Enhanced gallbladder cancer detection via active and self-supervised learning integration: Innovating B-ultrasound image analysis
Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data lab...
Saved in:
| Published in | PloS one Vol. 20; no. 9; p. e0330781 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
16.09.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0330781 |
Cover
| Abstract | Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912—outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy. |
|---|---|
| AbstractList | Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912-outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy. Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912-outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy.Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning has introduced new methods for its early identification through B-ultrasound imaging, but there are still challenges of inefficient data labeling and feature extraction. This paper introduces a novel classification algorithm, ASGBC, intended to tackle related challenges in diagnosing gallbladder cancer using B-ultrasound images. Firstly, we combine active learning with self-supervised learning to decrease the reliance on labeled data. Secondly, we introduce the MsHop module, which effectively captures the fine textures and patterns in ultrasound images through the integration of multi-scale and high-order information, thereby improving diagnostic accuracy. Additionally, we develop a dual-branch loss function that leverages data correlation and clustering features to enhance feature extraction and model stability. The experiments on a gallbladder ultrasound dataset have confirmed the effectiveness of our algorithm, achieving an accuracy of 0.884, a specificity of 0.932, and a sensitivity of 0.912-outperforming existing methods. The results exhibit lower variance, indicating improved model stability. Furthermore, the findings demonstrate that using active learning, one can achieve comparable results to those from the full dataset with only 35% of the data, reducing annotation costs and increasing model learning efficiency. Further research will concentrate on refining the algorithm for wider clinical use and identifying additional features that may further improve diagnostic accuracy. |
| Audience | Academic |
| Author | Zhou, Yu-Qian Li, Jia |
| Author_xml | – sequence: 1 givenname: Jia surname: Li fullname: Li, Jia – sequence: 2 givenname: Yu-Qian orcidid: 0009-0000-4565-6693 surname: Zhou fullname: Zhou, Yu-Qian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40956796$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2L1DAYhYusuB_6D0QLguhFx6RJ2tS7dVl1YGHBr9uQJm9nMmSSMWlH59J_bup0lx3Zi6UXDS_POZy8J6fZkfMOsuw5RjNMavxu5YfgpJ1t0niGCEE1x4-yE9yQsqhKRI7unI-z0xhXCDHCq-pJdkxRw6q6qU6yP5duKZ0CnS-kta2VWkPI1TgKuYYeVG-8y7dG5jIdt5BLp_MItivisIGwNTFpLcjgjFvkxvWwCHLUvM_nzvltOqf5h2KwfZDRD0lt1nIx-ki7iyY-zR530kZ4Nv3Psu8fL79dfC6urj_NL86vCsU47wuMlaq4oh1tFG9QVeuKIFRronnT4bSRkqQd6K6GhnUtA4kJIKpoxTi0qmXkLHu5991YH8W0vShIyTBFCJc4EfM9ob1ciU1IOcNOeGnEv4EPCyFDb5QFwZnuMFEcKUZop4GzmmpaAi5ZqxtFkxfbew1uI3e_0m5vDTESY4E3EcRYoJgKTLo3U8rgfw4Qe7E2UYG10oEfpriMNVWV0Ff_ofdfaqJSvyCM63zqQY2m4pwzxmnKUidqdg-VPg1ro1LAzqT5geDtgSAxPfzuF3KIUcy_fnk4e_3jkH19h12CtP0yejuMLyoegi-m2w_tGvTtdm-edgLoHlDBxxige1gBfwGrBgyd |
| Cites_doi | 10.1016/S1499-3872(15)60351-4 10.1109/TPAMI.2023.3336525 10.1109/JBHI.2023.3282596 10.1016/B978-0-323-47674-4.00077-3 10.3390/app13063489 10.1002/ima.22693 10.1038/s41598-020-64205-y 10.1109/TKDE.2022.3140866 10.1016/j.ultrasmedbio.2023.03.022 10.1007/978-3-030-59710-8_57 10.1609/aaai.v36i8.20850 10.1007/978-3-031-16440-8_41 10.1016/j.compbiomed.2022.106389 10.1109/CVPR42600.2020.00975 10.1016/j.bspc.2023.105430 10.1016/j.compmedimag.2024.102326 10.1002/uog.26130 10.1109/ICEEICT62016.2024.10534480 10.14778/3476249.3476258 10.1109/ICCV.2019.00607 10.1145/3472291 10.7717/peerj-cs.1045 10.1109/ACOMP53746.2021.00017 10.1007/978-3-030-87196-3_24 10.1002/mp.15172 10.1007/s11548-016-1515-z 10.1016/j.asoc.2022.109926 10.1016/j.ijmedinf.2023.105279 10.1109/CVPR52729.2023.02178 10.1158/1055-9965.EPI-21-0265 10.1109/CVPR52688.2022.01553 10.1145/3422622 10.1016/j.media.2022.102629 10.1016/j.media.2021.102062 10.3748/wjg.v26.i22.2967 10.1145/3488560.3498483 10.1109/CVPR52733.2024.01113 10.1109/CVPR52688.2022.02022 10.1109/ICCV51070.2023.01491 10.1038/s41572-022-00398-y 10.1038/s41433-023-02705-7 10.1016/j.compbiomed.2023.106629 10.3390/jcm10163585 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0330781 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3251400121 oai_doaj_org_article_85df13c80c534fde8574d42e125bd9c4 10.1371/journal.pone.0330781 A855841377 40956796 10_1371_journal_pone_0330781 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 ADTOC UNPAY ACCTH AFFHD BBTPI |
| ID | FETCH-LOGICAL-c588t-11cc68c4f49c89067d63007d3d89f113723330df7e95fb5ea13e04c4658ebcb53 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Oct 29 23:53:06 EDT 2025 Tue Oct 14 18:30:06 EDT 2025 Sun Oct 26 04:15:50 EDT 2025 Thu Sep 18 00:39:38 EDT 2025 Tue Oct 07 09:19:40 EDT 2025 Mon Oct 20 22:39:41 EDT 2025 Mon Oct 20 16:53:04 EDT 2025 Thu Oct 16 15:29:38 EDT 2025 Thu Oct 16 15:29:41 EDT 2025 Tue Sep 23 02:14:53 EDT 2025 Sat Sep 20 02:13:04 EDT 2025 Wed Oct 01 05:19:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Copyright: © 2025 Li, Zhou. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c588t-11cc68c4f49c89067d63007d3d89f113723330df7e95fb5ea13e04c4658ebcb53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0000-4565-6693 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pone.0330781 |
| PMID | 40956796 |
| PQID | 3251400121 |
| PQPubID | 1436336 |
| PageCount | e0330781 |
| ParticipantIDs | plos_journals_3251400121 doaj_primary_oai_doaj_org_article_85df13c80c534fde8574d42e125bd9c4 unpaywall_primary_10_1371_journal_pone_0330781 proquest_miscellaneous_3251455966 proquest_journals_3251400121 gale_infotracmisc_A855841377 gale_infotracacademiconefile_A855841377 gale_incontextgauss_ISR_A855841377 gale_incontextgauss_IOV_A855841377 gale_healthsolutions_A855841377 pubmed_primary_40956796 crossref_primary_10_1371_journal_pone_0330781 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-16 |
| PublicationDateYYYYMMDD | 2025-09-16 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Oquab (pone.0330781.ref055) 2023 pone.0330781.ref056 RT Lucassen (pone.0330781.ref016) 2023; 27 MC Fiorentino (pone.0330781.ref018) 2023; 83 H Feng (pone.0330781.ref008) 2023; 13 AK Mishra (pone.0330781.ref029) 2022; 32 H Jiang (pone.0330781.ref011) 2024; 112 Q He (pone.0330781.ref009) 2023; 155 R Ramirez Zegarra (pone.0330781.ref019) 2023; 62 X Chen (pone.0330781.ref010) 2024; 181 Z Huang (pone.0330781.ref053) 2024; 46 J Lian (pone.0330781.ref036) 2017; 12 pone.0330781.ref051 pone.0330781.ref050 pone.0330781.ref004 pone.0330781.ref047 pone.0330781.ref002 pone.0330781.ref046 A Bardes (pone.0330781.ref058) 2021 pone.0330781.ref045 pone.0330781.ref044 pone.0330781.ref043 M Caron (pone.0330781.ref048) 2020; 33 TD Ellington (pone.0330781.ref005) 2021; 30 pone.0330781.ref049 S Budd (pone.0330781.ref025) 2021; 71 I Goodfellow (pone.0330781.ref057) 2020; 63 J Zhou (pone.0330781.ref013) 2024; 87 pone.0330781.ref040 S Mishra (pone.0330781.ref054) 2022 O Sener (pone.0330781.ref041) 2017 H-X Yuan (pone.0330781.ref007) 2015; 14 pone.0330781.ref035 pone.0330781.ref034 pone.0330781.ref032 pone.0330781.ref030 Y Jeong (pone.0330781.ref037) 2020; 10 R Pinsler (pone.0330781.ref042) 2019; 32 J Jiao (pone.0330781.ref031) 2020; 2020 C Liu (pone.0330781.ref033) 2021; 48 H Bao (pone.0330781.ref052) 2021 Z Li (pone.0330781.ref014) 2023; 49 pone.0330781.ref039 P Ren (pone.0330781.ref020) 2021; 54 Y Ye (pone.0330781.ref024) 2022; 35 H Sung (pone.0330781.ref003) 2021; 71 MH Yu (pone.0330781.ref006) 2020; 26 JC Roa (pone.0330781.ref001) 2022; 8 L Feng (pone.0330781.ref015) 2024; 38 LL Custode (pone.0330781.ref017) 2023; 133 pone.0330781.ref023 pone.0330781.ref021 D Shen (pone.0330781.ref026) 2021; 34 JB Grill (pone.0330781.ref028) 2020; 33 T Kim (pone.0330781.ref038) 2021; 10 pone.0330781.ref027 H Gong (pone.0330781.ref012) 2023; 155 S Shurrab (pone.0330781.ref022) 2022; 8 |
| References_xml | – volume: 14 start-page: 201 issue: 2 year: 2015 ident: pone.0330781.ref007 article-title: Contrast-enhanced ultrasound in diagnosis of gallbladder adenoma publication-title: Hepatobiliary Pancreat Dis Int doi: 10.1016/S1499-3872(15)60351-4 – volume: 33 start-page: 21271 year: 2020 ident: pone.0330781.ref028 article-title: Bootstrap your own latent-a new approach to self-supervised learning publication-title: Advances in Neural Information Processing Systems – volume: 46 start-page: 2506 issue: 4 year: 2024 ident: pone.0330781.ref053 article-title: Contrastive masked autoencoders are stronger vision learners publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2023.3336525 – ident: pone.0330781.ref056 – volume: 27 start-page: 4352 issue: 9 year: 2023 ident: pone.0330781.ref016 article-title: Deep learning for detection and localization of B-lines in lung ultrasound publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2023.3282596 – ident: pone.0330781.ref004 doi: 10.1016/B978-0-323-47674-4.00077-3 – volume: 13 start-page: 3489 issue: 6 year: 2023 ident: pone.0330781.ref008 article-title: Identifying malignant breast ultrasound images using ViT-patch publication-title: Applied Sciences doi: 10.3390/app13063489 – volume: 32 start-page: 1209 issue: 4 year: 2022 ident: pone.0330781.ref029 article-title: CR-SSL: a closely related self-supervised learning based approach for improving breast ultrasound tumor segmentation publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22693 – volume: 10 start-page: 7700 issue: 1 year: 2020 ident: pone.0330781.ref037 article-title: Deep learning-based decision support system for the diagnosis of neoplastic gallbladder polyps on ultrasonography: Preliminary results publication-title: Sci Rep doi: 10.1038/s41598-020-64205-y – volume: 35 start-page: 4047 issue: 4 year: 2022 ident: pone.0330781.ref024 article-title: MANE: organizational network embedding with multiplex attentive neural networks publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2022.3140866 – volume: 49 start-page: 1760 issue: 8 year: 2023 ident: pone.0330781.ref014 article-title: Establishment and evaluation of intelligent diagnostic model for ophthalmic ultrasound images based on deep learning publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2023.03.022 – ident: pone.0330781.ref032 doi: 10.1007/978-3-030-59710-8_57 – year: 2023 ident: pone.0330781.ref055 article-title: Dinov2: learning robust visual features without supervision publication-title: arXiv preprint – ident: pone.0330781.ref044 doi: 10.1609/aaai.v36i8.20850 – volume: 34 start-page: 14681 year: 2021 ident: pone.0330781.ref026 article-title: Topic modeling revisited: a document graph-based neural network perspective publication-title: Advances in Neural Information Processing Systems – volume: 2020 start-page: 1847 year: 2020 ident: pone.0330781.ref031 article-title: Self-supervised representation learning for ultrasound video publication-title: Proc IEEE Int Symp Biomed Imaging – ident: pone.0330781.ref034 doi: 10.1007/978-3-031-16440-8_41 – volume: 155 start-page: 106389 year: 2023 ident: pone.0330781.ref012 article-title: Thyroid region prior guided attention for ultrasound segmentation of thyroid nodules publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106389 – ident: pone.0330781.ref047 doi: 10.1109/CVPR42600.2020.00975 – volume: 87 start-page: 105430 year: 2024 ident: pone.0330781.ref013 article-title: Fully automated thyroid ultrasound screening utilizing multi-modality image and anatomical prior publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.105430 – volume: 112 start-page: 102326 year: 2024 ident: pone.0330781.ref011 article-title: MicroSegNet: a deep learning approach for prostate segmentation on micro-ultrasound images publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2024.102326 – volume: 62 start-page: 185 issue: 2 year: 2023 ident: pone.0330781.ref019 article-title: Use of artificial intelligence and deep learning in fetal ultrasound imaging publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.26130 – ident: pone.0330781.ref040 doi: 10.1109/ICEEICT62016.2024.10534480 – ident: pone.0330781.ref021 doi: 10.14778/3476249.3476258 – ident: pone.0330781.ref043 doi: 10.1109/ICCV.2019.00607 – volume: 54 start-page: 1 issue: 9 year: 2021 ident: pone.0330781.ref020 article-title: A survey of deep active learning publication-title: ACM Computing Surveys doi: 10.1145/3472291 – volume: 8 year: 2022 ident: pone.0330781.ref022 article-title: Self-supervised learning methods and applications in medical imaging analysis: a survey publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.1045 – ident: pone.0330781.ref027 doi: 10.1109/ACOMP53746.2021.00017 – volume: 32 year: 2019 ident: pone.0330781.ref042 article-title: Bayesian batch active learning as sparse subset approximation publication-title: Advances in Neural Information Processing Systems – ident: pone.0330781.ref030 doi: 10.1007/978-3-030-87196-3_24 – volume: 48 start-page: 7199 issue: 11 year: 2021 ident: pone.0330781.ref033 article-title: TN-USMA Net: Triple normalization-based gastrointestinal stromal tumors classification on multicenter EUS images with ultrasound-specific pretraining and meta attention publication-title: Med Phys doi: 10.1002/mp.15172 – volume: 12 start-page: 553 issue: 4 year: 2017 ident: pone.0330781.ref036 article-title: Automatic gallbladder and gallstone regions segmentation in ultrasound image publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-016-1515-z – ident: pone.0330781.ref002 – volume: 133 start-page: 109926 year: 2023 ident: pone.0330781.ref017 article-title: Multi-objective automatic analysis of lung ultrasound data from COVID-19 patients by means of deep learning and decision trees publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109926 – volume: 181 start-page: 105279 year: 2024 ident: pone.0330781.ref010 article-title: Research related to the diagnosis of prostate cancer based on machine learning medical images: a review publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2023.105279 – ident: pone.0330781.ref051 doi: 10.1109/CVPR52729.2023.02178 – year: 2021 ident: pone.0330781.ref058 article-title: Vicreg: variance-invariance-covariance regularization for self-supervised learning publication-title: arXiv preprint – volume: 71 start-page: 209 issue: 3 year: 2021 ident: pone.0330781.ref003 article-title: Global cancer statistics 2020 : GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 30 start-page: 1607 issue: 9 year: 2021 ident: pone.0330781.ref005 article-title: Incidence, mortality of cancers of the biliary tract, gallbladder,, liver by sex, age, race/ethnicity and stage at diagnosis: United States 2013 to 2017 publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-21-0265 – volume: 33 start-page: 9912 year: 2020 ident: pone.0330781.ref048 article-title: Unsupervised learning of visual features by contrasting cluster assignments publication-title: Advances in Neural Information Processing Systems – year: 2021 ident: pone.0330781.ref052 article-title: Beit: bert pre-training of image transformers publication-title: arXiv preprint – year: 2022 ident: pone.0330781.ref054 article-title: A simple, efficient and scalable contrastive masked autoencoder for learning visual representations publication-title: arXiv preprint – ident: pone.0330781.ref050 doi: 10.1109/CVPR52688.2022.01553 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: pone.0330781.ref057 article-title: Generative adversarial networks publication-title: Communications of the ACM doi: 10.1145/3422622 – volume: 83 start-page: 102629 year: 2023 ident: pone.0330781.ref018 article-title: A review on deep-learning algorithms for fetal ultrasound-image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2022.102629 – volume: 71 start-page: 102062 year: 2021 ident: pone.0330781.ref025 article-title: A survey on active learning and human-in-the-loop deep learning for medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2021.102062 – volume: 26 start-page: 2967 issue: 22 year: 2020 ident: pone.0330781.ref006 article-title: Benign gallbladder diseases: Imaging techniques and tips for differentiating with malignant gallbladder diseases publication-title: World J Gastroenterol doi: 10.3748/wjg.v26.i22.2967 – ident: pone.0330781.ref023 doi: 10.1145/3488560.3498483 – ident: pone.0330781.ref035 doi: 10.1109/CVPR52733.2024.01113 – ident: pone.0330781.ref039 doi: 10.1109/CVPR52688.2022.02022 – ident: pone.0330781.ref049 – ident: pone.0330781.ref045 doi: 10.1109/ICCV51070.2023.01491 – volume: 8 start-page: 69 issue: 1 year: 2022 ident: pone.0330781.ref001 article-title: Gallbladder cancer publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-022-00398-y – volume: 38 start-page: 380 issue: 2 year: 2024 ident: pone.0330781.ref015 article-title: Applying deep learning to recognize the properties of vitreous opacity in ophthalmic ultrasound images publication-title: Eye (Lond) doi: 10.1038/s41433-023-02705-7 – volume: 155 start-page: 106629 year: 2023 ident: pone.0330781.ref009 article-title: HCTNet: a hybrid CNN-transformer network for breast ultrasound image segmentation publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106629 – volume: 10 start-page: 3585 issue: 16 year: 2021 ident: pone.0330781.ref038 article-title: Gallbladder polyp classification in ultrasound images using an ensemble convolutional neural network model publication-title: J Clin Med doi: 10.3390/jcm10163585 – year: 2017 ident: pone.0330781.ref041 article-title: Active learning for convolutional neural networks: a core-set approach publication-title: arXiv preprint – ident: pone.0330781.ref046 |
| SSID | ssj0053866 |
| Score | 2.4892702 |
| Snippet | Gallbladder cancer, a common yet often under diagnosed malignancy, is typically characterized by late detection and a poor prognosis. The rise of deep learning... |
| SourceID | plos doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0330781 |
| SubjectTerms | Accuracy Algorithms Annotations Cancer Classification Clustering Curricula Data correlation Datasets Decision support systems Deep Learning Diagnosis Efficiency Feature extraction Gallbladder Gallbladder - diagnostic imaging Gallbladder cancer Gallbladder diseases Gallbladder Neoplasms - diagnostic imaging Humans Image analysis Image Interpretation, Computer-Assisted - methods Image processing Image Processing, Computer-Assisted - methods Labeling Machine learning Malignancy Medical imaging Medical imaging equipment Medical prognosis Medical research Methods Neural networks Prognosis Self-supervised learning Stability Supervised Machine Learning Thyroid gland Tumors Ultrasonic imaging Ultrasonography - methods Ultrasound Ultrasound imaging |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXoADorwaWsAgJOCQ7SZ2Eodbi1q1HEACinqLHD9KpZCNNkkRR_45M44TNVIleuC2ssfWZl6ekcffEPI64jaWxqahFCYPEQIdfnEWSm0Zdre1Vrsq30_p8Sn_eJacXWn1hTVhAzzwwLg9kWgbMSVWKmHcaiOSjGseGziYS50rhwS6EvmYTA0-GKw4Tf1DOZZFe14uy2Zdm-UKUvhMRLODyOH1T1550VTr9rqQ8y653deN_P1LVtWVY-joPrnn40e6P_zvLXLL1A_IlrfQlr71MNLvHpI_h_UPd71P8XK9rNDFbKjCoQ3VpnM1WDW9vJBUOqdHZa1payobtn2DLqSFtb6rxDkdcSVgzXt64nupwvhB2FfdRrbYnole_AT3BPsMQCePyOnR4bcPx6FvuBCqRIgujCKlUqG45bkSOZxjGgG5Ms20yG0EnIwZ8E7bzOSJLRMjI2ZWXHGIYkypyoQ9JosaWLxNqOYyNpANQbIrORNJDptmubBYE2K4ZQEJR-4XzYCrUbjLtQzykYGVBUqr8NIKyAGKaKJFVGw3ALpSeF0p_qUrAXmBAi6GJ6aTbRf7IoE4DLEXA_LKUSAyRo2lN-eyb9vi5PP3GxB9_TIjeuOJ7BqkoKR_7gDfhIhbM8rdGSXYt5pNb6M6jlxpCwYhKXdYfLByVNHrp19O07gpltPVZt17Gsgl0zQgTwbVnjjLEZoyy2FmOen6jUT09H-IaIfcibHDMjbpSHfJotv05hmEfV353Fn4XxBoVPQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8IMbHVhhgEBLwkK6JncRBQmhFnTYeChoM7S1y_FEmhSQ0DYhH_nPuEidQaUJ7q-yz1d6X7-rz7wh57nMbSGMjTwqTeAiBDp8486S2DLvbWqvbKt9FdHzG35-H51tk0b-FwbLK3ie2jlqXCv8jP2BwEPMWgext9d3DrlF4u9q30JCutYJ-00KMXSPbASJjjcj2bL74eNr7ZrDuKHIP6FjsHzh5TaqyMJMppPax8DcOqBbHf_DWoyov68tC0ZvkelNU8tdPmef_HE9Ht8ktF1fSw04RdsiWKe6QHWe5NX3p4KVf3SW_58XX9tqf4qV7lqPrWVGFQyuqzbqtzSrojwtJZesMqSw0rU1uvbqp0LXUsNZ1m1jSHm8C1rymJ67HKozPvCZfr2SNbZvoxTdwW7BPB4Byj5wdzT-_O_ZcIwZPhUKsPd9XKhKKW54okcD5phGoK9ZMi8T6wMmAAe-0jU0S2iw00mdmyhWH6MZkKgvZfTIqgMV7hGouAwNZEiTBkjMRJrBpnAiLtSKGWzYmXs_9tOrwNtL20i2GPKVjZYrSSp20xmSGIhpoES27HShXy9QZXypCbX2mxFSFjFttRBhzzQMDwV2mE8XH5AkKOO2eng42nx6KEOIzxGQck2ctBSJmFFiSs5RNXacnH75cgejT6QbRC0dkS5CCku4ZBPwmROLaoNzfoAS7VxvTe6iOPVfq9K-FwMpeRS-ffjpM46ZYZleYsnE0kGNG0Zjsdqo9cJYjZGWcwMxk0PUriejB_7_NQ3IjwJ7K2JYj2iej9aoxjyDQW2ePnfX-AW3FUqE priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wPwAIyvHQwICAmQaLk2aZvydkObNiQGAg5tT1WajzFReqdrC4I3_nPsNq12aEjHW5U4UWMnjq3YPxPyJOA2lMbGnhQm9RACHb4486S2DKvbWqvbKN-j-GDG3xxHxxvkRZ8Lc_79niXBS8dRfzEvjT8B5zvBPOvNOALLe0Q2Z0fvpyfdw3HoxeGEuey4fw1duX1akP5BFY8Wxby6yM68Qi415UL-_CGL4tzds3-NvO3_ugs5-eo3de6rX38BOq67rOvkqjNC6bTbNVtkw5Q3yJY75hV95rCon98kv_fKL22MAMUX-rxAPbWkCpuWVJu6DeQq6fczSWWrOaksNa1MYb2qWaAeqmCsK01xSntwChjzih66gqzQvus1Rb2UFdZ4omffQMfBPB1ayi0y29_79PrAc1UbPBUJUXtBoFQsFLc8VSKFy1AjqleimRapDWD1IYP1apuYNLJ5ZGTAzIQrDqaQyVUesdtkVAJbtgnVXIYGXCrwmCVnIkph0iQVFgNLDLdsTLxemtmiA-fI2he6BJyajpUZcjhzHB6TXRT5QIvQ2m0DiCZzJzUTkbYBU2KiIsatNiJKuOahAUsw16niY_IQN0zW5akOCiKbigiMOQRwHJPHLQXCa5QYv3Mqm6rKDt99XoPo44cVoqeOyM5BCkq6nAlYE8J2rVDurFCCklAr3du4vXuuVBkDu5a3gH4wst_yF3c_GrpxUozJK828cTTgkMbxmNzpjsrAWY74lkkKPf5wdtYS0d3_HXCPXA6xJDNW9Yh3yKheNuY-2Il1_sCphz9IwmU9 priority: 102 providerName: Unpaywall |
| Title | Enhanced gallbladder cancer detection via active and self-supervised learning integration: Innovating B-ultrasound image analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40956796 https://www.proquest.com/docview/3251400121 https://www.proquest.com/docview/3251455966 https://doi.org/10.1371/journal.pone.0330781 https://doaj.org/article/85df13c80c534fde8574d42e125bd9c4 http://dx.doi.org/10.1371/journal.pone.0330781 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8IMbXCqMYhAQ8pGoSJ3GQEGqnlg2JMg2KylPk-KNMCmlpGmCP_OfcuW5EpSLtJYrss6Xc-c538fl3hDz3mQmENrEnuE49hECHNxZ6QpkQq9sao2yW7zg-mbD302i6RzY1Wx0Dq52hHdaTmiyL7u8fl29B4d_Yqg2JvxnUXcxL3e1BgJ7gXex92KtSLObwgTXnCqDd9vQSvRYvDnqhu0z3v1m2NiuL6d9Y7taimFe73NKb5HpdLsTlL1EU_2xVo9vklvMxaX-9KA7Ini7vkAOnxRV96aCmX90lf4blN5sCQPEAPi_QDC2pxKYlVXpl87RK-vNCUGENIxWlopUujFfVCzQzFYx1lSdmdIM9AWNe01NXbxXaB15drJaiwhJO9OI7mDCYZw2Gco9MRsPPxyeeK8rgyYjzlef7UsZcMsNSyVPY6xSCdiUqVDw1PnAyCIF3yiQ6jUweaeGHusckA09H5zKPwvukVQKLDwlVTAQaIiYIiAULeZTCpEnKDeaNaGbCNvE23M8Wa-yNzB7AJRCzrFmZobQyJ602GaCIGlpEzrYN8-Usc4qY8UgZP5S8J6OQGaV5lDDFAg2OXq5SydrkCQo4W19DbfQ_6_MIfDXEZ2yTZ5YC0TNKTM-ZibqqstOPX65A9Ol8i-iFIzJzkIIU7koEfBOicm1RHm1Rgg2QW92HuBw3XKmyENxWZvH6YORmie7uftp046SYclfqee1oIN6M4zZ5sF7aDWcZwlcmKfR0m7V-JRE9vPIXPyI3Aiy1jNU64iPSWi1r_Rj8v1XeIdeSaQJPfuzjc_SuQ_YHw_HZecf-UelYlYe2yfis__UvtG1e7w |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWm8jB4QIyvFQYzCAQ8pGsSJ3GQENpgU8vGkGCb-hZcf5RJIQlNw7RH_hC_kXsTJ1BpQnvZW2VfW63vzbFvc30OIc9cZjyhTegIrmMHKdDhE_MdoYyP6rbGqLrK9zAcHbMPk2CyQn63d2GwrLLFxBqoVS7xP_ItHzZiVjOQvS1-OKgahW9XWwmNJiz29fkZpGzlm_F78O9zz9vbPXo3cqyqgCMDzheO60oZcskMiyWPAawVsk5Fylc8Nq7rR54POb4ykY4DMw20cH09ZJLBVq2ncooqEQD51xgMQsWEaNIleIAdYWiv5_mRu2WjYVDkmR4MYdKIu0vbX60S0O0FvSLNy4sOujfIapUV4vxMpOk_m9_eLXLTnlrpdhNma2RFZ7fJmsWFkr605NWv7pBfu9m3uqiA4iv9aYrANqcSm-ZU6UVd-ZXRn6eCihpqqcgULXVqnLIqELhKGGu1LGa0ZbOAMa_p2Cq4QvuOU6WLuShRFIqefgdQhHkaepW75PhKHHKP9DJY4nVCFROehhwMUmzBfB7EMGkUc4OVKJoZv0-cdvWTomHzSOpXehFkQc1SJuitxHqrT3bQRZ0tcnHXDfl8lthHO-GBMq4v-VAGPjNK8yBiinkajo5TFUvWJ5vo4KS52NohSrLNAzj9IeNjnzytLZCPI8OCn5moyjIZfzq5hNGXz0tGL6yRycELUthLFvCbkOdryXJjyRJQRS51r2M4tqtSJn-fPxjZhujF3U-6bpwUi_gynVfWBjLYMOyT-01odyvLkBAziqFn0MX6pVz04P_fZpOsjo4-HiQH48P9h-S6h-rNKAASbpDeYl7pR3CkXEwf188xJV-vGjj-AFddiBg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIvHxgBhfKwxmEAh4SNvETuIgIbSxVStDAwFDfQuuP8qkkoSmZdoj_xZ_HXeJE6g0ob3srbLPVnt3_tlXn39HyBOf20AaG3lSmMRDCnT4xJkntWVY3dZaXWX5Hkb7R_ztOByvkd_NWxhMq2wwsQJqnSv8j7zPYCPmFQNZ37q0iA-7w9fFDw8rSOFNa1NOo3aRA3N6AuFb-Wq0C7Z-GgTDvc9v9j1XYcBToRALz_eVioTilidKJADcGhmoYs20SKzvszhgEO9rG5sktJPQSJ-ZAVcctm0zUROsGAHwfylmLMF0wnjcBnuAI1Hknuqx2O87z-gVeWZ6A5g0Fv7KVlhVDGj3hU4xy8uzDr3XyJVlVsjTEzmb_bMRDm-Q6-4ES7drl1snaya7SdYdRpT0uSOyfnGL_NrLvlUJBhSv9yczBLk5Vdg0p9osqiywjP48llRWsEtlpmlpZtYrlwWCWAljXV2LKW2YLWDMSzpy1VyhfcdbzhZzWWKBKHr8HQAS5qmpVm6TowsxyB3SyUDFG4RqLgMD8RiE25IzESYwaZwIi1kphlvWJV6j_bSomT3S6novhoioVmWK1kqdtbpkB03UyiIvd9WQz6epW-apCLX1mRIDFTJutRFhzDUPDBwjJzpRvEu20MBp_ci1RZd0W4RwEkT2xy55XEkgN0eGXj6Vy7JMR--_nEPo08cVoWdOyOZgBSXdgwv4Tcj5tSK5uSIJCKNWujfQHRutlOnftQgjGxc9u_tR242TYkJfZvKlk4FoNoq65G7t2q1mOZJjxgn09FpfP5eJ7v3_22yRywAZ6bvR4cF9cjXAQs5YCyTaJJ3FfGkewOlyMXlYLWNKvl40bvwBA0qMWw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI-m2wPwAIyvHQwICAmQaLk2aZvydkObNiQGAg5tT1WajzFReqdrC4I3_nPsNq12aEjHW5U4UWMnjq3YPxPyJOA2lMbGnhQm9RACHb4486S2DKvbWqvbKN-j-GDG3xxHxxvkRZ8Lc_79niXBS8dRfzEvjT8B5zvBPOvNOALLe0Q2Z0fvpyfdw3HoxeGEuey4fw1duX1akP5BFY8Wxby6yM68Qi415UL-_CGL4tzds3-NvO3_ugs5-eo3de6rX38BOq67rOvkqjNC6bTbNVtkw5Q3yJY75hV95rCon98kv_fKL22MAMUX-rxAPbWkCpuWVJu6DeQq6fczSWWrOaksNa1MYb2qWaAeqmCsK01xSntwChjzih66gqzQvus1Rb2UFdZ4omffQMfBPB1ayi0y29_79PrAc1UbPBUJUXtBoFQsFLc8VSKFy1AjqleimRapDWD1IYP1apuYNLJ5ZGTAzIQrDqaQyVUesdtkVAJbtgnVXIYGXCrwmCVnIkph0iQVFgNLDLdsTLxemtmiA-fI2he6BJyajpUZcjhzHB6TXRT5QIvQ2m0DiCZzJzUTkbYBU2KiIsatNiJKuOahAUsw16niY_IQN0zW5akOCiKbigiMOQRwHJPHLQXCa5QYv3Mqm6rKDt99XoPo44cVoqeOyM5BCkq6nAlYE8J2rVDurFCCklAr3du4vXuuVBkDu5a3gH4wst_yF3c_GrpxUozJK828cTTgkMbxmNzpjsrAWY74lkkKPf5wdtYS0d3_HXCPXA6xJDNW9Yh3yKheNuY-2Il1_sCphz9IwmU9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+gallbladder+cancer+detection+via+active+and+self-supervised+learning+integration%3A+Innovating+B-ultrasound+image+analysis&rft.jtitle=PloS+one&rft.au=Li%2C+Jia&rft.au=Zhou%2C+Yu-Qian&rft.date=2025-09-16&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=9&rft.spage=e0330781&rft_id=info:doi/10.1371%2Fjournal.pone.0330781&rft.externalDocID=A855841377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |