基于改进灰度共生矩阵和粒子群算法的稻飞虱分类

针对稻飞虱远程实时识别采集图像质量不高而无法使用颜色特征的问题,应用灰度共生矩阵提取的纹理特征值对稻飞虱分类进行了研究。采用自行设计的拍摄装置采集稻飞虱图像,经过一系列预处理后得到去掉背景的稻飞虱灰度图像;对灰度图像采用改进的灰度共生矩阵提取纹理特征值,再用反向传播BP(back propagation)神经网络和参数改进粒子群算法优化BP神经网络分别进行训练和测试,以此检验纹理特征值的识别效果和粒子群算法的优化效果。试验用Matlab验证算法,对白背飞虱、灰飞虱和褐飞虱共300个样本进行了训练和测试,结果表明基于参数选择改进粒子群算法优化BP神经网络的识别率总体达到了95%,比直接用BP神经...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 10; pp. 138 - 144
Main Author 邹修国 丁为民 陈彩蓉 刘德营
Format Journal Article
LanguageChinese
Published 江苏省现代设施农业技术与装备工程实验室,南京 210031 2014
南京农业大学工学院,南京 210031
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.10.017

Cover

Abstract 针对稻飞虱远程实时识别采集图像质量不高而无法使用颜色特征的问题,应用灰度共生矩阵提取的纹理特征值对稻飞虱分类进行了研究。采用自行设计的拍摄装置采集稻飞虱图像,经过一系列预处理后得到去掉背景的稻飞虱灰度图像;对灰度图像采用改进的灰度共生矩阵提取纹理特征值,再用反向传播BP(back propagation)神经网络和参数改进粒子群算法优化BP神经网络分别进行训练和测试,以此检验纹理特征值的识别效果和粒子群算法的优化效果。试验用Matlab验证算法,对白背飞虱、灰飞虱和褐飞虱共300个样本进行了训练和测试,结果表明基于参数选择改进粒子群算法优化BP神经网络的识别率总体达到了95%,比直接用BP神经网络的识别率高,而且经过Matlab测试,训练时间只用了0.5683s,说明粒子群算法更满足实时性要求。
AbstractList 针对稻飞虱远程实时识别采集图像质量不高而无法使用颜色特征的问题,应用灰度共生矩阵提取的纹理特征值对稻飞虱分类进行了研究。采用自行设计的拍摄装置采集稻飞虱图像,经过一系列预处理后得到去掉背景的稻飞虱灰度图像;对灰度图像采用改进的灰度共生矩阵提取纹理特征值,再用反向传播BP(back propagation)神经网络和参数改进粒子群算法优化BP神经网络分别进行训练和测试,以此检验纹理特征值的识别效果和粒子群算法的优化效果。试验用Matlab验证算法,对白背飞虱、灰飞虱和褐飞虱共300个样本进行了训练和测试,结果表明基于参数选择改进粒子群算法优化BP神经网络的识别率总体达到了95%,比直接用BP神经网络的识别率高,而且经过Matlab测试,训练时间只用了0.5683s,说明粒子群算法更满足实时性要求。
TP391.41; 针对稻飞虱远程实时识别采集图像质量不高而无法使用颜色特征的问题,应用灰度共生矩阵提取的纹理特征值对稻飞虱分类进行了研究。采用自行设计的拍摄装置采集稻飞虱图像,经过一系列预处理后得到去掉背景的稻飞虱灰度图像;对灰度图像采用改进的灰度共生矩阵提取纹理特征值,再用反向传播BP(back propagation)神经网络和参数改进粒子群算法优化 BP 神经网络分别进行训练和测试,以此检验纹理特征值的识别效果和粒子群算法的优化效果。试验用Matlab验证算法,对白背飞虱、灰飞虱和褐飞虱共300个样本进行了训练和测试,结果表明基于参数选择改进粒子群算法优化BP神经网络的识别率总体达到了95%,比直接用BP神经网络的识别率高,而且经过Matlab测试,训练时间只用了0.5683s,说明粒子群算法更满足实时性要求。
Abstract_FL The rice planthopper images acquired by remote real-time recognition system usually have poor quality, and hence it is impossible to classify rice planthoppers using the color features of rice planthopper images. This study proposed to extract texture features of images based on gray level co-occurrence matrix (GLCM) and used the texture features to classify rice planthoppers. A H-shape mobile photographing device designed by us was used to obtain color images of rice planthoppers. The color images were grayed by formula, and then the background of images was removed using Otsu image segmentation method to generate binary images followed by calculation through the binary image coordinates. The GLCM was improved to extract texture features of images without background. Specifically, the center of gravity was determined by coordinates of the images and considered as the center to construct GLCM. The images of the rice planthopper were copied into the sub images with 160 pixels×160 pixels based on the center. Using multiple annular routes, the features of rice planthopper gray images were extracted including energy, entropy, moment of inertia and correlation. In the training and testing experiment of the extracted features, back propagation (BP) nerve network and optimized BP nerve network based on parametric selection -improved particle swarm optimization algorithm were individually used to train and classify the rice planthopper, and the training time and identification rate of each method were compared. A total of 300Sogatella,Laodelphax andNilaparvata lugens with 100 samples for each type of rice planthopper was trained. The training time using the optimized BP nerve network based on improved particle swarm optimization algorithm was only 0.5683 seconds, which was far less than that (29.5772 seconds) using BP neural network. Based on the BP neural network, the identification rate reached 80% forSogatella, 90% forLaodelphax, and 95% forNilaparvata lugens. Based on the improved particle swarm optimization algorithm-optimized BP nerve network, the identification rate reached 90% forSogatella, 95% forLaodelphax, and 100% forNilaparvata lugens. Therefore, the identification rate of the optimized BP neural network based on parametric selection-improved particle swarm optimization algorithm was higher than that of BP neural network. Furthermore, the shorter training time using the optimized BP neural network based on parametric selection-improved particle swarm optimization algorithm than using the BP neural network suggested that the former could better meet the requirement of real time optimization.
Author 邹修国 丁为民 陈彩蓉 刘德营
AuthorAffiliation 南京农业大学工学院,南京210031 江苏省现代设施农业技术与装备工程实验室,南京210031
AuthorAffiliation_xml – name: 南京农业大学工学院,南京 210031; 江苏省现代设施农业技术与装备工程实验室,南京 210031
Author_FL Zou Xiuguo
Liu Deying
Ding Weimin
Chen Cairong
Author_FL_xml – sequence: 1
  fullname: Zou Xiuguo
– sequence: 2
  fullname: Ding Weimin
– sequence: 3
  fullname: Chen Cairong
– sequence: 4
  fullname: Liu Deying
Author_xml – sequence: 1
  fullname: 邹修国 丁为民 陈彩蓉 刘德营
BookMark eNo9j81Kw0AUhWdRwVr7EILgKnFuM2nmLrX4BwU33ZdkkqkpOtUG0S4FFRciUir-gV0oogvFKi5sQV_GdNq3MFJxdTiHj3PvmSApVVMBIdNATQvzOFs1wyhSJlCaM_Ic0MxRYIk1KTgpkv7Px0k2ikKP2mA5lDJIk_m43f3unvRbH4Ova733Enfv44OObrV1-3F48R43j_VrM3461Z93-vm8_3amr_b1Q294ezO47MRHh7rTmyRj0l2PguyfZkhpcaFUWDaKq0srhbmiIWzODYGAAXIJgeAYSA7UF0EAHjogbHQtHwXmfaCAjFFpU6SS-RS5JSXLecnDGTIzqt1xlXRVpVytbddVcrCsGhWx6_1OToYCT8ipESnWaqqyFSbsZj3ccOuNMkPObHRy1g9D23Mh
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2014.10.017
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Classification of rice planthopper based on improved gray level co-occurrence matrix and particle swarm algorithm
DocumentTitle_FL Classification of rice planthopper based on improved gray level co-occurrence matrix and particle swarm algorithm
EndPage 144
ExternalDocumentID nygcxb201410018
49845972
GrantInformation_xml – fundername: 国家高技术研究发展计划(863计划)资助项目; 公益性行业(农业)科研专项资助项目; 南京农业大学青年科技基金资助项目
  funderid: (2012AA101904); (201203059); (KJ2010031)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c588-c919e98f1ec89ef810dcee1b971c59a3d9c96d1019440f5090f4d0983ff42b513
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:35:01 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords 稻飞虱
灰度共生矩阵
neural networks
粒子群
神经网络
particle swarm optimization
rice planthopper
gray level co-occurrence matrix
classification
图像识别
image recognition
分类
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c588-c919e98f1ec89ef810dcee1b971c59a3d9c96d1019440f5090f4d0983ff42b513
Notes 11-2047/S
neural networks;image recognition;classification;particle swarm optimization;rice planthopper;gray level co-occurrence matrix
The rice planthopper images acquired by remote real-time recognition system usually have poor quality, and hence it is impossible to classify rice planthoppers using the color features of rice planthopper images. This study proposed to extract texture features of images based on gray level co-occurrence matrix(GLCM) and used the texture features to classify rice planthoppers. A H-shape mobile photographing device designed by us was used to obtain color images of rice planthoppers. The color images were grayed by formula, and then the background of images was removed using Otsu image segmentation method to generate binary images followed by calculation through the binary image coordinates. The GLCM was improved to extract texture features of images without background. Specifically, the center of gravity was determined by coordinates of the images and considered as the center to
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201410018
chongqing_primary_49845972
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2014
Publisher 江苏省现代设施农业技术与装备工程实验室,南京 210031
南京农业大学工学院,南京 210031
Publisher_xml – name: 南京农业大学工学院,南京 210031
– name: 江苏省现代设施农业技术与装备工程实验室,南京 210031
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0544293
Snippet 针对稻飞虱远程实时识别采集图像质量不高而无法使用颜色特征的问题,应用灰度共生矩阵提取的纹理特征值对稻飞虱分类进行了研究。采用自行设计的拍摄装置采集稻飞虱图像,经过...
TP391.41; 针对稻飞虱远程实时识别采集图像质量不高而无法使用颜色特征的问题,应用灰度共生矩阵提取的纹理特征值对稻飞虱分类进行了研究。采用自行设计的拍摄装置采集稻飞...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 138
SubjectTerms 分类
图像识别
灰度共生矩阵
神经网络
稻飞虱
粒子群
Title 基于改进灰度共生矩阵和粒子群算法的稻飞虱分类
URI http://lib.cqvip.com/qk/90712X/201410/49845972.html
https://d.wanfangdata.com.cn/periodical/nygcxb201410018
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdCgtiB7ET2z9oIfOadmaSSbZecdMN0sR9LRCb8smm2xPW60taG-CigcRKRW_wD0oogfFKh7cgv4Zt2n_gUffm8xulyJFewmPeZP3Oby8-XphbCZx_ES5qSh7mI6XZSurlOPYhbLwgiZVG_HihNYhr14L5q_LKwv-wtjY75FTS6sr8Wyy9td7JYfxKrahX-mW7H94dkgUGxBG_-ITPYzPf_Ixj3wONa5DHkl6qohHAQeEgUeK6xoHzaMKZotcO9QZ-4QBAQphQSjsjBQIqPEQ3wIO-KJvKLtczRFKuwRjS1jl4JiWiIeSgDDiUCGm2uPgGzooRoFCOpoIhoiKSB4AwxS5K64CQwcF06P5scGiCnNGI0XUSGyk5luaSltJSJGAK9TIH4wa4qZco70k7VE60kNzXS1ZgmiKAiCjBWQWECWjNpBYxKxqDIG8Pa6gZOWFAheRLIRzBmztiklxR9WGd4r_gbJB2sZ_uy9kx7kzEs1FUXjGJgaiKFS5_5vjQQDmm0McZocc6NSgnKWDg8Xd1H1VvSUoiXM5TB4mXFpJGmcToa7q2l4qK2i2Poy1gv5zIPbuOLtUwSDYmyr6wqMfFQyPN9Hmvm92-q08R9iMFfbyQaJSiZHFpU77JiZO5h5bJ2t22iMpV_0EO27nStNhMfBPsrG1xVPsWNhetvVi0tNM97u9X73H2xvfd36-yu9-7vfe9e9v5hvdvPth9_m3_vqj_Mt6_-OT_Mfb_NOz7a9P85f38vdbu29e77zY7D98kG9unWH1WlSfmy_b34KUEx8DQAICUlCZSBMFaaaE08JET8RQEYkPTa8FCQQttB5I6WQYb5xMthxQXpZJN0Y7nWXjnaVOeo5NJ66Tgpd60IylTJ0KgApaCAg3SVXT9SfZ1NAYjRtF9ZfGwHOTbNpap2FDwq1G5047uR275vC0I9TUQe-fZ0epY7Gcd4GNryyvphcxwV2JL9mx8Ae_ZIHy
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E7%81%B0%E5%BA%A6%E5%85%B1%E7%94%9F%E7%9F%A9%E9%98%B5%E5%92%8C%E7%B2%92%E5%AD%90%E7%BE%A4%E7%AE%97%E6%B3%95%E7%9A%84%E7%A8%BB%E9%A3%9E%E8%99%B1%E5%88%86%E7%B1%BB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%82%B9%E4%BF%AE%E5%9B%BD+%E4%B8%81%E4%B8%BA%E6%B0%91+%E9%99%88%E5%BD%A9%E8%93%89+%E5%88%98%E5%BE%B7%E8%90%A5&rft.date=2014&rft.issn=1002-6819&rft.volume=30&rft.issue=10&rft.spage=138&rft.epage=144&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2014.10.017&rft.externalDocID=49845972
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg