Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons
Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform...
Saved in:
Published in | Molecular therapy. Nucleic acids Vol. 27; pp. 99 - 108 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.03.2022
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2162-2531 2162-2531 |
DOI | 10.1016/j.omtn.2021.11.015 |
Cover
Abstract | Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.
[Display omitted]
Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. Our study highlights patient-derived neurons as an in vitro tool to screen and identify antisense oligonucleotides (ASOs) to selectively decrease the expression of mutant ataxin-3 as a potential treatment for SCA3. |
---|---|
AbstractList | Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in
ATXN3
that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.
Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. Our study highlights patient-derived neurons as an
in vitro
tool to screen and identify antisense oligonucleotides (ASOs) to selectively decrease the expression of mutant ataxin-3 as a potential treatment for SCA3. Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients. Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients. [Display omitted] Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. Our study highlights patient-derived neurons as an in vitro tool to screen and identify antisense oligonucleotides (ASOs) to selectively decrease the expression of mutant ataxin-3 as a potential treatment for SCA3. Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients. Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients. |
Author | Hauser, Stefan Kraft, Melanie Helm, Jacob Schöls, Ludger Hübener-Schmid, Jeannette Korneck, Milena |
Author_xml | – sequence: 1 givenname: Stefan orcidid: 0000-0002-1022-7482 surname: Hauser fullname: Hauser, Stefan organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany – sequence: 2 givenname: Jacob orcidid: 0000-0002-0857-4266 surname: Helm fullname: Helm, Jacob organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany – sequence: 3 givenname: Melanie surname: Kraft fullname: Kraft, Melanie organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany – sequence: 4 givenname: Milena orcidid: 0000-0002-6106-5153 surname: Korneck fullname: Korneck, Milena organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany – sequence: 5 givenname: Jeannette surname: Hübener-Schmid fullname: Hübener-Schmid, Jeannette organization: Institute of Medical Genetics and Applied Genomics and Center of Rare Diseases, University of Tübingen, 72076 Tübingen, Germany – sequence: 6 givenname: Ludger surname: Schöls fullname: Schöls, Ludger email: ludger.schoels@uni-tuebingen.de organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34938609$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEUhUeoiJbSP8ACzZLNBL9nRkJIVcSjUiWQCmvLsa_DjSZ2sD0R_fc4pEUti3rj1z3f8eO8bE5CDNA0rylZUELVu80ibktYMMLogtIFofJZc8aoYh2TnJ48GJ82FzlvSG2KUKbYi-aUi5EPioxnzfpymmCCLu_AokfbFpPWUDCs2-jb7VxMKK0p5jeGjrer27bOMUPI0MYJ1zHMdoJY0EFuMbQ3y0ve4bebZecg4R5cG2BOMeRXzXNvpgwXd_158-PTx-_LL931189Xy8vrzsqhL93gRibVICX10nBvpFPEGCmokMC4JP0gnOUenBNq9F461nPiHacEwNO-5-fN1ZHrotnoXcKtSbc6GtR_F2Jaa5MK1kNrZla894Ku6KgEEaNxSvXWgRTErqp_ZX04snbzagvOQijJTI-gj3cC_tTruNeDEiMlQwW8vQOk-GuGXPQWs4VpMgHinDVTlLNRKMFq6ZuHXv9M7n-qFgzHAptizgm8tlhMwXiwxklTog-50PWONRf6kAtNqa65qFL2n_Se_qTo_VEE9bf2CElnixAsOExgS31OfEr-B4BJ0gs |
CitedBy_id | crossref_primary_10_37349_ent_2024_00095 crossref_primary_10_1038_s41576_024_00696_z crossref_primary_10_3390_ijms25073984 crossref_primary_10_2169_naika_111_1520 crossref_primary_10_1007_s12035_023_03294_y crossref_primary_10_1016_j_neuron_2024_04_002 crossref_primary_10_1016_j_biopha_2023_115258 crossref_primary_10_1007_s00415_024_12829_9 crossref_primary_10_1055_a_2015_3305 crossref_primary_10_3390_ijms25094809 crossref_primary_10_1016_j_eclinm_2024_102952 crossref_primary_10_1093_brain_awae304 crossref_primary_10_3389_fnmol_2022_941528 crossref_primary_10_1007_s12311_022_01507_z crossref_primary_10_3390_pharmaceutics14081708 |
Cites_doi | 10.1371/journal.pone.0052396 10.1016/j.nbd.2008.03.011 10.1089/hum.2018.157 10.1016/j.cell.2006.07.024 10.1038/sj.emboj.7600081 10.1111/acel.13051 10.1111/j.1750-3639.1998.tb00193.x 10.1016/j.ymthe.2017.01.021 10.1038/nature10671 10.1016/j.scr.2016.07.004 10.1111/nan.12253 10.1093/hmg/ddq452 10.1016/j.nbd.2013.04.019 10.1523/JNEUROSCI.3909-08.2008 10.1074/jbc.M205259200 10.1093/hmg/8.4.673 10.1073/pnas.1231012100 10.1155/2016/6701793 10.1086/318184 10.1016/j.biomaterials.2015.12.021 10.1038/nmeth.1591 10.1038/nature22078 10.1016/j.scr.2018.06.006 10.1016/j.nbd.2005.07.011 10.1016/j.omtn.2017.06.019 10.1038/s41598-018-37774-2 10.1111/jnc.14541 10.3389/fnmol.2018.00368 10.1093/jnen/60.4.369 10.1007/s00401-010-0717-7 10.1002/ana.25264 10.1016/j.omtn.2019.07.004 10.1038/ng1194-221 10.1016/j.omtn.2017.04.005 10.1016/j.scr.2019.101504 10.1038/sj.ejhg.5200264 10.1002/ana.20141 10.1038/s41598-019-45246-4 10.1242/dmm.045096 10.1038/mt.2013.152 10.1371/journal.pone.0003341 10.3389/fcell.2020.544043 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.omtn.2021.11.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2162-2531 |
EndPage | 108 |
ExternalDocumentID | oai_doaj_org_article_2ab37f41b1964049ad667cde540cb1f5 PMC8649108 34938609 10_1016_j_omtn_2021_11_015 S2162253121002900 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 5VS 6I. 7X7 8FE 8FH 8FI AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ABMAC ACGFS ADBBV ADVLN AEXQZ AFKRA AFTJW AITUG ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI DIK EBS FDB FYUFA GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M41 M48 M7P M~E O9- OK1 PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ 88I 8FJ AAYXX ABUWG ADRAZ CCPQU CITATION DWQXO EJD GNUQQ HMCUK HYE IPNFZ PHGZM PHGZT PQGLB PUEGO RIG UKHRP 0SF AACTN NCXOZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c587t-8d92568551f5a3fa5d60aa54145e2350784dc3fedd469ff5d2730fd310eef1773 |
IEDL.DBID | M48 |
ISSN | 2162-2531 |
IngestDate | Wed Aug 27 01:03:44 EDT 2025 Thu Aug 21 18:31:54 EDT 2025 Fri Sep 05 09:49:39 EDT 2025 Thu Jan 02 22:55:44 EST 2025 Thu Apr 24 22:55:16 EDT 2025 Sun Sep 21 06:11:31 EDT 2025 Sat Jul 19 17:10:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Machado-Joseph disease SCA3 SNP spinocerebellar ataxia type 3 iPSC-derived neurons MJD allele-specific targeting antisense oligonucleotides ASO |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-8d92568551f5a3fa5d60aa54145e2350784dc3fedd469ff5d2730fd310eef1773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1022-7482 0000-0002-0857-4266 0000-0002-6106-5153 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2021.11.015 |
PMID | 34938609 |
PQID | 2613294642 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2ab37f41b1964049ad667cde540cb1f5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8649108 proquest_miscellaneous_2613294642 pubmed_primary_34938609 crossref_citationtrail_10_1016_j_omtn_2021_11_015 crossref_primary_10_1016_j_omtn_2021_11_015 elsevier_sciencedirect_doi_10_1016_j_omtn_2021_11_015 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-08 |
PublicationDateYYYYMMDD | 2022-03-08 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular therapy. Nucleic acids |
PublicationTitleAlternate | Mol Ther Nucleic Acids |
PublicationYear | 2022 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Conceição, Mendonça, Nóbrega, Gomes, Costa, Hirai, Moreira, Lima, Manjunath, de Almeida (bib25) 2016; 82 Maciel, Gaspar, Guimaraes, Goto, Lopes-Cendes, Hayes, Arvidsson, Dias, Sequeiros, Sousa (bib30) 1999; 7 Koch, Breuer, Peitz, Jungverdorben, Kesavan, Poppe, Doerr, Ladewig, Mertens, Tüting (bib36) 2011; 480 Hansen, Stummann, Borland, Hasholt, Tümer, Nielsen, Rasmussen, Nielsen, Daechsel, Fog (bib37) 2016; 17 Toonen, Rigo, van Attikum, van Roon-Mom (bib19) 2017; 8 Ashkenazi, Bento, Ricketts, Vicinanza, Siddiqi, Pavel, Squitieri, Hardenberg, Imarisio, Menzies (bib10) 2017; 545 Li, Macfarlan, Pittman, Chakravarti (bib14) 2002; 277 Alves, Nascimento-Ferreira, Auregan, Hassig, Dufour, Brouillet, de Lima, Hantraye, de Almeida, Déglon (bib22) 2008; 3 Moore, Keller, Bushart, Delatorre, Li, McLoughlin, do Carmo Costa, Shakkottai, Smith, Paulson (bib21) 2019; 39 Chai, Koppenhafer, Shoesmith, Perez, Paulson (bib3) 1999; 8 Nobrega, Codesso, Mendonca, Pereira de Almeida (bib20) 2019; 30 Schuster, Heuten, Velic, Admard, Synofzik, Ossowski, Macek, Hauser, Schöls (bib38) 2020; 13 Hayer, Schelling, Huebener-Schmid, Weber, Hauser, Schöls (bib33) 2018; 30 Evers, Tran, Zalachoras, Pepers, Meijer, den Dunnen, van Ommen, Aartsma-Rus, van Roon-Mom (bib28) 2013; 58 Carmona, Cunha-Santos, Onofre, Simões, Vijayakumar, Davidson, de Almeida (bib27) 2017; 25 Chou, Yeh, Ouyang, Chen, Chen, Wang (bib13) 2008; 31 Seidel, Siswanto, Fredrich, Bouzrou, Brunt, van Leeuwen, Kampinga, Korf, Rüb, den Dunnen (bib7) 2016; 42 Ou, Luo, Niu, Chen, Xie, He, Song, Xian, Fan, OuYang (bib34) 2016; 2016 Miller, Xia, Marrs, Gouvion, Lee, Davidson, Paulson (bib40) 2003; 100 Okita, Matsumura, Sato, Okada, Morizane, Okamoto, Hong, Nakagawa, Tanabe, Tezuka (bib41) 2011; 8 Harmuth, Prell-Schicker, Weber, Gellerich, Funke, Drießen, Magg, Krebiehl, Wolburg, Hayer (bib16) 2018; 11 Gaspar, Lopes-Cendes, Hayes, Goto, Arvidsson, Dias, Silveira, Maciel, Coutinho, Lima (bib31) 2001; 68 Durcan, Kontogiannea, Thorarinsdottir, Fallon, Williams, Djarmati, Fantaneanu, Paulson, Fon (bib9) 2011; 20 Rodríguez-Lebrón, doCarmo Costa, Luna-Cancalon, Peron, Fischer, Boudreau, Davidson, Paulson (bib26) 2013; 21 Nóbrega, Nascimento-Ferreira, Onofre, Albuquerque, Hirai, Déglon, de Almeida (bib24) 2013; 8 Matos, de Almeida, Nóbrega (bib2) 2019; 148 Chuang, Yang, Soong, Yu, Chen, Huang, Kuo (bib35) 2019; 9 Kawaguchi, Okamoto, Taniwaki, Aizawa, Inoue, Katayama, Kawakami, Nakamura, Nishimura, Akiguchi (bib1) 1994; 8 McLoughlin, Moore, Chopra, Komlo, McKenzie, Blumenstein, Zhao, Kordasiewicz, Shakkottai, Paulson (bib17) 2018; 84 Matsumoto, Yada, Hatakeyama, Ishimoto, Tanimura, Tsuji, Kakizuka, Kitagawa, Nakayama (bib8) 2004; 23 Seidel, den Dunnen, Schultz, Paulson, Frank, de Vos, Brunt, Deller, Kampinga, Rüb (bib4) 2010; 120 Kourkouta, Weij, González-Barriga, Mulder, Verheul, Bosgra, Groenendaal, Puoliväli, Toivanen, van Deutekom (bib29) 2019; 17 Rehbach, Kesavan, Hauser, Ritzenhofen, Jungverdorben, Schüle, Schöls, Peitz, Brüstle (bib42) 2019; 9 Herzog, Kevei, Marchante, Böttcher, Bindesbøll, Lystad, Pfeiffer, Gierisch, Salomons, Simonsen (bib11) 2020; 19 Takahashi, Tanaka, Arai, Funata, Hattori, Fukuda, Fujigasaki, Uchihara (bib6) 2001; 60 Chen, Tang, Tu, Nelson, Pook, Hammer, Nukina, Bezprozvanny (bib12) 2008; 28 Chou, Yeh, Kuo, Kao, Jou, Hsu, Tsai, Kakizuka, Wang (bib15) 2006; 21 Takahashi, Yamanaka (bib32) 2006; 126 Schmidt, Landwehrmeyer, Schmitt, Trottier, Auburger, Laccone, Klockgether, Völpel, Epplen, Schöls (bib5) 1998; 8 Hauser, Schuster, Heuten, Höflinger, Admard, Schelling, Velic, Macek, Ossowski, Schöls (bib39) 2020; 8 Moore, Rajpal, Dillingham, Qutob, Blumenstein, Gattis, Hung, Kordasiewicz, Paulson, McLoughlin (bib18) 2017; 7 Li, Yokota, Matsumura, Taira, Mizusawa (bib23) 2004; 56 Alves (10.1016/j.omtn.2021.11.015_bib22) 2008; 3 Gaspar (10.1016/j.omtn.2021.11.015_bib31) 2001; 68 Matsumoto (10.1016/j.omtn.2021.11.015_bib8) 2004; 23 Schmidt (10.1016/j.omtn.2021.11.015_bib5) 1998; 8 Nóbrega (10.1016/j.omtn.2021.11.015_bib24) 2013; 8 Toonen (10.1016/j.omtn.2021.11.015_bib19) 2017; 8 Nobrega (10.1016/j.omtn.2021.11.015_bib20) 2019; 30 Harmuth (10.1016/j.omtn.2021.11.015_bib16) 2018; 11 Kourkouta (10.1016/j.omtn.2021.11.015_bib29) 2019; 17 Herzog (10.1016/j.omtn.2021.11.015_bib11) 2020; 19 Chou (10.1016/j.omtn.2021.11.015_bib13) 2008; 31 Li (10.1016/j.omtn.2021.11.015_bib23) 2004; 56 Conceição (10.1016/j.omtn.2021.11.015_bib25) 2016; 82 Okita (10.1016/j.omtn.2021.11.015_bib41) 2011; 8 Ashkenazi (10.1016/j.omtn.2021.11.015_bib10) 2017; 545 Takahashi (10.1016/j.omtn.2021.11.015_bib32) 2006; 126 Moore (10.1016/j.omtn.2021.11.015_bib21) 2019; 39 Matos (10.1016/j.omtn.2021.11.015_bib2) 2019; 148 Seidel (10.1016/j.omtn.2021.11.015_bib4) 2010; 120 Evers (10.1016/j.omtn.2021.11.015_bib28) 2013; 58 Chou (10.1016/j.omtn.2021.11.015_bib15) 2006; 21 Hauser (10.1016/j.omtn.2021.11.015_bib39) 2020; 8 Chai (10.1016/j.omtn.2021.11.015_bib3) 1999; 8 Carmona (10.1016/j.omtn.2021.11.015_bib27) 2017; 25 Rodríguez-Lebrón (10.1016/j.omtn.2021.11.015_bib26) 2013; 21 Durcan (10.1016/j.omtn.2021.11.015_bib9) 2011; 20 Hayer (10.1016/j.omtn.2021.11.015_bib33) 2018; 30 Maciel (10.1016/j.omtn.2021.11.015_bib30) 1999; 7 Koch (10.1016/j.omtn.2021.11.015_bib36) 2011; 480 Rehbach (10.1016/j.omtn.2021.11.015_bib42) 2019; 9 Moore (10.1016/j.omtn.2021.11.015_bib18) 2017; 7 Chuang (10.1016/j.omtn.2021.11.015_bib35) 2019; 9 Hansen (10.1016/j.omtn.2021.11.015_bib37) 2016; 17 Seidel (10.1016/j.omtn.2021.11.015_bib7) 2016; 42 Kawaguchi (10.1016/j.omtn.2021.11.015_bib1) 1994; 8 Chen (10.1016/j.omtn.2021.11.015_bib12) 2008; 28 Li (10.1016/j.omtn.2021.11.015_bib14) 2002; 277 McLoughlin (10.1016/j.omtn.2021.11.015_bib17) 2018; 84 Ou (10.1016/j.omtn.2021.11.015_bib34) 2016; 2016 Schuster (10.1016/j.omtn.2021.11.015_bib38) 2020; 13 Takahashi (10.1016/j.omtn.2021.11.015_bib6) 2001; 60 Miller (10.1016/j.omtn.2021.11.015_bib40) 2003; 100 |
References_xml | – volume: 11 start-page: 368 year: 2018 ident: bib16 article-title: Mitochondrial morphology, function and homeostasis are impaired by expression of an N-terminal calpain cleavage fragment of ataxin-3 publication-title: Front. Mol. Neurosci. – volume: 7 start-page: 200 year: 2017 end-page: 210 ident: bib18 article-title: Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models publication-title: Mol. Ther. Nucleic Acids – volume: 68 start-page: 523 year: 2001 end-page: 528 ident: bib31 article-title: Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study publication-title: Am. J. Hum. Genet. – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib32 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 480 start-page: 543 year: 2011 end-page: 546 ident: bib36 article-title: Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease publication-title: Nature – volume: 19 start-page: e13051 year: 2020 ident: bib11 article-title: The Machado–Joseph disease deubiquitylase ataxin-3 interacts with LC3C/GABARAP and promotes autophagy publication-title: Aging Cell – volume: 30 start-page: 171 year: 2018 end-page: 174 ident: bib33 article-title: Generation of an induced pluripotent stem cell line from a patient with spinocerebellar ataxia type 3 (SCA3): HIHCNi002-A publication-title: Stem Cell Res. – volume: 100 start-page: 7195 year: 2003 end-page: 7200 ident: bib40 article-title: Allele-specific silencing of dominant disease genes publication-title: Proc. Natl. Acad. Sci. U S A – volume: 8 start-page: 669 year: 1998 end-page: 679 ident: bib5 article-title: An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients publication-title: Brain Pathol. – volume: 545 start-page: 108 year: 2017 end-page: 111 ident: bib10 article-title: Polyglutamine tracts regulate beclin 1-dependent autophagy publication-title: Nature – volume: 21 start-page: 333 year: 2006 end-page: 345 ident: bib15 article-title: Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL publication-title: Neurobiol. Dis. – volume: 8 start-page: 673 year: 1999 end-page: 682 ident: bib3 article-title: Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro publication-title: Hum. Mol. Genet. – volume: 8 start-page: 221 year: 1994 end-page: 228 ident: bib1 article-title: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1 publication-title: Nat. Genet. – volume: 8 start-page: 232 year: 2017 end-page: 242 ident: bib19 article-title: Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice publication-title: Mol. Ther. Nucleic Acids – volume: 7 start-page: 147 year: 1999 end-page: 156 ident: bib30 article-title: Study of three intragenic polymorphisms in the Machado-Joseph disease gene (MJD1) in relation to genetic instability of the (CAG) n tract publication-title: Eur. J. Hum. Genet. – volume: 277 start-page: 45004 year: 2002 end-page: 45012 ident: bib14 article-title: Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities publication-title: J. Biol. Chem. – volume: 120 start-page: 449 year: 2010 end-page: 460 ident: bib4 article-title: Axonal inclusions in spinocerebellar ataxia type 3 publication-title: Acta Neuropathol. – volume: 39 start-page: 101504 year: 2019 ident: bib21 article-title: Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line publication-title: Stem Cell Res. – volume: 17 start-page: 601 year: 2019 end-page: 614 ident: bib29 article-title: Suppression of mutant protein expression in SCA3 and SCA1 mice using a CAG repeat-targeting antisense oligonucleotide publication-title: Mol. Ther. Nucleic Acids – volume: 21 start-page: 1909 year: 2013 end-page: 1918 ident: bib26 article-title: Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice publication-title: Mol. Ther. – volume: 31 start-page: 89 year: 2008 end-page: 101 ident: bib13 article-title: Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation publication-title: Neurobiol. Dis. – volume: 3 start-page: e3341 year: 2008 ident: bib22 article-title: Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease publication-title: PLoS One – volume: 2016 start-page: 6701793 year: 2016 ident: bib34 article-title: Autophagy promoted the degradation of mutant ATXN3 in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells publication-title: Biomed. Res. Int. – volume: 8 start-page: 409 year: 2011 end-page: 412 ident: bib41 article-title: A more efficient method to generate integration-free human iPS cells publication-title: Nat. Methods – volume: 42 start-page: 153 year: 2016 end-page: 166 ident: bib7 article-title: Polyglutamine aggregation in H untington's disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation publication-title: Neuropathol. Appl. Neurobiol. – volume: 84 start-page: 64 year: 2018 end-page: 77 ident: bib17 article-title: Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice publication-title: Ann. Neurol. – volume: 8 start-page: 544043 year: 2020 ident: bib39 article-title: Comparative transcriptional profiling of motor neuron disorder-associated genes in various human cell culture models publication-title: Front. Cell Dev. Biol. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib35 article-title: Modeling spinocerebellar ataxias 2 and 3 with iPSCs reveals a role for glutamate in disease pathology publication-title: Sci. Rep. – volume: 13 start-page: dmm045096 year: 2020 ident: bib38 article-title: CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons publication-title: Dis. Model. Mech. – volume: 30 start-page: 841 year: 2019 end-page: 854 ident: bib20 article-title: RNA interference therapy for Machado–Joseph disease: long-term safety profile of lentiviral vectors encoding short hairpin RNAs targeting mutant ataxin-3 publication-title: Hum. Gene Ther. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib42 article-title: Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons publication-title: Sci. Rep. – volume: 8 start-page: e52396 year: 2013 ident: bib24 article-title: Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice publication-title: PLoS One – volume: 60 start-page: 369 year: 2001 end-page: 376 ident: bib6 article-title: Recruitment of nonexpanded polyglutamine proteins to intranuclear aggregates in neuronal intranuclear hyaline inclusion disease publication-title: J. Neuropathol. Exp. Neurol. – volume: 23 start-page: 659 year: 2004 end-page: 669 ident: bib8 article-title: Molecular clearance of ataxin-3 is regulated by a mammalian E4 publication-title: EMBO J. – volume: 148 start-page: 8 year: 2019 end-page: 28 ident: bib2 article-title: Machado–Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy publication-title: J. Neurochem. – volume: 56 start-page: 124 year: 2004 end-page: 129 ident: bib23 article-title: Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA publication-title: Ann. Neurol. – volume: 17 start-page: 306 year: 2016 end-page: 317 ident: bib37 article-title: Induced pluripotent stem cell-derived neurons for the study of spinocerebellar ataxia type 3 publication-title: Stem Cell Res. – volume: 28 start-page: 12713 year: 2008 end-page: 12724 ident: bib12 article-title: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3 publication-title: J. Neurosci. – volume: 25 start-page: 1038 year: 2017 end-page: 1055 ident: bib27 article-title: Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease publication-title: Mol. Ther. – volume: 82 start-page: 124 year: 2016 end-page: 137 ident: bib25 article-title: Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype publication-title: Biomaterials – volume: 20 start-page: 141 year: 2011 end-page: 154 ident: bib9 article-title: The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability publication-title: Hum. Mol. Genet. – volume: 58 start-page: 49 year: 2013 end-page: 56 ident: bib28 article-title: Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon publication-title: Neurobiol. Dis. – volume: 8 start-page: e52396 year: 2013 ident: 10.1016/j.omtn.2021.11.015_bib24 article-title: Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice publication-title: PLoS One doi: 10.1371/journal.pone.0052396 – volume: 31 start-page: 89 year: 2008 ident: 10.1016/j.omtn.2021.11.015_bib13 article-title: Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.03.011 – volume: 30 start-page: 841 year: 2019 ident: 10.1016/j.omtn.2021.11.015_bib20 article-title: RNA interference therapy for Machado–Joseph disease: long-term safety profile of lentiviral vectors encoding short hairpin RNAs targeting mutant ataxin-3 publication-title: Hum. Gene Ther. doi: 10.1089/hum.2018.157 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.omtn.2021.11.015_bib32 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 23 start-page: 659 year: 2004 ident: 10.1016/j.omtn.2021.11.015_bib8 article-title: Molecular clearance of ataxin-3 is regulated by a mammalian E4 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600081 – volume: 19 start-page: e13051 year: 2020 ident: 10.1016/j.omtn.2021.11.015_bib11 article-title: The Machado–Joseph disease deubiquitylase ataxin-3 interacts with LC3C/GABARAP and promotes autophagy publication-title: Aging Cell doi: 10.1111/acel.13051 – volume: 8 start-page: 669 year: 1998 ident: 10.1016/j.omtn.2021.11.015_bib5 article-title: An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients publication-title: Brain Pathol. doi: 10.1111/j.1750-3639.1998.tb00193.x – volume: 25 start-page: 1038 year: 2017 ident: 10.1016/j.omtn.2021.11.015_bib27 article-title: Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.01.021 – volume: 480 start-page: 543 year: 2011 ident: 10.1016/j.omtn.2021.11.015_bib36 article-title: Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease publication-title: Nature doi: 10.1038/nature10671 – volume: 17 start-page: 306 year: 2016 ident: 10.1016/j.omtn.2021.11.015_bib37 article-title: Induced pluripotent stem cell-derived neurons for the study of spinocerebellar ataxia type 3 publication-title: Stem Cell Res. doi: 10.1016/j.scr.2016.07.004 – volume: 42 start-page: 153 year: 2016 ident: 10.1016/j.omtn.2021.11.015_bib7 article-title: Polyglutamine aggregation in H untington's disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/nan.12253 – volume: 20 start-page: 141 year: 2011 ident: 10.1016/j.omtn.2021.11.015_bib9 article-title: The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq452 – volume: 58 start-page: 49 year: 2013 ident: 10.1016/j.omtn.2021.11.015_bib28 article-title: Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2013.04.019 – volume: 28 start-page: 12713 year: 2008 ident: 10.1016/j.omtn.2021.11.015_bib12 article-title: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3909-08.2008 – volume: 277 start-page: 45004 year: 2002 ident: 10.1016/j.omtn.2021.11.015_bib14 article-title: Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205259200 – volume: 8 start-page: 673 year: 1999 ident: 10.1016/j.omtn.2021.11.015_bib3 article-title: Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.4.673 – volume: 100 start-page: 7195 year: 2003 ident: 10.1016/j.omtn.2021.11.015_bib40 article-title: Allele-specific silencing of dominant disease genes publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1231012100 – volume: 2016 start-page: 6701793 year: 2016 ident: 10.1016/j.omtn.2021.11.015_bib34 article-title: Autophagy promoted the degradation of mutant ATXN3 in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells publication-title: Biomed. Res. Int. doi: 10.1155/2016/6701793 – volume: 68 start-page: 523 year: 2001 ident: 10.1016/j.omtn.2021.11.015_bib31 article-title: Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study publication-title: Am. J. Hum. Genet. doi: 10.1086/318184 – volume: 82 start-page: 124 year: 2016 ident: 10.1016/j.omtn.2021.11.015_bib25 article-title: Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.12.021 – volume: 8 start-page: 409 year: 2011 ident: 10.1016/j.omtn.2021.11.015_bib41 article-title: A more efficient method to generate integration-free human iPS cells publication-title: Nat. Methods doi: 10.1038/nmeth.1591 – volume: 545 start-page: 108 year: 2017 ident: 10.1016/j.omtn.2021.11.015_bib10 article-title: Polyglutamine tracts regulate beclin 1-dependent autophagy publication-title: Nature doi: 10.1038/nature22078 – volume: 30 start-page: 171 year: 2018 ident: 10.1016/j.omtn.2021.11.015_bib33 article-title: Generation of an induced pluripotent stem cell line from a patient with spinocerebellar ataxia type 3 (SCA3): HIHCNi002-A publication-title: Stem Cell Res. doi: 10.1016/j.scr.2018.06.006 – volume: 21 start-page: 333 year: 2006 ident: 10.1016/j.omtn.2021.11.015_bib15 article-title: Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2005.07.011 – volume: 8 start-page: 232 year: 2017 ident: 10.1016/j.omtn.2021.11.015_bib19 article-title: Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2017.06.019 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.omtn.2021.11.015_bib35 article-title: Modeling spinocerebellar ataxias 2 and 3 with iPSCs reveals a role for glutamate in disease pathology publication-title: Sci. Rep. doi: 10.1038/s41598-018-37774-2 – volume: 148 start-page: 8 year: 2019 ident: 10.1016/j.omtn.2021.11.015_bib2 article-title: Machado–Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy publication-title: J. Neurochem. doi: 10.1111/jnc.14541 – volume: 11 start-page: 368 year: 2018 ident: 10.1016/j.omtn.2021.11.015_bib16 article-title: Mitochondrial morphology, function and homeostasis are impaired by expression of an N-terminal calpain cleavage fragment of ataxin-3 publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00368 – volume: 60 start-page: 369 year: 2001 ident: 10.1016/j.omtn.2021.11.015_bib6 article-title: Recruitment of nonexpanded polyglutamine proteins to intranuclear aggregates in neuronal intranuclear hyaline inclusion disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/60.4.369 – volume: 120 start-page: 449 year: 2010 ident: 10.1016/j.omtn.2021.11.015_bib4 article-title: Axonal inclusions in spinocerebellar ataxia type 3 publication-title: Acta Neuropathol. doi: 10.1007/s00401-010-0717-7 – volume: 84 start-page: 64 year: 2018 ident: 10.1016/j.omtn.2021.11.015_bib17 article-title: Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice publication-title: Ann. Neurol. doi: 10.1002/ana.25264 – volume: 17 start-page: 601 year: 2019 ident: 10.1016/j.omtn.2021.11.015_bib29 article-title: Suppression of mutant protein expression in SCA3 and SCA1 mice using a CAG repeat-targeting antisense oligonucleotide publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.07.004 – volume: 8 start-page: 221 year: 1994 ident: 10.1016/j.omtn.2021.11.015_bib1 article-title: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1 publication-title: Nat. Genet. doi: 10.1038/ng1194-221 – volume: 7 start-page: 200 year: 2017 ident: 10.1016/j.omtn.2021.11.015_bib18 article-title: Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2017.04.005 – volume: 39 start-page: 101504 year: 2019 ident: 10.1016/j.omtn.2021.11.015_bib21 article-title: Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line publication-title: Stem Cell Res. doi: 10.1016/j.scr.2019.101504 – volume: 7 start-page: 147 year: 1999 ident: 10.1016/j.omtn.2021.11.015_bib30 article-title: Study of three intragenic polymorphisms in the Machado-Joseph disease gene (MJD1) in relation to genetic instability of the (CAG) n tract publication-title: Eur. J. Hum. Genet. doi: 10.1038/sj.ejhg.5200264 – volume: 56 start-page: 124 year: 2004 ident: 10.1016/j.omtn.2021.11.015_bib23 article-title: Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA publication-title: Ann. Neurol. doi: 10.1002/ana.20141 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.omtn.2021.11.015_bib42 article-title: Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons publication-title: Sci. Rep. doi: 10.1038/s41598-019-45246-4 – volume: 13 start-page: dmm045096 year: 2020 ident: 10.1016/j.omtn.2021.11.015_bib38 article-title: CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons publication-title: Dis. Model. Mech. doi: 10.1242/dmm.045096 – volume: 21 start-page: 1909 year: 2013 ident: 10.1016/j.omtn.2021.11.015_bib26 article-title: Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice publication-title: Mol. Ther. doi: 10.1038/mt.2013.152 – volume: 3 start-page: e3341 year: 2008 ident: 10.1016/j.omtn.2021.11.015_bib22 article-title: Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease publication-title: PLoS One doi: 10.1371/journal.pone.0003341 – volume: 8 start-page: 544043 year: 2020 ident: 10.1016/j.omtn.2021.11.015_bib39 article-title: Comparative transcriptional profiling of motor neuron disorder-associated genes in various human cell culture models publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.544043 |
SSID | ssj0000601262 |
Score | 2.3545728 |
Snippet | Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | allele-specific targeting antisense oligonucleotides ASO iPSC-derived neurons Machado-Joseph disease MJD Original SCA3 SNP spinocerebellar ataxia type 3 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT15EXR_jixbEi7Smn-kcx8FlERRhXdhb0-nHGplJFicj7r-3KskMMwrrxWOSzqO7qlNfJV9_RcirrARPUgVWemOZSqFgNpSaIRRPIanKclw7_OmzOT1XHy_0xV6pL-SEjfLA48C9E76WZVa8RuUogLM-GlOGmABphJrnQb20qIq9ZGp8B8OLd6gmKrgRTICnTStmRnJXt-pR_FTwtyjhiTVx96LSIN5_EJz-Bp9_cij3gtLJXXJnQpN0PvbiHrmV2vvkeN5CJr26pq_pwO8cPpwfk8v5cgkxhuHaSuQH0ZEEDqGLdpmuNlhOmPre_2paJml9TWG7WUOWm2i3bC67FpWPu76JaU2blp4t5pI1X84WLIIT_0yRDtKY7foBOT_58HVxyqYyCyxoW_bMxgpwjwXolLWX2etoCu-xPLhOQgJetCoGmVOMkErnrCMgniJHwIUpZV6W8iE5ars2PSZU1bXkOQQZq6QECs0oo8vMTcw-2VrPCN8OswuTBjmWwli6Ldnsu0PTODQNJCcOTDMjb3bnXI0KHDe2fo_W27VE9exhB_iUm3zK_cunZkRvbe8mIDICDLhUc-PNX24dxcEsxV8vvk3dZu0gT5WiUpDszcij0XF2jyhVJa0pqhkpD1zqoA-HR9rm26AEbo0CuGef_I9OPyW3BS7tQH6dfUaO-h-b9BwAV1-_GObWb1J7KCk priority: 102 providerName: Directory of Open Access Journals |
Title | Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons |
URI | https://dx.doi.org/10.1016/j.omtn.2021.11.015 https://www.ncbi.nlm.nih.gov/pubmed/34938609 https://www.proquest.com/docview/2613294642 https://pubmed.ncbi.nlm.nih.gov/PMC8649108 https://doaj.org/article/2ab37f41b1964049ad667cde540cb1f5 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5V5cIFAeURKNEiIS5oq9i7Xq8PCIWIqoBASCVSb9Z6H8HIsWnsoObfM-NHwFBV4ui3vTPr-T575htCXngRBo4Lw2ItFRPOzJgyccQQijvjRKICrB3-9FmeLcWHi-jigAztjvoBrK-ldthParkpTq4ud29gwr_-natVrRvUMg2DE1TkxJrzW-3_Ikzl6-F-92aG13HbYzQMZMhC8L--jub604xiVSvpPwpZ_0LSvzMr_whVp3fJnR5j0nnnFPfIgSvvk6N5Cfx6vaMvaZv12X5OPyKreVFA5GFYcYlZQ7RLDYeARitP11tsMkx1o6_yknGa7Sgs5zVwX0erIl9VJeohV01uXU3zkp4v5pzlX84XzIJr_3SWtoKZZf2ALE_ffV2csb75AjORihumbAJoSAGg8pHmXkdWzrTGpuGRCzmgSCWs4d5ZCwTb-8gCDpp5C2jROR_EMX9IDsuqdI8JFVnGA28Mt4kTIcrPCBnFPpDWa6eyaEKCYZhT0yuTY4OMIh1S0L6naJoUTQOUJQXTTMir_TE_Ol2OG_d-i9bb74ma2u2KarNK-ymahjrjsRdBhhplQJy0lTI21gGmNRmMwoREg-3THp50sANOld948eeDo6Qwd_GHjC5dta1TYK88TARQwAl51DnO_ha5SLiSs2RC4pFLjZ5hvKXMv7X64EoKAIHqyX8N0VNyO8TKDkyvU8fksNls3TPAW002Babx_uO0_VoxbSfULzu6Kkg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allele-specific+targeting+of+mutant+ataxin-3+by+antisense+oligonucleotides+in+SCA3-iPSC-derived+neurons&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Hauser%2C+Stefan&rft.au=Helm%2C+Jacob&rft.au=Kraft%2C+Melanie&rft.au=Korneck%2C+Milena&rft.date=2022-03-08&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=27&rft.spage=99&rft.epage=108&rft_id=info:doi/10.1016%2Fj.omtn.2021.11.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_omtn_2021_11_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon |