Enhanced gallbladder cancer detection via active and self-supervised learning integration: Innovating B-ultrasound image analysis

Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data lab...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 9; p. e0330781
Main Authors Li, Jia, Zhou, Yu-Qian
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.09.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0330781

Cover

Abstract Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912—outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy.
AbstractList Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912-outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy.
Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912-outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy.Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912-outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy.
Audience Academic
Author Zhou, Yu-Qian
Li, Jia
Author_xml – sequence: 1
  givenname: Jia
  surname: Li
  fullname: Li, Jia
– sequence: 2
  givenname: Yu-Qian
  orcidid: 0009-0000-4565-6693
  surname: Zhou
  fullname: Zhou, Yu-Qian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40956796$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAYhYusuB_6D0QLguhFx6RJ2tS7dVl1YGHBr9uQJm9nMmSSMWlH59J_bup0lx3Zi6UXDS_POZy8J6fZkfMOsuw5RjNMavxu5YfgpJ1t0niGCEE1x4-yE9yQsqhKRI7unI-z0xhXCDHCq-pJdkxRw6q6qU6yP5duKZ0CnS-kta2VWkPI1TgKuYYeVG-8y7dG5jIdt5BLp_MItivisIGwNTFpLcjgjFvkxvWwCHLUvM_nzvltOqf5h2KwfZDRD0lt1nIx-ki7iyY-zR530kZ4Nv3Psu8fL79dfC6urj_NL86vCsU47wuMlaq4oh1tFG9QVeuKIFRronnT4bSRkqQd6K6GhnUtA4kJIKpoxTi0qmXkLHu5991YH8W0vShIyTBFCJc4EfM9ob1ciU1IOcNOeGnEv4EPCyFDb5QFwZnuMFEcKUZop4GzmmpaAi5ZqxtFkxfbew1uI3e_0m5vDTESY4E3EcRYoJgKTLo3U8rgfw4Qe7E2UYG10oEfpriMNVWV0Ff_ofdfaqJSvyCM63zqQY2m4pwzxmnKUidqdg-VPg1ro1LAzqT5geDtgSAxPfzuF3KIUcy_fnk4e_3jkH19h12CtP0yejuMLyoegi-m2w_tGvTtdm-edgLoHlDBxxige1gBfwGrBgyd
Cites_doi 10.1016/S1499-3872(15)60351-4
10.1109/TPAMI.2023.3336525
10.1109/JBHI.2023.3282596
10.1016/B978-0-323-47674-4.00077-3
10.3390/app13063489
10.1002/ima.22693
10.1038/s41598-020-64205-y
10.1109/TKDE.2022.3140866
10.1016/j.ultrasmedbio.2023.03.022
10.1007/978-3-030-59710-8_57
10.1609/aaai.v36i8.20850
10.1007/978-3-031-16440-8_41
10.1016/j.compbiomed.2022.106389
10.1109/CVPR42600.2020.00975
10.1016/j.bspc.2023.105430
10.1016/j.compmedimag.2024.102326
10.1002/uog.26130
10.1109/ICEEICT62016.2024.10534480
10.14778/3476249.3476258
10.1109/ICCV.2019.00607
10.1145/3472291
10.7717/peerj-cs.1045
10.1109/ACOMP53746.2021.00017
10.1007/978-3-030-87196-3_24
10.1002/mp.15172
10.1007/s11548-016-1515-z
10.1016/j.asoc.2022.109926
10.1016/j.ijmedinf.2023.105279
10.1109/CVPR52729.2023.02178
10.1158/1055-9965.EPI-21-0265
10.1109/CVPR52688.2022.01553
10.1145/3422622
10.1016/j.media.2022.102629
10.1016/j.media.2021.102062
10.3748/wjg.v26.i22.2967
10.1145/3488560.3498483
10.1109/CVPR52733.2024.01113
10.1109/CVPR52688.2022.02022
10.1109/ICCV51070.2023.01491
10.1038/s41572-022-00398-y
10.1038/s41433-023-02705-7
10.1016/j.compbiomed.2023.106629
10.3390/jcm10163585
ContentType Journal Article
Copyright Copyright: © 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0330781
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3251400121
oai_doaj_org_article_85df13c80c534fde8574d42e125bd9c4
10.1371/journal.pone.0330781
A855841377
40956796
10_1371_journal_pone_0330781
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
ADTOC
UNPAY
ACCTH
AFFHD
BBTPI
ID FETCH-LOGICAL-c588t-11cc68c4f49c89067d63007d3d89f113723330df7e95fb5ea13e04c4658ebcb53
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Oct 29 23:53:06 EDT 2025
Tue Oct 14 18:30:06 EDT 2025
Sun Oct 26 04:15:50 EDT 2025
Thu Sep 18 00:39:38 EDT 2025
Tue Oct 07 09:19:40 EDT 2025
Mon Oct 20 22:39:41 EDT 2025
Mon Oct 20 16:53:04 EDT 2025
Thu Oct 16 15:29:38 EDT 2025
Thu Oct 16 15:29:41 EDT 2025
Tue Sep 23 02:14:53 EDT 2025
Sat Sep 20 02:13:04 EDT 2025
Wed Oct 01 05:19:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright: © 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c588t-11cc68c4f49c89067d63007d3d89f113723330df7e95fb5ea13e04c4658ebcb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-4565-6693
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0330781
PMID 40956796
PQID 3251400121
PQPubID 1436336
PageCount e0330781
ParticipantIDs plos_journals_3251400121
doaj_primary_oai_doaj_org_article_85df13c80c534fde8574d42e125bd9c4
unpaywall_primary_10_1371_journal_pone_0330781
proquest_miscellaneous_3251455966
proquest_journals_3251400121
gale_infotracmisc_A855841377
gale_infotracacademiconefile_A855841377
gale_incontextgauss_ISR_A855841377
gale_incontextgauss_IOV_A855841377
gale_healthsolutions_A855841377
pubmed_primary_40956796
crossref_primary_10_1371_journal_pone_0330781
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-16
PublicationDateYYYYMMDD 2025-09-16
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Oquab (pone.0330781.ref055) 2023
pone.0330781.ref056
RT Lucassen (pone.0330781.ref016) 2023; 27
MC Fiorentino (pone.0330781.ref018) 2023; 83
H Feng (pone.0330781.ref008) 2023; 13
AK Mishra (pone.0330781.ref029) 2022; 32
H Jiang (pone.0330781.ref011) 2024; 112
Q He (pone.0330781.ref009) 2023; 155
R Ramirez Zegarra (pone.0330781.ref019) 2023; 62
X Chen (pone.0330781.ref010) 2024; 181
Z Huang (pone.0330781.ref053) 2024; 46
J Lian (pone.0330781.ref036) 2017; 12
pone.0330781.ref051
pone.0330781.ref050
pone.0330781.ref004
pone.0330781.ref047
pone.0330781.ref002
pone.0330781.ref046
A Bardes (pone.0330781.ref058) 2021
pone.0330781.ref045
pone.0330781.ref044
pone.0330781.ref043
M Caron (pone.0330781.ref048) 2020; 33
TD Ellington (pone.0330781.ref005) 2021; 30
pone.0330781.ref049
S Budd (pone.0330781.ref025) 2021; 71
I Goodfellow (pone.0330781.ref057) 2020; 63
J Zhou (pone.0330781.ref013) 2024; 87
pone.0330781.ref040
S Mishra (pone.0330781.ref054) 2022
O Sener (pone.0330781.ref041) 2017
H-X Yuan (pone.0330781.ref007) 2015; 14
pone.0330781.ref035
pone.0330781.ref034
pone.0330781.ref032
pone.0330781.ref030
Y Jeong (pone.0330781.ref037) 2020; 10
R Pinsler (pone.0330781.ref042) 2019; 32
J Jiao (pone.0330781.ref031) 2020; 2020
C Liu (pone.0330781.ref033) 2021; 48
H Bao (pone.0330781.ref052) 2021
Z Li (pone.0330781.ref014) 2023; 49
pone.0330781.ref039
P Ren (pone.0330781.ref020) 2021; 54
Y Ye (pone.0330781.ref024) 2022; 35
H Sung (pone.0330781.ref003) 2021; 71
MH Yu (pone.0330781.ref006) 2020; 26
JC Roa (pone.0330781.ref001) 2022; 8
L Feng (pone.0330781.ref015) 2024; 38
LL Custode (pone.0330781.ref017) 2023; 133
pone.0330781.ref023
pone.0330781.ref021
D Shen (pone.0330781.ref026) 2021; 34
JB Grill (pone.0330781.ref028) 2020; 33
T Kim (pone.0330781.ref038) 2021; 10
pone.0330781.ref027
H Gong (pone.0330781.ref012) 2023; 155
S Shurrab (pone.0330781.ref022) 2022; 8
References_xml – volume: 14
  start-page: 201
  issue: 2
  year: 2015
  ident: pone.0330781.ref007
  article-title: Contrast-enhanced ultrasound in diagnosis of gallbladder adenoma
  publication-title: Hepatobiliary Pancreat Dis Int
  doi: 10.1016/S1499-3872(15)60351-4
– volume: 33
  start-page: 21271
  year: 2020
  ident: pone.0330781.ref028
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 46
  start-page: 2506
  issue: 4
  year: 2024
  ident: pone.0330781.ref053
  article-title: Contrastive masked autoencoders are stronger vision learners
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2023.3336525
– ident: pone.0330781.ref056
– volume: 27
  start-page: 4352
  issue: 9
  year: 2023
  ident: pone.0330781.ref016
  article-title: Deep learning for detection and localization of B-lines in lung ultrasound
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2023.3282596
– ident: pone.0330781.ref004
  doi: 10.1016/B978-0-323-47674-4.00077-3
– volume: 13
  start-page: 3489
  issue: 6
  year: 2023
  ident: pone.0330781.ref008
  article-title: Identifying malignant breast ultrasound images using ViT-patch
  publication-title: Applied Sciences
  doi: 10.3390/app13063489
– volume: 32
  start-page: 1209
  issue: 4
  year: 2022
  ident: pone.0330781.ref029
  article-title: CR-SSL: a closely related self-supervised learning based approach for improving breast ultrasound tumor segmentation
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22693
– volume: 10
  start-page: 7700
  issue: 1
  year: 2020
  ident: pone.0330781.ref037
  article-title: Deep learning-based decision support system for the diagnosis of neoplastic gallbladder polyps on ultrasonography: Preliminary results
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64205-y
– volume: 35
  start-page: 4047
  issue: 4
  year: 2022
  ident: pone.0330781.ref024
  article-title: MANE: organizational network embedding with multiplex attentive neural networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2022.3140866
– volume: 49
  start-page: 1760
  issue: 8
  year: 2023
  ident: pone.0330781.ref014
  article-title: Establishment and evaluation of intelligent diagnostic model for ophthalmic ultrasound images based on deep learning
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2023.03.022
– ident: pone.0330781.ref032
  doi: 10.1007/978-3-030-59710-8_57
– year: 2023
  ident: pone.0330781.ref055
  article-title: Dinov2: learning robust visual features without supervision
  publication-title: arXiv preprint
– ident: pone.0330781.ref044
  doi: 10.1609/aaai.v36i8.20850
– volume: 34
  start-page: 14681
  year: 2021
  ident: pone.0330781.ref026
  article-title: Topic modeling revisited: a document graph-based neural network perspective
  publication-title: Advances in Neural Information Processing Systems
– volume: 2020
  start-page: 1847
  year: 2020
  ident: pone.0330781.ref031
  article-title: Self-supervised representation learning for ultrasound video
  publication-title: Proc IEEE Int Symp Biomed Imaging
– ident: pone.0330781.ref034
  doi: 10.1007/978-3-031-16440-8_41
– volume: 155
  start-page: 106389
  year: 2023
  ident: pone.0330781.ref012
  article-title: Thyroid region prior guided attention for ultrasound segmentation of thyroid nodules
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106389
– ident: pone.0330781.ref047
  doi: 10.1109/CVPR42600.2020.00975
– volume: 87
  start-page: 105430
  year: 2024
  ident: pone.0330781.ref013
  article-title: Fully automated thyroid ultrasound screening utilizing multi-modality image and anatomical prior
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.105430
– volume: 112
  start-page: 102326
  year: 2024
  ident: pone.0330781.ref011
  article-title: MicroSegNet: a deep learning approach for prostate segmentation on micro-ultrasound images
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2024.102326
– volume: 62
  start-page: 185
  issue: 2
  year: 2023
  ident: pone.0330781.ref019
  article-title: Use of artificial intelligence and deep learning in fetal ultrasound imaging
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.26130
– ident: pone.0330781.ref040
  doi: 10.1109/ICEEICT62016.2024.10534480
– ident: pone.0330781.ref021
  doi: 10.14778/3476249.3476258
– ident: pone.0330781.ref043
  doi: 10.1109/ICCV.2019.00607
– volume: 54
  start-page: 1
  issue: 9
  year: 2021
  ident: pone.0330781.ref020
  article-title: A survey of deep active learning
  publication-title: ACM Computing Surveys
  doi: 10.1145/3472291
– volume: 8
  year: 2022
  ident: pone.0330781.ref022
  article-title: Self-supervised learning methods and applications in medical imaging analysis: a survey
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.1045
– ident: pone.0330781.ref027
  doi: 10.1109/ACOMP53746.2021.00017
– volume: 32
  year: 2019
  ident: pone.0330781.ref042
  article-title: Bayesian batch active learning as sparse subset approximation
  publication-title: Advances in Neural Information Processing Systems
– ident: pone.0330781.ref030
  doi: 10.1007/978-3-030-87196-3_24
– volume: 48
  start-page: 7199
  issue: 11
  year: 2021
  ident: pone.0330781.ref033
  article-title: TN-USMA Net: Triple normalization-based gastrointestinal stromal tumors classification on multicenter EUS images with ultrasound-specific pretraining and meta attention
  publication-title: Med Phys
  doi: 10.1002/mp.15172
– volume: 12
  start-page: 553
  issue: 4
  year: 2017
  ident: pone.0330781.ref036
  article-title: Automatic gallbladder and gallstone regions segmentation in ultrasound image
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-016-1515-z
– ident: pone.0330781.ref002
– volume: 133
  start-page: 109926
  year: 2023
  ident: pone.0330781.ref017
  article-title: Multi-objective automatic analysis of lung ultrasound data from COVID-19 patients by means of deep learning and decision trees
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109926
– volume: 181
  start-page: 105279
  year: 2024
  ident: pone.0330781.ref010
  article-title: Research related to the diagnosis of prostate cancer based on machine learning medical images: a review
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2023.105279
– ident: pone.0330781.ref051
  doi: 10.1109/CVPR52729.2023.02178
– year: 2021
  ident: pone.0330781.ref058
  article-title: Vicreg: variance-invariance-covariance regularization for self-supervised learning
  publication-title: arXiv preprint
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: pone.0330781.ref003
  article-title: Global cancer statistics 2020 : GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 30
  start-page: 1607
  issue: 9
  year: 2021
  ident: pone.0330781.ref005
  article-title: Incidence, mortality of cancers of the biliary tract, gallbladder,, liver by sex, age, race/ethnicity and stage at diagnosis: United States 2013 to 2017
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-21-0265
– volume: 33
  start-page: 9912
  year: 2020
  ident: pone.0330781.ref048
  article-title: Unsupervised learning of visual features by contrasting cluster assignments
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: pone.0330781.ref052
  article-title: Beit: bert pre-training of image transformers
  publication-title: arXiv preprint
– year: 2022
  ident: pone.0330781.ref054
  article-title: A simple, efficient and scalable contrastive masked autoencoder for learning visual representations
  publication-title: arXiv preprint
– ident: pone.0330781.ref050
  doi: 10.1109/CVPR52688.2022.01553
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: pone.0330781.ref057
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
  doi: 10.1145/3422622
– volume: 83
  start-page: 102629
  year: 2023
  ident: pone.0330781.ref018
  article-title: A review on deep-learning algorithms for fetal ultrasound-image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102629
– volume: 71
  start-page: 102062
  year: 2021
  ident: pone.0330781.ref025
  article-title: A survey on active learning and human-in-the-loop deep learning for medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102062
– volume: 26
  start-page: 2967
  issue: 22
  year: 2020
  ident: pone.0330781.ref006
  article-title: Benign gallbladder diseases: Imaging techniques and tips for differentiating with malignant gallbladder diseases
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v26.i22.2967
– ident: pone.0330781.ref023
  doi: 10.1145/3488560.3498483
– ident: pone.0330781.ref035
  doi: 10.1109/CVPR52733.2024.01113
– ident: pone.0330781.ref039
  doi: 10.1109/CVPR52688.2022.02022
– ident: pone.0330781.ref049
– ident: pone.0330781.ref045
  doi: 10.1109/ICCV51070.2023.01491
– volume: 8
  start-page: 69
  issue: 1
  year: 2022
  ident: pone.0330781.ref001
  article-title: Gallbladder cancer
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-022-00398-y
– volume: 38
  start-page: 380
  issue: 2
  year: 2024
  ident: pone.0330781.ref015
  article-title: Applying deep learning to recognize the properties of vitreous opacity in ophthalmic ultrasound images
  publication-title: Eye (Lond)
  doi: 10.1038/s41433-023-02705-7
– volume: 155
  start-page: 106629
  year: 2023
  ident: pone.0330781.ref009
  article-title: HCTNet: a hybrid CNN-transformer network for breast ultrasound image segmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106629
– volume: 10
  start-page: 3585
  issue: 16
  year: 2021
  ident: pone.0330781.ref038
  article-title: Gallbladder polyp classification in ultrasound images using an ensemble convolutional neural network model
  publication-title: J Clin Med
  doi: 10.3390/jcm10163585
– year: 2017
  ident: pone.0330781.ref041
  article-title: Active learning for convolutional neural networks: a core-set approach
  publication-title: arXiv preprint
– ident: pone.0330781.ref046
SSID ssj0053866
Score 2.4892702
Snippet Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning...
SourceID plos
doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0330781
SubjectTerms Accuracy
Algorithms
Annotations
Cancer
Classification
Clustering
Curricula
Data correlation
Datasets
Decision support systems
Deep Learning
Diagnosis
Efficiency
Feature extraction
Gallbladder
Gallbladder - diagnostic imaging
Gallbladder cancer
Gallbladder diseases
Gallbladder Neoplasms - diagnostic imaging
Humans
Image analysis
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Labeling
Machine learning
Malignancy
Medical imaging
Medical imaging equipment
Medical prognosis
Medical research
Methods
Neural networks
Prognosis
Self-supervised learning
Stability
Supervised Machine Learning
Thyroid gland
Tumors
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Ultrasound imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXoADorwaWsAgJOCQ7SZ2Eodbi1q1HEACinqLHD9KpZCNNkkRR_45M44TNVIleuC2ssfWZl6ekcffEPI64jaWxqahFCYPEQIdfnEWSm0Zdre1Vrsq30_p8Sn_eJacXWn1hTVhAzzwwLg9kWgbMSVWKmHcaiOSjGseGziYS50rhwS6EvmYTA0-GKw4Tf1DOZZFe14uy2Zdm-UKUvhMRLODyOH1T1550VTr9rqQ8y653deN_P1LVtWVY-joPrnn40e6P_zvLXLL1A_IlrfQlr71MNLvHpI_h_UPd71P8XK9rNDFbKjCoQ3VpnM1WDW9vJBUOqdHZa1payobtn2DLqSFtb6rxDkdcSVgzXt64nupwvhB2FfdRrbYnole_AT3BPsMQCePyOnR4bcPx6FvuBCqRIgujCKlUqG45bkSOZxjGgG5Ms20yG0EnIwZ8E7bzOSJLRMjI2ZWXHGIYkypyoQ9JosaWLxNqOYyNpANQbIrORNJDptmubBYE2K4ZQEJR-4XzYCrUbjLtQzykYGVBUqr8NIKyAGKaKJFVGw3ALpSeF0p_qUrAXmBAi6GJ6aTbRf7IoE4DLEXA_LKUSAyRo2lN-eyb9vi5PP3GxB9_TIjeuOJ7BqkoKR_7gDfhIhbM8rdGSXYt5pNb6M6jlxpCwYhKXdYfLByVNHrp19O07gpltPVZt17Gsgl0zQgTwbVnjjLEZoyy2FmOen6jUT09H-IaIfcibHDMjbpSHfJotv05hmEfV353Fn4XxBoVPQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8IMbHVhhgEBLwkK6JncRBQmhFnTYeChoM7S1y_FEmhSQ0DYhH_nPuEidQaUJ7q-yz1d6X7-rz7wh57nMbSGMjTwqTeAiBDp8486S2DLvbWqvbKt9FdHzG35-H51tk0b-FwbLK3ie2jlqXCv8jP2BwEPMWgext9d3DrlF4u9q30JCutYJ-00KMXSPbASJjjcj2bL74eNr7ZrDuKHIP6FjsHzh5TaqyMJMppPax8DcOqBbHf_DWoyov68tC0ZvkelNU8tdPmef_HE9Ht8ktF1fSw04RdsiWKe6QHWe5NX3p4KVf3SW_58XX9tqf4qV7lqPrWVGFQyuqzbqtzSrojwtJZesMqSw0rU1uvbqp0LXUsNZ1m1jSHm8C1rymJ67HKozPvCZfr2SNbZvoxTdwW7BPB4Byj5wdzT-_O_ZcIwZPhUKsPd9XKhKKW54okcD5phGoK9ZMi8T6wMmAAe-0jU0S2iw00mdmyhWH6MZkKgvZfTIqgMV7hGouAwNZEiTBkjMRJrBpnAiLtSKGWzYmXs_9tOrwNtL20i2GPKVjZYrSSp20xmSGIhpoES27HShXy9QZXypCbX2mxFSFjFttRBhzzQMDwV2mE8XH5AkKOO2eng42nx6KEOIzxGQck2ctBSJmFFiSs5RNXacnH75cgejT6QbRC0dkS5CCku4ZBPwmROLaoNzfoAS7VxvTe6iOPVfq9K-FwMpeRS-ffjpM46ZYZleYsnE0kGNG0Zjsdqo9cJYjZGWcwMxk0PUriejB_7_NQ3IjwJ7K2JYj2iej9aoxjyDQW2ePnfX-AW3FUqE
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wPwAIyvHQwICAmQaLk2aZvydkObNiQGAg5tT1WajzFReqdrC4I3_nPsNq12aEjHW5U4UWMnjq3YPxPyJOA2lMbGnhQm9RACHb4486S2DKvbWqvbKN-j-GDG3xxHxxvkRZ8Lc_79niXBS8dRfzEvjT8B5zvBPOvNOALLe0Q2Z0fvpyfdw3HoxeGEuey4fw1duX1akP5BFY8Wxby6yM68Qi415UL-_CGL4tzds3-NvO3_ugs5-eo3de6rX38BOq67rOvkqjNC6bTbNVtkw5Q3yJY75hV95rCon98kv_fKL22MAMUX-rxAPbWkCpuWVJu6DeQq6fczSWWrOaksNa1MYb2qWaAeqmCsK01xSntwChjzih66gqzQvus1Rb2UFdZ4omffQMfBPB1ayi0y29_79PrAc1UbPBUJUXtBoFQsFLc8VSKFy1AjqleimRapDWD1IYP1apuYNLJ5ZGTAzIQrDqaQyVUesdtkVAJbtgnVXIYGXCrwmCVnIkph0iQVFgNLDLdsTLxemtmiA-fI2he6BJyajpUZcjhzHB6TXRT5QIvQ2m0DiCZzJzUTkbYBU2KiIsatNiJKuOahAUsw16niY_IQN0zW5akOCiKbigiMOQRwHJPHLQXCa5QYv3Mqm6rKDt99XoPo44cVoqeOyM5BCkq6nAlYE8J2rVDurFCCklAr3du4vXuuVBkDu5a3gH4wst_yF3c_GrpxUozJK828cTTgkMbxmNzpjsrAWY74lkkKPf5wdtYS0d3_HXCPXA6xJDNW9Yh3yKheNuY-2Il1_sCphz9IwmU9
  priority: 102
  providerName: Unpaywall
Title Enhanced gallbladder cancer detection via active and self-supervised learning integration: Innovating B-ultrasound image analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/40956796
https://www.proquest.com/docview/3251400121
https://www.proquest.com/docview/3251455966
https://doi.org/10.1371/journal.pone.0330781
https://doaj.org/article/85df13c80c534fde8574d42e125bd9c4
http://dx.doi.org/10.1371/journal.pone.0330781
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8IMbXCqMYhAQ8pGoSJ3GQEGqnlg2JMg2KylPk-KNMCmlpGmCP_OfcuW5EpSLtJYrss6Xc-c538fl3hDz3mQmENrEnuE49hECHNxZ6QpkQq9sao2yW7zg-mbD302i6RzY1Wx0Dq52hHdaTmiyL7u8fl29B4d_Yqg2JvxnUXcxL3e1BgJ7gXex92KtSLObwgTXnCqDd9vQSvRYvDnqhu0z3v1m2NiuL6d9Y7taimFe73NKb5HpdLsTlL1EU_2xVo9vklvMxaX-9KA7Ini7vkAOnxRV96aCmX90lf4blN5sCQPEAPi_QDC2pxKYlVXpl87RK-vNCUGENIxWlopUujFfVCzQzFYx1lSdmdIM9AWNe01NXbxXaB15drJaiwhJO9OI7mDCYZw2Gco9MRsPPxyeeK8rgyYjzlef7UsZcMsNSyVPY6xSCdiUqVDw1PnAyCIF3yiQ6jUweaeGHusckA09H5zKPwvukVQKLDwlVTAQaIiYIiAULeZTCpEnKDeaNaGbCNvE23M8Wa-yNzB7AJRCzrFmZobQyJ602GaCIGlpEzrYN8-Usc4qY8UgZP5S8J6OQGaV5lDDFAg2OXq5SydrkCQo4W19DbfQ_6_MIfDXEZ2yTZ5YC0TNKTM-ZibqqstOPX65A9Ol8i-iFIzJzkIIU7koEfBOicm1RHm1Rgg2QW92HuBw3XKmyENxWZvH6YORmie7uftp046SYclfqee1oIN6M4zZ5sF7aDWcZwlcmKfR0m7V-JRE9vPIXPyI3Aiy1jNU64iPSWi1r_Rj8v1XeIdeSaQJPfuzjc_SuQ_YHw_HZecf-UelYlYe2yfis__UvtG1e7w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWm8jB4QIyvFQYzCAQ8pGsSJ3GQENpgU8vGkGCb-hZcf5RJIQlNw7RH_hC_kXsTJ1BpQnvZW2VfW63vzbFvc30OIc9cZjyhTegIrmMHKdDhE_MdoYyP6rbGqLrK9zAcHbMPk2CyQn63d2GwrLLFxBqoVS7xP_ItHzZiVjOQvS1-OKgahW9XWwmNJiz29fkZpGzlm_F78O9zz9vbPXo3cqyqgCMDzheO60oZcskMiyWPAawVsk5Fylc8Nq7rR54POb4ykY4DMw20cH09ZJLBVq2ncooqEQD51xgMQsWEaNIleIAdYWiv5_mRu2WjYVDkmR4MYdKIu0vbX60S0O0FvSLNy4sOujfIapUV4vxMpOk_m9_eLXLTnlrpdhNma2RFZ7fJmsWFkr605NWv7pBfu9m3uqiA4iv9aYrANqcSm-ZU6UVd-ZXRn6eCihpqqcgULXVqnLIqELhKGGu1LGa0ZbOAMa_p2Cq4QvuOU6WLuShRFIqefgdQhHkaepW75PhKHHKP9DJY4nVCFROehhwMUmzBfB7EMGkUc4OVKJoZv0-cdvWTomHzSOpXehFkQc1SJuitxHqrT3bQRZ0tcnHXDfl8lthHO-GBMq4v-VAGPjNK8yBiinkajo5TFUvWJ5vo4KS52NohSrLNAzj9IeNjnzytLZCPI8OCn5moyjIZfzq5hNGXz0tGL6yRycELUthLFvCbkOdryXJjyRJQRS51r2M4tqtSJn-fPxjZhujF3U-6bpwUi_gynVfWBjLYMOyT-01odyvLkBAziqFn0MX6pVz04P_fZpOsjo4-HiQH48P9h-S6h-rNKAASbpDeYl7pR3CkXEwf188xJV-vGjj-AFddiBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIvHxgBhfKwxmEAh4SNvETuIgIbSxVStDAwFDfQuuP8qkkoSmZdoj_xZ_HXeJE6g0ob3srbLPVnt3_tlXn39HyBOf20AaG3lSmMRDCnT4xJkntWVY3dZaXWX5Hkb7R_ztOByvkd_NWxhMq2wwsQJqnSv8j7zPYCPmFQNZ37q0iA-7w9fFDw8rSOFNa1NOo3aRA3N6AuFb-Wq0C7Z-GgTDvc9v9j1XYcBToRALz_eVioTilidKJADcGhmoYs20SKzvszhgEO9rG5sktJPQSJ-ZAVcctm0zUROsGAHwfylmLMF0wnjcBnuAI1Hknuqx2O87z-gVeWZ6A5g0Fv7KVlhVDGj3hU4xy8uzDr3XyJVlVsjTEzmb_bMRDm-Q6-4ES7drl1snaya7SdYdRpT0uSOyfnGL_NrLvlUJBhSv9yczBLk5Vdg0p9osqiywjP48llRWsEtlpmlpZtYrlwWCWAljXV2LKW2YLWDMSzpy1VyhfcdbzhZzWWKBKHr8HQAS5qmpVm6TowsxyB3SyUDFG4RqLgMD8RiE25IzESYwaZwIi1kphlvWJV6j_bSomT3S6novhoioVmWK1kqdtbpkB03UyiIvd9WQz6epW-apCLX1mRIDFTJutRFhzDUPDBwjJzpRvEu20MBp_ci1RZd0W4RwEkT2xy55XEkgN0eGXj6Vy7JMR--_nEPo08cVoWdOyOZgBSXdgwv4Tcj5tSK5uSIJCKNWujfQHRutlOnftQgjGxc9u_tR242TYkJfZvKlk4FoNoq65G7t2q1mOZJjxgn09FpfP5eJ7v3_22yRywAZ6bvR4cF9cjXAQs5YCyTaJJ3FfGkewOlyMXlYLWNKvl40bvwBA0qMWw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wPwAIyvHQwICAmQaLk2aZvydkObNiQGAg5tT1WajzFReqdrC4I3_nPsNq12aEjHW5U4UWMnjq3YPxPyJOA2lMbGnhQm9RACHb4486S2DKvbWqvbKN-j-GDG3xxHxxvkRZ8Lc_79niXBS8dRfzEvjT8B5zvBPOvNOALLe0Q2Z0fvpyfdw3HoxeGEuey4fw1duX1akP5BFY8Wxby6yM68Qi415UL-_CGL4tzds3-NvO3_ugs5-eo3de6rX38BOq67rOvkqjNC6bTbNVtkw5Q3yJY75hV95rCon98kv_fKL22MAMUX-rxAPbWkCpuWVJu6DeQq6fczSWWrOaksNa1MYb2qWaAeqmCsK01xSntwChjzih66gqzQvus1Rb2UFdZ4omffQMfBPB1ayi0y29_79PrAc1UbPBUJUXtBoFQsFLc8VSKFy1AjqleimRapDWD1IYP1apuYNLJ5ZGTAzIQrDqaQyVUesdtkVAJbtgnVXIYGXCrwmCVnIkph0iQVFgNLDLdsTLxemtmiA-fI2he6BJyajpUZcjhzHB6TXRT5QIvQ2m0DiCZzJzUTkbYBU2KiIsatNiJKuOahAUsw16niY_IQN0zW5akOCiKbigiMOQRwHJPHLQXCa5QYv3Mqm6rKDt99XoPo44cVoqeOyM5BCkq6nAlYE8J2rVDurFCCklAr3du4vXuuVBkDu5a3gH4wst_yF3c_GrpxUozJK828cTTgkMbxmNzpjsrAWY74lkkKPf5wdtYS0d3_HXCPXA6xJDNW9Yh3yKheNuY-2Il1_sCphz9IwmU9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+gallbladder+cancer+detection+via+active+and+self-supervised+learning+integration%3A+Innovating+B-ultrasound+image+analysis&rft.jtitle=PloS+one&rft.au=Li%2C+Jia&rft.au=Zhou%2C+Yu-Qian&rft.date=2025-09-16&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=9&rft.spage=e0330781&rft_id=info:doi/10.1371%2Fjournal.pone.0330781&rft.externalDocID=A855841377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon