一种基于广义期望首达时间的形状距离学习算法
形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean firstpassage time,GMFPT)的形状距离学习方法.将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离.通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集...
Saved in:
| Published in | 自动化学报 Vol. 42; no. 2; pp. 246 - 254 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
大连理工大学电子信息与电气工程学部 大连 116023
2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0254-4156 1874-1029 |
| DOI | 10.16383/j.aas.2016.c150105 |
Cover
| Abstract | 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean firstpassage time,GMFPT)的形状距离学习方法.将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离.通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集中进行仿真实验,本文方法比其他方法能够得到更准确的形状检索结果. |
|---|---|
| AbstractList | 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean firstpassage time,GMFPT)的形状距离学习方法.将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离.通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集中进行仿真实验,本文方法比其他方法能够得到更准确的形状检索结果. 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离。利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean first-passage time, GMFPT)的形状距离学习方法。将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离。通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响。将所提出的方法应用到不同形状数据集中进行仿真实验,本文方法比其他方法能够得到更准确的形状检索结果。 |
| Abstract_FL | With the help of shape distance learning introduced into shape matching framework as a post-processing procedure, shape distances obtained by pairwise shape similarity analysis can be improved effectively. A novel shape distance learning method based on generalized mean first-passage time (GMFPT) is proposed to solve the problem of inaccurate matching results caused by mean first-passage time. Given a set of shapes as the state space, the generalized mean first-passage time, which is regarded as the updated shape distance, is used to represent the average time step from one state to a certain set of states. With the generalized mean first-passage time introduced into the distance learning algorithms, context-sensitive similarities can be evaluated effectively, and the shortest paths on the distance manifold can be explicitly captured without redundant context. Simulation experiments are carried out on different shape datasets with the proposed method, and the results demonstrate that the retrieval score can be improved significantly. |
| Author | 郑丹晨 杨亚飞 韩敏 |
| AuthorAffiliation | 大连理工大学电子信息与电气工程学部,大连116023 |
| AuthorAffiliation_xml | – name: 大连理工大学电子信息与电气工程学部 大连 116023 |
| Author_FL | ZHENG Dan-Chen YANG Ya-Fei HAN Min |
| Author_FL_xml | – sequence: 1 fullname: ZHENG Dan-Chen – sequence: 2 fullname: YANG Ya-Fei – sequence: 3 fullname: HAN Min |
| Author_xml | – sequence: 1 fullname: 郑丹晨 杨亚飞 韩敏 |
| BookMark | eNotj7tKA0EYRgeJYIx5AjsLu13_mZ3LbiUSvEHAJn2Ynezkgm40i3ipLGwUtNOARiIWsdJGiSZifJm9JG_hSqy-5vAdzjzK-E3fQ2gRg4m5ZVsrDVPKwCSAuakwAwxsBmWxLaiBgTgZlAXCqEEx43MoHwR1F7CgwiEWZNFq-HmWPF9F3WE4vI4GP-HgIu504879pHc7Ho3idn_Sfk_uzqPvp-SyP_54SHpf0UsvHDwmr-347WYBzWq5G3j5_82h0sZ6qbBlFHc2twtrRUMx2zZcT7l2RWCgmjoOVBQwzbQlCXUJpx7FDmBXgxKKU6KJJ7iHGeaKWARrx3atHFqe3h5JX0u_Wm40D1t-KiyfVmrH7l87EAA7BZemoKo1_epBPUX3W_U92Topcy5SjRBg_QJIoXEG |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.16383/j.aas.2016.c150105 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time |
| DocumentTitle_FL | A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time |
| EISSN | 1874-1029 |
| EndPage | 254 |
| ExternalDocumentID | zdhxb201602008 667901770 |
| GrantInformation_xml | – fundername: 国家自然科学基金; 中央高校基本科研业务费专项资金(DUT14RC(3)128)资助@@@@Supported by National Natural Science Foundation of China; Fundamental Research Funds for the Central Universities (DUT14RC funderid: (61374154); (61374154); (3)128) |
| GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
| ID | FETCH-LOGICAL-c588-becb8d7104f4990dc05f5f3a24b264e41901bf0c7c642f2e76e1516c2321f98b3 |
| ISSN | 0254-4156 |
| IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:24:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 广义期望首达时间 mean first-passage time shape distance learning 离散时间马尔科夫链 形状距离学习 Shape matching generalized mean first-passage time discrete-time Markov chain 期望首达时间 形状匹配 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c588-becb8d7104f4990dc05f5f3a24b264e41901bf0c7c642f2e76e1516c2321f98b3 |
| Notes | With the help of shape distance learning introduced into shape matching framework as a post-processing procedure, shape distances obtained by pairwise shape similarity analysis can be improved effectively. A novel shape distance learning method based on generalized mean first-passage time(GMFPT) is proposed to solve the problem of inaccurate matching results caused by mean first-passage time. Given a set of shapes as the state space, the generalized mean first-passage time, which is regarded as the updated shape distance, is used to represent the average time step from one state to a certain set of states. With the generalized mean first-passage time introduced into the distance learning algorithms, context-sensitive similarities can be evaluated effectively, and the shortest paths on the distance manifold can be explicitly captured without redundant context. Simulation experiments are carried out on different shape datasets with the proposed method, and the results demonstrate that the retrieval score can be |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_zdhxb201602008 chongqing_primary_667901770 |
| PublicationCentury | 2000 |
| PublicationDate | 2016 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – year: 2016 text: 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | 自动化学报 |
| PublicationTitleAlternate | Acta Automatica Sinica |
| PublicationYear | 2016 |
| Publisher | 大连理工大学电子信息与电气工程学部 大连 116023 |
| Publisher_xml | – name: 大连理工大学电子信息与电气工程学部 大连 116023 |
| SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
| Score | 2.1500149 |
| Snippet | 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种... 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离。利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 246 |
| SubjectTerms | 广义期望首达时间 形状匹配 形状距离学习 期望首达时间 离散时间马尔科夫链 |
| Title | 一种基于广义期望首达时间的形状距离学习算法 |
| URI | http://lib.cqvip.com/qk/90250X/201602/667901770.html https://d.wanfangdata.com.cn/periodical/zdhxb201602008 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-1029 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059721 issn: 0254-4156 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEO4gXPRgfEbEBwf7RAbn1a-TmWFnJcZ4QsNtMz0POC0-IDGcPHjRRG9KohiMBzzpRYOCEf-AP2Mf8C-s6h52J8EYNdlMerprqh81W_VVT3c1IVcYy0UghXaKQodOCCbSSRUTDitVHqogZyo3qy1u8dnb4Y15Nj8y8rO2amllWU9nq7_dV_I_UoU8kCvukv0HyQ6YQgakQb5wBQnD9a9kTJOQxhIXKySCRoLKBk0YVU0aR6YoojLBnFjRuGlyFJWKJpyqGSSrEjFNFI0gzWkiaZzgD4sEjTkWYSLEKhQwDA3DBo18zJGRoYGnoLRhmsFpHCNN1MC0rTSyLUyQFXCOA2rPvDyAxchBAkGEDwLPSJrEjGnSgBU3RezgHcGmSeDkVcMQ255BbXLKpBqGjxkHaDn2EaiTKdOlJo0sOVTTrE992D2ZlW4Ev9ZB39OaMau7pQjBqlQTKJVyD_3aS-zXNXU182mNvm8jWR-yJ6CdAmNQ0hRju3t8OgME7blsaD4Hixo5FwCuhHCPkDEfZ4dGydj1-OadaAhPsXU1fcoUqMwa_OIMwwMO7wV-5K59lYb7IBi6e-BMYvTHwT2eBcBr7j3zAnBG0b22yIRhpCYz51gNXhWFCzt59XAXMdrI4lJ74R5gKLOlrV2m7YUa-po7QY5XbtNkZP8DJ8nI6uIpcqwWTPM0udb5-qj__ll3Y6ez87y7_aOz_aS3vtFbf72_-XJvd7e3trW_9rn_6nH3-7v-0629L2_6m9-6HzY722_7H9d6n16cIXPNZG5m1qmOB3EyBooAlI-WOQDksASv3c0zl5WsDFI_1ADyixCRri7dTGTgYpd-IXgB6JZn4EJ4pZI6OEtG20vt4hyZTLWvClkoxQCOu9rTOQu1x_EkgkynBRsnE4ORaN21UWBaA3GPk8vV2LQq3fCgtZovPtQ4mC6uLzr_x-cnyFGktPN6F8jo8v2V4iIg3WV9qXqBfgH2RYW2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E5%B9%BF%E4%B9%89%E6%9C%9F%E6%9C%9B%E9%A6%96%E8%BE%BE%E6%97%B6%E9%97%B4%E7%9A%84%E5%BD%A2%E7%8A%B6%E8%B7%9D%E7%A6%BB%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%91%E4%B8%B9%E6%99%A8+%E6%9D%A8%E4%BA%9A%E9%A3%9E+%E9%9F%A9%E6%95%8F&rft.date=2016&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=42&rft.issue=2&rft.spage=246&rft.epage=254&rft_id=info:doi/10.16383%2Fj.aas.2016.c150105&rft.externalDocID=667901770 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |