一种基于广义期望首达时间的形状距离学习算法

形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean firstpassage time,GMFPT)的形状距离学习方法.将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离.通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 42; no. 2; pp. 246 - 254
Main Author 郑丹晨 杨亚飞 韩敏
Format Journal Article
LanguageChinese
Published 大连理工大学电子信息与电气工程学部 大连 116023 2016
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2016.c150105

Cover

Abstract 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean firstpassage time,GMFPT)的形状距离学习方法.将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离.通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集中进行仿真实验,本文方法比其他方法能够得到更准确的形状检索结果.
AbstractList 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean firstpassage time,GMFPT)的形状距离学习方法.将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离.通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集中进行仿真实验,本文方法比其他方法能够得到更准确的形状检索结果.
形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离。利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种基于广义期望首达时间(Generalized mean first-passage time, GMFPT)的形状距离学习方法。将形状样本集合视作状态空间,广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长,本文将其视作更新后的形状间距离。通过引入广义期望首达时间,形状距离学习方法能够有效地分析上下文相关的形状相似度,显式地挖掘样本空间流形中的最短路径,并消除冗余上下文形状信息的影响。将所提出的方法应用到不同形状数据集中进行仿真实验,本文方法比其他方法能够得到更准确的形状检索结果。
Abstract_FL With the help of shape distance learning introduced into shape matching framework as a post-processing procedure, shape distances obtained by pairwise shape similarity analysis can be improved effectively. A novel shape distance learning method based on generalized mean first-passage time (GMFPT) is proposed to solve the problem of inaccurate matching results caused by mean first-passage time. Given a set of shapes as the state space, the generalized mean first-passage time, which is regarded as the updated shape distance, is used to represent the average time step from one state to a certain set of states. With the generalized mean first-passage time introduced into the distance learning algorithms, context-sensitive similarities can be evaluated effectively, and the shortest paths on the distance manifold can be explicitly captured without redundant context. Simulation experiments are carried out on different shape datasets with the proposed method, and the results demonstrate that the retrieval score can be improved significantly.
Author 郑丹晨 杨亚飞 韩敏
AuthorAffiliation 大连理工大学电子信息与电气工程学部,大连116023
AuthorAffiliation_xml – name: 大连理工大学电子信息与电气工程学部 大连 116023
Author_FL ZHENG Dan-Chen
YANG Ya-Fei
HAN Min
Author_FL_xml – sequence: 1
  fullname: ZHENG Dan-Chen
– sequence: 2
  fullname: YANG Ya-Fei
– sequence: 3
  fullname: HAN Min
Author_xml – sequence: 1
  fullname: 郑丹晨 杨亚飞 韩敏
BookMark eNotj7tKA0EYRgeJYIx5AjsLu13_mZ3LbiUSvEHAJn2Ynezkgm40i3ipLGwUtNOARiIWsdJGiSZifJm9JG_hSqy-5vAdzjzK-E3fQ2gRg4m5ZVsrDVPKwCSAuakwAwxsBmWxLaiBgTgZlAXCqEEx43MoHwR1F7CgwiEWZNFq-HmWPF9F3WE4vI4GP-HgIu504879pHc7Ho3idn_Sfk_uzqPvp-SyP_54SHpf0UsvHDwmr-347WYBzWq5G3j5_82h0sZ6qbBlFHc2twtrRUMx2zZcT7l2RWCgmjoOVBQwzbQlCXUJpx7FDmBXgxKKU6KJJ7iHGeaKWARrx3atHFqe3h5JX0u_Wm40D1t-KiyfVmrH7l87EAA7BZemoKo1_epBPUX3W_U92Topcy5SjRBg_QJIoXEG
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2016.c150105
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time
DocumentTitle_FL A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time
EISSN 1874-1029
EndPage 254
ExternalDocumentID zdhxb201602008
667901770
GrantInformation_xml – fundername: 国家自然科学基金; 中央高校基本科研业务费专项资金(DUT14RC(3)128)资助@@@@Supported by National Natural Science Foundation of China; Fundamental Research Funds for the Central Universities (DUT14RC
  funderid: (61374154); (61374154); (3)128)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c588-becb8d7104f4990dc05f5f3a24b264e41901bf0c7c642f2e76e1516c2321f98b3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:24:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 广义期望首达时间
mean first-passage time
shape distance learning
离散时间马尔科夫链
形状距离学习
Shape matching
generalized mean first-passage time
discrete-time Markov chain
期望首达时间
形状匹配
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c588-becb8d7104f4990dc05f5f3a24b264e41901bf0c7c642f2e76e1516c2321f98b3
Notes With the help of shape distance learning introduced into shape matching framework as a post-processing procedure, shape distances obtained by pairwise shape similarity analysis can be improved effectively. A novel shape distance learning method based on generalized mean first-passage time(GMFPT) is proposed to solve the problem of inaccurate matching results caused by mean first-passage time. Given a set of shapes as the state space, the generalized mean first-passage time, which is regarded as the updated shape distance, is used to represent the average time step from one state to a certain set of states. With the generalized mean first-passage time introduced into the distance learning algorithms, context-sensitive similarities can be evaluated effectively, and the shortest paths on the distance manifold can be explicitly captured without redundant context. Simulation experiments are carried out on different shape datasets with the proposed method, and the results demonstrate that the retrieval score can be
PageCount 9
ParticipantIDs wanfang_journals_zdhxb201602008
chongqing_primary_667901770
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationYear 2016
Publisher 大连理工大学电子信息与电气工程学部 大连 116023
Publisher_xml – name: 大连理工大学电子信息与电气工程学部 大连 116023
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1500149
Snippet 形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种...
形状距离学习是形状匹配框架中引入的后处理步骤,能够有效改善逐对计算得到的形状间距离。利用期望首达时间分析形状间相似度可能导致距离更新不准确,针对这一问题提出了一种...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 246
SubjectTerms 广义期望首达时间
形状匹配
形状距离学习
期望首达时间
离散时间马尔科夫链
Title 一种基于广义期望首达时间的形状距离学习算法
URI http://lib.cqvip.com/qk/90250X/201602/667901770.html
https://d.wanfangdata.com.cn/periodical/zdhxb201602008
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEO4gXPRgfEbEBwf7RAbn1a-TmWFnJcZ4QsNtMz0POC0-IDGcPHjRRG9KohiMBzzpRYOCEf-AP2Mf8C-s6h52J8EYNdlMerprqh81W_VVT3c1IVcYy0UghXaKQodOCCbSSRUTDitVHqogZyo3qy1u8dnb4Y15Nj8y8rO2amllWU9nq7_dV_I_UoU8kCvukv0HyQ6YQgakQb5wBQnD9a9kTJOQxhIXKySCRoLKBk0YVU0aR6YoojLBnFjRuGlyFJWKJpyqGSSrEjFNFI0gzWkiaZzgD4sEjTkWYSLEKhQwDA3DBo18zJGRoYGnoLRhmsFpHCNN1MC0rTSyLUyQFXCOA2rPvDyAxchBAkGEDwLPSJrEjGnSgBU3RezgHcGmSeDkVcMQ255BbXLKpBqGjxkHaDn2EaiTKdOlJo0sOVTTrE992D2ZlW4Ev9ZB39OaMau7pQjBqlQTKJVyD_3aS-zXNXU182mNvm8jWR-yJ6CdAmNQ0hRju3t8OgME7blsaD4Hixo5FwCuhHCPkDEfZ4dGydj1-OadaAhPsXU1fcoUqMwa_OIMwwMO7wV-5K59lYb7IBi6e-BMYvTHwT2eBcBr7j3zAnBG0b22yIRhpCYz51gNXhWFCzt59XAXMdrI4lJ74R5gKLOlrV2m7YUa-po7QY5XbtNkZP8DJ8nI6uIpcqwWTPM0udb5-qj__ll3Y6ez87y7_aOz_aS3vtFbf72_-XJvd7e3trW_9rn_6nH3-7v-0629L2_6m9-6HzY722_7H9d6n16cIXPNZG5m1qmOB3EyBooAlI-WOQDksASv3c0zl5WsDFI_1ADyixCRri7dTGTgYpd-IXgB6JZn4EJ4pZI6OEtG20vt4hyZTLWvClkoxQCOu9rTOQu1x_EkgkynBRsnE4ORaN21UWBaA3GPk8vV2LQq3fCgtZovPtQ4mC6uLzr_x-cnyFGktPN6F8jo8v2V4iIg3WV9qXqBfgH2RYW2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E5%B9%BF%E4%B9%89%E6%9C%9F%E6%9C%9B%E9%A6%96%E8%BE%BE%E6%97%B6%E9%97%B4%E7%9A%84%E5%BD%A2%E7%8A%B6%E8%B7%9D%E7%A6%BB%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%91%E4%B8%B9%E6%99%A8+%E6%9D%A8%E4%BA%9A%E9%A3%9E+%E9%9F%A9%E6%95%8F&rft.date=2016&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=42&rft.issue=2&rft.spage=246&rft.epage=254&rft_id=info:doi/10.16383%2Fj.aas.2016.c150105&rft.externalDocID=667901770
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg