075 article-title: Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia publication-title: Psychiatry Res. Neuroimaging – year: 2007 ident: bb0110 article-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bb0245 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 1238 year: 2001 end-page: 1243 ident: bb0025 article-title: Why voxel-based morphometry should be used publication-title: NeuroImage – volume: 127 start-page: 46 year: 2011 end-page: 57 ident: bb0055 article-title: Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis publication-title: Schizophr. Res. – volume: 31 start-page: 711 year: 2010 end-page: 719 ident: bb0135 article-title: Pitfalls in the use of voxel-based morphometry as a biomarker: examples from huntington disease publication-title: AJNR Am. J. Neuroradiol. – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bb0090 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 55 start-page: 954 year: 2011 end-page: 967 ident: bb0035 article-title: Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation publication-title: NeuroImage – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bb0040 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 168 start-page: 1154 year: 2011 end-page: 1163 ident: bb0165 article-title: Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication publication-title: Am. J. Psychiatry – volume: 8 start-page: 98 year: 1999 end-page: 101 ident: bb0235 article-title: Detecting changes in nonisotropic images publication-title: Hum. Brain Mapp. – volume: 23 start-page: 860 year: 2004 end-page: 868 ident: bb0140 article-title: Comparison of standard and optimized voxel-based morphometry for analysis of brain changes associated with temporal lobe epilepsy publication-title: NeuroImage – volume: 41 start-page: 1539 year: 2011 end-page: 1550 ident: bb0205 article-title: Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls publication-title: Psychol. Med. – volume: 46 start-page: 786 year: 2009 end-page: 802 ident: bb0145 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage – volume: 137 start-page: 169 year: 2012 end-page: 173 ident: bb0175 article-title: Structural correlates of auditory hallucinations in schizophrenia: a meta-analysis publication-title: Schizophr. Res. – year: 2013 ident: bb0180 article-title: R: A Language and Environment for Statistical Computing – volume: 30 start-page: 711 year: 2009 end-page: 724 ident: bb0240 article-title: Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia publication-title: Hum. Brain Mapp. – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bb0015 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage – volume: 17 start-page: 1027 year: 2002 end-page: 1030 ident: bb0215 article-title: Distributional assumptions in voxel-based morphometry publication-title: NeuroImage – volume: 49 start-page: 2457 year: 2010 end-page: 2466 ident: bb0045 article-title: The optimal template effect in hippocampus studies of diseased populations publication-title: NeuroImage – volume: 195 start-page: 393 year: 2009 end-page: 402 ident: bb0190 article-title: Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder publication-title: Br. J. Psychiatry – volume: 14 start-page: 21 year: 2001 end-page: 36 ident: bb0125 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage – volume: 1 start-page: 105 year: 2005 end-page: 113 ident: bb0160 article-title: Voxel-based morphometry of the human brain: methods and applications publication-title: Curr. Med. Imag. Rev. – volume: 103 start-page: 59 year: 2012 end-page: 69 ident: bb0085 article-title: Alzheimer's disease: diagnosis by different methods of voxel-based morphometry publication-title: Fukuoka Igaku Zasshi – volume: 32 start-page: 1001 year: 2006 end-page: 1007 ident: bb0095 article-title: To modulate or not to modulate: differing results in uniquely shaped Williams syndrome brains publication-title: NeuroImage – volume: 135 start-page: 370 year: 1972 end-page: 384 ident: bb0170 article-title: Generalized linear models publication-title: J. R. Stat. Soc. Ser. A Gen. – volume: 30 start-page: 1187 year: 2006 end-page: 1195 ident: bb0100 article-title: Statistical parametric mapping of brain morphology: sensitivity is dramatically increased by using brain-extracted images as inputs publication-title: NeuroImage – volume: 22 start-page: 676 year: 2004 end-page: 687 ident: bb0130 article-title: Nonstationary cluster-size inference with random field and permutation methods publication-title: NeuroImage – year: 2003 ident: bb0030 article-title: Spatial normalization using basis functions publication-title: Human Brain Function – volume: 68 start-page: 409 year: 2011 end-page: 418 ident: bb0230 article-title: Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? publication-title: Arch. Gen. Psychiatry – volume: 39 start-page: 1654 year: 2008 end-page: 1665 ident: bb0005 article-title: The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry publication-title: NeuroImage – volume: 44 start-page: 83 year: 2009 end-page: 98 ident: bb0225 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: NeuroImage – year: 2007 ident: bb0010 article-title: Non-linear registration, aka Spatial normalisation publication-title: FMRIB technical report TR07JA2 – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0220 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 36 start-page: 2325 year: 2012 end-page: 2333 ident: bb0185 article-title: Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication publication-title: Neurosci. Biobehav. Rev. – volume: 48 start-page: 1961 year: 2007 end-page: 1970 ident: bb0155 article-title: Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer's disease: aging effect on diagnostic performance publication-title: J. Nucl. Med. – volume: 67 start-page: 701 year: 2010 end-page: 711 ident: bb0200 article-title: Meta-analytical comparison of voxel-based morphometry studies in obsessive–compulsive disorder vs other anxiety disorders publication-title: Arch. Gen. Psychiatry – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0080 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: NeuroImage – volume: 18 start-page: 32 year: 1999 end-page: 42 ident: bb0065 article-title: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain publication-title: IEEE Trans. Med. Imaging – volume: 38 start-page: 1297 year: 2012 end-page: 1307 ident: bb0115 article-title: Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies publication-title: Schizophr. Bull. – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: bb0105 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 137 start-page: 169 year: 2012 ident: 10.1016/j.neuroimage.2013.07.084_bb0175 article-title: Structural correlates of auditory hallucinations in schizophrenia: a meta-analysis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2012.01.038 – volume: 195 start-page: 393 year: 2009 ident: 10.1016/j.neuroimage.2013.07.084_bb0190 article-title: Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder publication-title: Br. J. Psychiatry doi: 10.1192/bjp.bp.108.055046 – volume: 48 start-page: 1961 year: 2007 ident: 10.1016/j.neuroimage.2013.07.084_bb0155 article-title: Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer's disease: aging effect on diagnostic performance publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.042820 – volume: 39 start-page: 1654 year: 2008 ident: 10.1016/j.neuroimage.2013.07.084_bb0005 article-title: The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.10.051 – volume: 14 start-page: 21 year: 2001 ident: 10.1016/j.neuroimage.2013.07.084_bb0125 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage doi: 10.1006/nimg.2001.0786 – volume: 46 start-page: 786 year: 2009 ident: 10.1016/j.neuroimage.2013.07.084_bb0145 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.037 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2013.07.084_bb0220 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.neuroimage.2013.07.084_bb0245 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 31 start-page: 711 year: 2010 ident: 10.1016/j.neuroimage.2013.07.084_bb0135 article-title: Pitfalls in the use of voxel-based morphometry as a biomarker: examples from huntington disease publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A1939 – volume: 14 start-page: 1238 year: 2001 ident: 10.1016/j.neuroimage.2013.07.084_bb0025 article-title: Why voxel-based morphometry should be used publication-title: NeuroImage doi: 10.1006/nimg.2001.0961 – year: 2013 ident: 10.1016/j.neuroimage.2013.07.084_bb0180 – volume: 30 start-page: 711 year: 2009 ident: 10.1016/j.neuroimage.2013.07.084_bb0240 article-title: Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20540 – volume: 67 start-page: 701 year: 2010 ident: 10.1016/j.neuroimage.2013.07.084_bb0200 article-title: Meta-analytical comparison of voxel-based morphometry studies in obsessive–compulsive disorder vs other anxiety disorders publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2010.70 – volume: 49 start-page: 2457 year: 2010 ident: 10.1016/j.neuroimage.2013.07.084_bb0045 article-title: The optimal template effect in hippocampus studies of diseased populations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.09.062 – volume: 68 start-page: 409 year: 2011 ident: 10.1016/j.neuroimage.2013.07.084_bb0230 article-title: Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2011.27 – volume: 135 start-page: 370 year: 1972 ident: 10.1016/j.neuroimage.2013.07.084_bb0170 article-title: Generalized linear models publication-title: J. R. Stat. Soc. Ser. A Gen. doi: 10.2307/2344614 – volume: 18 start-page: 32 year: 1999 ident: 10.1016/j.neuroimage.2013.07.084_bb0065 article-title: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.750253 – year: 2012 ident: 10.1016/j.neuroimage.2013.07.084_bb0050 article-title: lme4: linear mixed-effects models using S4 classes – volume: 157 start-page: 797 year: 2001 ident: 10.1016/j.neuroimage.2013.07.084_bb0120 article-title: Computational neuroanatomy: new perspectives for neuroradiology publication-title: Rev. Neurol. (Paris) – volume: 127 start-page: 46 year: 2011 ident: 10.1016/j.neuroimage.2013.07.084_bb0055 article-title: Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2010.12.020 – volume: 12 start-page: 26 year: 2008 ident: 10.1016/j.neuroimage.2013.07.084_bb0040 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 103 start-page: 59 year: 2012 ident: 10.1016/j.neuroimage.2013.07.084_bb0085 article-title: Alzheimer's disease: diagnosis by different methods of voxel-based morphometry publication-title: Fukuoka Igaku Zasshi – volume: 8 start-page: 46 year: 2012 ident: 10.1016/j.neuroimage.2013.07.084_bb0060 article-title: Why are psychiatric imaging methods clinically unreliable? Conclusions and practical guidelines for authors, editors and reviewers publication-title: Behav. Brain Funct. doi: 10.1186/1744-9081-8-46 – year: 2007 ident: 10.1016/j.neuroimage.2013.07.084_bb0010 article-title: Non-linear registration, aka Spatial normalisation – year: 2007 ident: 10.1016/j.neuroimage.2013.07.084_bb0110 – volume: 72C start-page: 214 year: 2013 ident: 10.1016/j.neuroimage.2013.07.084_bb0070 article-title: Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.01.058 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2013.07.084_bb0080 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: NeuroImage doi: 10.1006/nimg.1998.0395 – volume: 1 start-page: 105 year: 2005 ident: 10.1016/j.neuroimage.2013.07.084_bb0160 article-title: Voxel-based morphometry of the human brain: methods and applications publication-title: Curr. Med. Imag. Rev. doi: 10.2174/1573405054038726 – volume: 41 start-page: 1539 year: 2011 ident: 10.1016/j.neuroimage.2013.07.084_bb0205 article-title: Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls publication-title: Psychol. Med. doi: 10.1017/S0033291710002187 – volume: 55 start-page: 954 year: 2011 ident: 10.1016/j.neuroimage.2013.07.084_bb0035 article-title: Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.049 – volume: 97 start-page: 11050 year: 2000 ident: 10.1016/j.neuroimage.2013.07.084_bb0105 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.200033797 – volume: 32 start-page: 1001 year: 2006 ident: 10.1016/j.neuroimage.2013.07.084_bb0095 article-title: To modulate or not to modulate: differing results in uniquely shaped Williams syndrome brains publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.014 – volume: 22 start-page: 676 year: 2004 ident: 10.1016/j.neuroimage.2013.07.084_bb0130 article-title: Nonstationary cluster-size inference with random field and permutation methods publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.01.041 – volume: 38 start-page: 1297 year: 2012 ident: 10.1016/j.neuroimage.2013.07.084_bb0115 article-title: Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbr134 – volume: 8 start-page: 98 year: 1999 ident: 10.1016/j.neuroimage.2013.07.084_bb0235 article-title: Detecting changes in nonisotropic images publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F – volume: 11 start-page: 805 year: 2000 ident: 10.1016/j.neuroimage.2013.07.084_bb0020 article-title: Voxel-based morphometry — the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 54 start-page: 2006 year: 2011 ident: 10.1016/j.neuroimage.2013.07.084_bb0210 article-title: Adjusting the effect of nonstationarity in cluster-based and TFCE inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.088 – volume: 27 start-page: 605 year: 2012 ident: 10.1016/j.neuroimage.2013.07.084_bb0195 article-title: A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps publication-title: Eur. Psychiatry doi: 10.1016/j.eurpsy.2011.04.001 – year: 2003 ident: 10.1016/j.neuroimage.2013.07.084_bb0030 article-title: Spatial normalization using basis functions – volume: 36 start-page: 2325 year: 2012 ident: 10.1016/j.neuroimage.2013.07.084_bb0185 article-title: Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.07.012 – volume: 30 start-page: 1187 year: 2006 ident: 10.1016/j.neuroimage.2013.07.084_bb0100 article-title: Statistical parametric mapping of brain morphology: sensitivity is dramatically increased by using brain-extracted images as inputs publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.10.054 – volume: 38 start-page: 95 year: 2007 ident: 10.1016/j.neuroimage.2013.07.084_bb0015 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 37 start-page: 819 year: 2013 ident: 10.1016/j.neuroimage.2013.07.084_bb0150 article-title: Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2013.03.006 – volume: 23 start-page: 860 year: 2004 ident: 10.1016/j.neuroimage.2013.07.084_bb0140 article-title: Comparison of standard and optimized voxel-based morphometry for analysis of brain changes associated with temporal lobe epilepsy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.030 – volume: 17 start-page: 1027 year: 2002 ident: 10.1016/j.neuroimage.2013.07.084_bb0215 article-title: Distributional assumptions in voxel-based morphometry publication-title: NeuroImage doi: 10.1006/nimg.2002.1153 – volume: 44 start-page: 83 year: 2009 ident: 10.1016/j.neuroimage.2013.07.084_bb0225 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.061 – volume: 221 start-page: 69 year: 2014 ident: 10.1016/j.neuroimage.2013.07.084_bb0075 article-title: Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2013.07.008 – volume: 168 start-page: 1154 year: 2011 ident: 10.1016/j.neuroimage.2013.07.084_bb0165 article-title: Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2011.11020281 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.neuroimage.2013.07.084_bb0090 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 |
SSID | ssj0009148 |
Score | 2.4487967 |
Snippet | Voxel-based morphometry (VBM) is a widely-used structural neuroimaging technique for comparing meso- and macroscopic regional brain volumes between patients... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 81 |
SubjectTerms | Adult Algorithms Biological and medical sciences Brain Brain - cytology Cluster-based statistics Diffeomorphic registration Female Fundamental and applied biological sciences. Psychology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Male Medical imaging Modulation Neurons - cytology Normalization Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Studies Threshold-free cluster enhancement Vertebrates: nervous system and sense organs Voxel-based morphometry |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhh1Aopd91kwYVenXXa0mWRU4lJIRCSqFNyU1I1hi2ZO0luwntJb89M5a8Sw4pC73Y2NaAPB7NPFmjN4x9cmVdOw2Qt603uZQScu-UyI0yYAyA1wMdw_m36uxCfr1UlzvseNwLQ2mVyfdHnz5463RnkrQ5Wcxmkx-IDDDc4HxDEG4Y_DCxf6FNf77bpHmYqYzb4bAD1Dpl88Qcr4EzcjbHkUtJXmKg8azlYyHq6cItUXFtrHjxOCQdQtPpc_YsYUr-JXb7BduB7iXbO0-r5q_Y918ItgPCbd63fN6HVLGLuy7wHl3GHIWXMCRALzmCWD4mBvDb_g9c5RTpAgriJ-nnsLr--5pdnJ78PD7LUyWFvFF1vcqFr12QTduqmuZYTvhSU7HGykwBr0OJp6IJUnsXNEyFBKUaDG-euH1MWYk3bLfrO3jHOPigNB4CNpG-kh5nuKIKugBXaMSaGdOj8myTaMap2sWVHfPJftuN2i2p3RbaotozNl1LLiLVxhYyZvw-dtxKis7PYjzYQvZoLfvA5LaUPnxgDusulzWtDCuRsYPRPmzyC0uL-EooYvgvM_Zx_RhHNC3TuA76G2wjTUEcR0X1jzaKsB1RC2XsbbS9TQdE_En1_r_eb589wSsZE9QP2O7q-gY-IP5a-cNhgN0D3UMvkw priority: 102 providerName: Elsevier |
Title | Validity of modulation and optimal settings for advanced voxel-based morphometry |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913008562 https://dx.doi.org/10.1016/j.neuroimage.2013.07.084 https://www.ncbi.nlm.nih.gov/pubmed/23933042 https://www.proquest.com/docview/1513507892 https://www.proquest.com/docview/1490705506 https://www.proquest.com/docview/1500783494 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6aBEohlL7jJl1U6NWtbUmWTA8hDQnbR5YlNGVvQrJkaMjam3hT2kt_e0e2vEsPCXuxMNZgeTya-SyNvwF4pzMptXAuripTxIwxFxvNaVzwwhWFc0Z0dAxnk3x8wb7M-CwsuLUhrXLwiZ2jtk3p18g_YGSi3HOjZ4eL69hXjfK7q6GExhbspAhVvFWLmViT7qas_xUOby6xQ8jk6fO7Or7In3OctT7Bi3YUnpLdFZ52F7pFpVV9tYu74WgXlk6fwOOAJ8lRbwBP4YGrn8HDs7Bj_hymPxBoW4TapKnIvLGhWhfRtSUNuos5CreuS35uCQJYMiQFkF_Nb3cV-yhnURBfRzN3y5s_L-Di9OT78TgOVRTikku5jKmR2rKyqrj031eamkz4Qo15kTo8txk2SWmZMNoKl1LmOC8xtBnP61NkOX0J23VTuz0gzlgu8GCxCzM5M_h1S3MrEqcTgTgzAjEoT5WBYtxXurhSQy7ZpVqrXXm1q0QoVHsE6Upy0dNsbCBTDO9HDb-RouNTGAs2kP24kg1Qo4cQG0qP_jOH1ZAz6XeFOY3gYLAPFXxCq9YWHMHb1WWczX6LRteuucU-rEg8v1GS39OHe1znaYUieNXb3noAtF-gen3_APbhET4O67PPD2B7eXPr3iC4WpoRbL3_m466eTSCnaPj829T337-Op5g--lkMj3_B5OoKeo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgESQnwVQksxEhwjktiOY6EKIaDa0m7FoUV7M3bsSKBusjRboH-qv7HjONkVh1Z76WWjVTyRMx7PPMfjNwBvdFYUWjgXV5WRMWPMxUZzGksunZTOGdHRMYwP89Ex-zrhkzW4GM7C-LTKwSd2jto2pf9G_g4jE-WeGz37MPsd-6pRfnd1KKERzGLfnf_FJVu7s_cZx_dtlu1-Ofo0ivuqAnHJi2IeU1Noy8qq4oVfb2hqMuELF-YydfjfZnhJSsuE0Va4lDLHeYmu3nieG5nlFJ97C24zmjDP1S8mYknym7Jw9A5ftkhT2WcOhXyyjp_y5xS9hE8oox1laMGuCof3Z7rFQapCdY2r4W8XBncfwoMev5KPweAewZqrH8Odcb9D_wS-fUdgbxHak6Yi08b21cGIri1p0D1NUbh1XbJ1SxAwkyEJgfxp_rmT2EdVi4I4_M3UzU_Pn8Lxjeh3A9brpnbPgThjucAfi02YyZnB1TTNrUicTgTi2gjEoDxV9pTmvrLGiRpy136ppdqVV7tKhEK1R5AuJGeB1mMFGTmMjxqOraKjVRh7VpB9v5DtoU2ALCtKb_9nDosuZ4XfheY0gq3BPlTvg1q1nDERvF7cRu_ht4R07ZozbMNk4vmUkvyaNtzjSE9jFMGzYHvLDtDwQezF9R14BXdHR-MDdbB3uL8J9_DVWMh834L1-emZe4nAbm62u9lE4MdNT99Lmz5fRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVIFeKb0FKMBMeoSWzHsVCFEGXVUlr1QNHejB07EqibbJst0L_WX9dxnOyKQ6u99LLRKp7IGY9nxvHzG4B3OisKLZyLq8rImDHmYqM5jSWXTkrnjOjoGA6P8r0T9nXMxytwNZyF8bDKwSd2jto2pf9Gvo2RiXLPjZ5tVz0s4nh39HF6FvsKUn6ndSinEUzkwF3-xeVbu7O_i2P9PstGX75_3ov7CgNxyYtiFlNTaMvKquKFX3toajLhixjmMnX432Z4SUrLhNFWuJQyx3mJbt94zhuZ5RSfew_uC8qoh5OJsVgQ_qYsHMPDFy_SVPYoooAt67gqf03QY3hwGe3oQwt2U2hcn-oWB6wKlTZuToW7kDh6BA_7XJZ8Csb3GFZc_QTWDvvd-qdw_AOTfItpPmkqMmlsXymM6NqSBl3VBIVb1wGvW4LJMxkACeRP88-dxj7CWhREU2gmbnZ--QxO7kS_z2G1bmr3Eogzlgv8sdiEmZwZXFnT3IrE6URgjhuBGJSnyp7e3FfZOFUDju23WqhdebWrRChUewTpXHIaKD6WkJHD-KjhCCs6XYVxaAnZD3PZPs0J6cuS0lv_mcO8y1nhd6Q5jWBzsA_V-6NWLWZPBG_nt9GT-O0hXbvmAtswmXhupSS_pQ33OaWnNIrgRbC9RQdo-Dj26vYOvIE1nLjq2_7RwQY8wDdjAQS_Cauz8wv3GnO8mdnqJhOBn3c9e68BIkdjgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validity+of+modulation+and+optimal+settings+for+advanced+voxel-based+morphometry&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Radua%2C+Joaquim&rft.au=Canales-Rodr%C3%ADguez%2C+Erick+Jorge&rft.au=Pomarol-Clotet%2C+Edith&rft.au=Salvador%2C+Raymond&rft.date=2014-02-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=86&rft.spage=81&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.07.084&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |