Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons

Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 27; pp. 99 - 108
Main Authors Hauser, Stefan, Helm, Jacob, Kraft, Melanie, Korneck, Milena, Hübener-Schmid, Jeannette, Schöls, Ludger
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.03.2022
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2162-2531
2162-2531
DOI10.1016/j.omtn.2021.11.015

Cover

Abstract Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients. [Display omitted] Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. Our study highlights patient-derived neurons as an in vitro tool to screen and identify antisense oligonucleotides (ASOs) to selectively decrease the expression of mutant ataxin-3 as a potential treatment for SCA3.
AbstractList Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients. Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. Our study highlights patient-derived neurons as an in vitro tool to screen and identify antisense oligonucleotides (ASOs) to selectively decrease the expression of mutant ataxin-3 as a potential treatment for SCA3.
Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.
Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients. [Display omitted] Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. Our study highlights patient-derived neurons as an in vitro tool to screen and identify antisense oligonucleotides (ASOs) to selectively decrease the expression of mutant ataxin-3 as a potential treatment for SCA3.
Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.
Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a deubiquitinase, downregulation of mutant ataxin-3 is likely to slow down the course of this fatal disease. We established a screening platform with human neurons of patients and controls derived from induced pluripotent stem cells to test antisense oligonucleotides (ASOs) for their effects on ataxin-3 expression. We identified an ASO that suppressed mutant and wild-type ataxin-3 levels by >90% after a singular treatment. Next, we screened pairs of ASOs designed to selectively target the mutant or the wild-type allele by taking advantage of a SNP (c.987G > C) in ATXN3 that is present in most SCA3 patients. We found ASOmut4 to reduce levels of mutant ataxin-3 by 80% after 10 days while leaving expression of wild-type ataxin-3 largely unaffected. In a long-term study we proved this effect to last for about 4 weeks after a single treatment without signs of neurotoxicity. This study provides proof of principle that allele-specific lowering of poly(Q)-expanded ataxin-3 by selective ASOs is feasible and long lasting, with sparing of wild-type ataxin-3 expression in a human cell culture model that is genetically identical to SCA3 patients.
Author Hauser, Stefan
Kraft, Melanie
Helm, Jacob
Schöls, Ludger
Hübener-Schmid, Jeannette
Korneck, Milena
Author_xml – sequence: 1
  givenname: Stefan
  orcidid: 0000-0002-1022-7482
  surname: Hauser
  fullname: Hauser, Stefan
  organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
– sequence: 2
  givenname: Jacob
  orcidid: 0000-0002-0857-4266
  surname: Helm
  fullname: Helm, Jacob
  organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
– sequence: 3
  givenname: Melanie
  surname: Kraft
  fullname: Kraft, Melanie
  organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
– sequence: 4
  givenname: Milena
  orcidid: 0000-0002-6106-5153
  surname: Korneck
  fullname: Korneck, Milena
  organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
– sequence: 5
  givenname: Jeannette
  surname: Hübener-Schmid
  fullname: Hübener-Schmid, Jeannette
  organization: Institute of Medical Genetics and Applied Genomics and Center of Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
– sequence: 6
  givenname: Ludger
  surname: Schöls
  fullname: Schöls, Ludger
  email: ludger.schoels@uni-tuebingen.de
  organization: German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34938609$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhUeoiJbSP8ACzZLNBL9nRkJIVcSjUiWQCmvLsa_DjSZ2sD0R_fc4pEUti3rj1z3f8eO8bE5CDNA0rylZUELVu80ibktYMMLogtIFofJZc8aoYh2TnJ48GJ82FzlvSG2KUKbYi-aUi5EPioxnzfpymmCCLu_AokfbFpPWUDCs2-jb7VxMKK0p5jeGjrer27bOMUPI0MYJ1zHMdoJY0EFuMbQ3y0ve4bebZecg4R5cG2BOMeRXzXNvpgwXd_158-PTx-_LL931189Xy8vrzsqhL93gRibVICX10nBvpFPEGCmokMC4JP0gnOUenBNq9F461nPiHacEwNO-5-fN1ZHrotnoXcKtSbc6GtR_F2Jaa5MK1kNrZla894Ku6KgEEaNxSvXWgRTErqp_ZX04snbzagvOQijJTI-gj3cC_tTruNeDEiMlQwW8vQOk-GuGXPQWs4VpMgHinDVTlLNRKMFq6ZuHXv9M7n-qFgzHAptizgm8tlhMwXiwxklTog-50PWONRf6kAtNqa65qFL2n_Se_qTo_VEE9bf2CElnixAsOExgS31OfEr-B4BJ0gs
CitedBy_id crossref_primary_10_37349_ent_2024_00095
crossref_primary_10_1038_s41576_024_00696_z
crossref_primary_10_3390_ijms25073984
crossref_primary_10_2169_naika_111_1520
crossref_primary_10_1007_s12035_023_03294_y
crossref_primary_10_1016_j_neuron_2024_04_002
crossref_primary_10_1016_j_biopha_2023_115258
crossref_primary_10_1007_s00415_024_12829_9
crossref_primary_10_1055_a_2015_3305
crossref_primary_10_3390_ijms25094809
crossref_primary_10_1016_j_eclinm_2024_102952
crossref_primary_10_1093_brain_awae304
crossref_primary_10_3389_fnmol_2022_941528
crossref_primary_10_1007_s12311_022_01507_z
crossref_primary_10_3390_pharmaceutics14081708
Cites_doi 10.1371/journal.pone.0052396
10.1016/j.nbd.2008.03.011
10.1089/hum.2018.157
10.1016/j.cell.2006.07.024
10.1038/sj.emboj.7600081
10.1111/acel.13051
10.1111/j.1750-3639.1998.tb00193.x
10.1016/j.ymthe.2017.01.021
10.1038/nature10671
10.1016/j.scr.2016.07.004
10.1111/nan.12253
10.1093/hmg/ddq452
10.1016/j.nbd.2013.04.019
10.1523/JNEUROSCI.3909-08.2008
10.1074/jbc.M205259200
10.1093/hmg/8.4.673
10.1073/pnas.1231012100
10.1155/2016/6701793
10.1086/318184
10.1016/j.biomaterials.2015.12.021
10.1038/nmeth.1591
10.1038/nature22078
10.1016/j.scr.2018.06.006
10.1016/j.nbd.2005.07.011
10.1016/j.omtn.2017.06.019
10.1038/s41598-018-37774-2
10.1111/jnc.14541
10.3389/fnmol.2018.00368
10.1093/jnen/60.4.369
10.1007/s00401-010-0717-7
10.1002/ana.25264
10.1016/j.omtn.2019.07.004
10.1038/ng1194-221
10.1016/j.omtn.2017.04.005
10.1016/j.scr.2019.101504
10.1038/sj.ejhg.5200264
10.1002/ana.20141
10.1038/s41598-019-45246-4
10.1242/dmm.045096
10.1038/mt.2013.152
10.1371/journal.pone.0003341
10.3389/fcell.2020.544043
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.omtn.2021.11.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
EndPage 108
ExternalDocumentID oai_doaj_org_article_2ab37f41b1964049ad667cde540cb1f5
PMC8649108
34938609
10_1016_j_omtn_2021_11_015
S2162253121002900
Genre Journal Article
GroupedDBID 0R~
53G
5VS
6I.
7X7
8FE
8FH
8FI
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFKRA
AFTJW
AITUG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M41
M48
M7P
M~E
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
88I
8FJ
AAYXX
ABUWG
ADRAZ
CCPQU
CITATION
DWQXO
EJD
GNUQQ
HMCUK
HYE
IPNFZ
PHGZM
PHGZT
PQGLB
PUEGO
RIG
UKHRP
0SF
AACTN
NCXOZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c587t-8d92568551f5a3fa5d60aa54145e2350784dc3fedd469ff5d2730fd310eef1773
IEDL.DBID M48
ISSN 2162-2531
IngestDate Wed Aug 27 01:03:44 EDT 2025
Thu Aug 21 18:31:54 EDT 2025
Fri Sep 05 09:49:39 EDT 2025
Thu Jan 02 22:55:44 EST 2025
Thu Apr 24 22:55:16 EDT 2025
Sun Sep 21 06:11:31 EDT 2025
Sat Jul 19 17:10:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Machado-Joseph disease
SCA3
SNP
spinocerebellar ataxia type 3
iPSC-derived neurons
MJD
allele-specific targeting
antisense oligonucleotides
ASO
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-8d92568551f5a3fa5d60aa54145e2350784dc3fedd469ff5d2730fd310eef1773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1022-7482
0000-0002-0857-4266
0000-0002-6106-5153
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2021.11.015
PMID 34938609
PQID 2613294642
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_2ab37f41b1964049ad667cde540cb1f5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8649108
proquest_miscellaneous_2613294642
pubmed_primary_34938609
crossref_citationtrail_10_1016_j_omtn_2021_11_015
crossref_primary_10_1016_j_omtn_2021_11_015
elsevier_sciencedirect_doi_10_1016_j_omtn_2021_11_015
PublicationCentury 2000
PublicationDate 2022-03-08
PublicationDateYYYYMMDD 2022-03-08
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy. Nucleic acids
PublicationTitleAlternate Mol Ther Nucleic Acids
PublicationYear 2022
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Conceição, Mendonça, Nóbrega, Gomes, Costa, Hirai, Moreira, Lima, Manjunath, de Almeida (bib25) 2016; 82
Maciel, Gaspar, Guimaraes, Goto, Lopes-Cendes, Hayes, Arvidsson, Dias, Sequeiros, Sousa (bib30) 1999; 7
Koch, Breuer, Peitz, Jungverdorben, Kesavan, Poppe, Doerr, Ladewig, Mertens, Tüting (bib36) 2011; 480
Hansen, Stummann, Borland, Hasholt, Tümer, Nielsen, Rasmussen, Nielsen, Daechsel, Fog (bib37) 2016; 17
Toonen, Rigo, van Attikum, van Roon-Mom (bib19) 2017; 8
Ashkenazi, Bento, Ricketts, Vicinanza, Siddiqi, Pavel, Squitieri, Hardenberg, Imarisio, Menzies (bib10) 2017; 545
Li, Macfarlan, Pittman, Chakravarti (bib14) 2002; 277
Alves, Nascimento-Ferreira, Auregan, Hassig, Dufour, Brouillet, de Lima, Hantraye, de Almeida, Déglon (bib22) 2008; 3
Moore, Keller, Bushart, Delatorre, Li, McLoughlin, do Carmo Costa, Shakkottai, Smith, Paulson (bib21) 2019; 39
Chai, Koppenhafer, Shoesmith, Perez, Paulson (bib3) 1999; 8
Nobrega, Codesso, Mendonca, Pereira de Almeida (bib20) 2019; 30
Schuster, Heuten, Velic, Admard, Synofzik, Ossowski, Macek, Hauser, Schöls (bib38) 2020; 13
Hayer, Schelling, Huebener-Schmid, Weber, Hauser, Schöls (bib33) 2018; 30
Evers, Tran, Zalachoras, Pepers, Meijer, den Dunnen, van Ommen, Aartsma-Rus, van Roon-Mom (bib28) 2013; 58
Carmona, Cunha-Santos, Onofre, Simões, Vijayakumar, Davidson, de Almeida (bib27) 2017; 25
Chou, Yeh, Ouyang, Chen, Chen, Wang (bib13) 2008; 31
Seidel, Siswanto, Fredrich, Bouzrou, Brunt, van Leeuwen, Kampinga, Korf, Rüb, den Dunnen (bib7) 2016; 42
Ou, Luo, Niu, Chen, Xie, He, Song, Xian, Fan, OuYang (bib34) 2016; 2016
Miller, Xia, Marrs, Gouvion, Lee, Davidson, Paulson (bib40) 2003; 100
Okita, Matsumura, Sato, Okada, Morizane, Okamoto, Hong, Nakagawa, Tanabe, Tezuka (bib41) 2011; 8
Harmuth, Prell-Schicker, Weber, Gellerich, Funke, Drießen, Magg, Krebiehl, Wolburg, Hayer (bib16) 2018; 11
Gaspar, Lopes-Cendes, Hayes, Goto, Arvidsson, Dias, Silveira, Maciel, Coutinho, Lima (bib31) 2001; 68
Durcan, Kontogiannea, Thorarinsdottir, Fallon, Williams, Djarmati, Fantaneanu, Paulson, Fon (bib9) 2011; 20
Rodríguez-Lebrón, doCarmo Costa, Luna-Cancalon, Peron, Fischer, Boudreau, Davidson, Paulson (bib26) 2013; 21
Nóbrega, Nascimento-Ferreira, Onofre, Albuquerque, Hirai, Déglon, de Almeida (bib24) 2013; 8
Matos, de Almeida, Nóbrega (bib2) 2019; 148
Chuang, Yang, Soong, Yu, Chen, Huang, Kuo (bib35) 2019; 9
Kawaguchi, Okamoto, Taniwaki, Aizawa, Inoue, Katayama, Kawakami, Nakamura, Nishimura, Akiguchi (bib1) 1994; 8
McLoughlin, Moore, Chopra, Komlo, McKenzie, Blumenstein, Zhao, Kordasiewicz, Shakkottai, Paulson (bib17) 2018; 84
Matsumoto, Yada, Hatakeyama, Ishimoto, Tanimura, Tsuji, Kakizuka, Kitagawa, Nakayama (bib8) 2004; 23
Seidel, den Dunnen, Schultz, Paulson, Frank, de Vos, Brunt, Deller, Kampinga, Rüb (bib4) 2010; 120
Kourkouta, Weij, González-Barriga, Mulder, Verheul, Bosgra, Groenendaal, Puoliväli, Toivanen, van Deutekom (bib29) 2019; 17
Rehbach, Kesavan, Hauser, Ritzenhofen, Jungverdorben, Schüle, Schöls, Peitz, Brüstle (bib42) 2019; 9
Herzog, Kevei, Marchante, Böttcher, Bindesbøll, Lystad, Pfeiffer, Gierisch, Salomons, Simonsen (bib11) 2020; 19
Takahashi, Tanaka, Arai, Funata, Hattori, Fukuda, Fujigasaki, Uchihara (bib6) 2001; 60
Chen, Tang, Tu, Nelson, Pook, Hammer, Nukina, Bezprozvanny (bib12) 2008; 28
Chou, Yeh, Kuo, Kao, Jou, Hsu, Tsai, Kakizuka, Wang (bib15) 2006; 21
Takahashi, Yamanaka (bib32) 2006; 126
Schmidt, Landwehrmeyer, Schmitt, Trottier, Auburger, Laccone, Klockgether, Völpel, Epplen, Schöls (bib5) 1998; 8
Hauser, Schuster, Heuten, Höflinger, Admard, Schelling, Velic, Macek, Ossowski, Schöls (bib39) 2020; 8
Moore, Rajpal, Dillingham, Qutob, Blumenstein, Gattis, Hung, Kordasiewicz, Paulson, McLoughlin (bib18) 2017; 7
Li, Yokota, Matsumura, Taira, Mizusawa (bib23) 2004; 56
Alves (10.1016/j.omtn.2021.11.015_bib22) 2008; 3
Gaspar (10.1016/j.omtn.2021.11.015_bib31) 2001; 68
Matsumoto (10.1016/j.omtn.2021.11.015_bib8) 2004; 23
Schmidt (10.1016/j.omtn.2021.11.015_bib5) 1998; 8
Nóbrega (10.1016/j.omtn.2021.11.015_bib24) 2013; 8
Toonen (10.1016/j.omtn.2021.11.015_bib19) 2017; 8
Nobrega (10.1016/j.omtn.2021.11.015_bib20) 2019; 30
Harmuth (10.1016/j.omtn.2021.11.015_bib16) 2018; 11
Kourkouta (10.1016/j.omtn.2021.11.015_bib29) 2019; 17
Herzog (10.1016/j.omtn.2021.11.015_bib11) 2020; 19
Chou (10.1016/j.omtn.2021.11.015_bib13) 2008; 31
Li (10.1016/j.omtn.2021.11.015_bib23) 2004; 56
Conceição (10.1016/j.omtn.2021.11.015_bib25) 2016; 82
Okita (10.1016/j.omtn.2021.11.015_bib41) 2011; 8
Ashkenazi (10.1016/j.omtn.2021.11.015_bib10) 2017; 545
Takahashi (10.1016/j.omtn.2021.11.015_bib32) 2006; 126
Moore (10.1016/j.omtn.2021.11.015_bib21) 2019; 39
Matos (10.1016/j.omtn.2021.11.015_bib2) 2019; 148
Seidel (10.1016/j.omtn.2021.11.015_bib4) 2010; 120
Evers (10.1016/j.omtn.2021.11.015_bib28) 2013; 58
Chou (10.1016/j.omtn.2021.11.015_bib15) 2006; 21
Hauser (10.1016/j.omtn.2021.11.015_bib39) 2020; 8
Chai (10.1016/j.omtn.2021.11.015_bib3) 1999; 8
Carmona (10.1016/j.omtn.2021.11.015_bib27) 2017; 25
Rodríguez-Lebrón (10.1016/j.omtn.2021.11.015_bib26) 2013; 21
Durcan (10.1016/j.omtn.2021.11.015_bib9) 2011; 20
Hayer (10.1016/j.omtn.2021.11.015_bib33) 2018; 30
Maciel (10.1016/j.omtn.2021.11.015_bib30) 1999; 7
Koch (10.1016/j.omtn.2021.11.015_bib36) 2011; 480
Rehbach (10.1016/j.omtn.2021.11.015_bib42) 2019; 9
Moore (10.1016/j.omtn.2021.11.015_bib18) 2017; 7
Chuang (10.1016/j.omtn.2021.11.015_bib35) 2019; 9
Hansen (10.1016/j.omtn.2021.11.015_bib37) 2016; 17
Seidel (10.1016/j.omtn.2021.11.015_bib7) 2016; 42
Kawaguchi (10.1016/j.omtn.2021.11.015_bib1) 1994; 8
Chen (10.1016/j.omtn.2021.11.015_bib12) 2008; 28
Li (10.1016/j.omtn.2021.11.015_bib14) 2002; 277
McLoughlin (10.1016/j.omtn.2021.11.015_bib17) 2018; 84
Ou (10.1016/j.omtn.2021.11.015_bib34) 2016; 2016
Schuster (10.1016/j.omtn.2021.11.015_bib38) 2020; 13
Takahashi (10.1016/j.omtn.2021.11.015_bib6) 2001; 60
Miller (10.1016/j.omtn.2021.11.015_bib40) 2003; 100
References_xml – volume: 11
  start-page: 368
  year: 2018
  ident: bib16
  article-title: Mitochondrial morphology, function and homeostasis are impaired by expression of an N-terminal calpain cleavage fragment of ataxin-3
  publication-title: Front. Mol. Neurosci.
– volume: 7
  start-page: 200
  year: 2017
  end-page: 210
  ident: bib18
  article-title: Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models
  publication-title: Mol. Ther. Nucleic Acids
– volume: 68
  start-page: 523
  year: 2001
  end-page: 528
  ident: bib31
  article-title: Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study
  publication-title: Am. J. Hum. Genet.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib32
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 480
  start-page: 543
  year: 2011
  end-page: 546
  ident: bib36
  article-title: Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease
  publication-title: Nature
– volume: 19
  start-page: e13051
  year: 2020
  ident: bib11
  article-title: The Machado–Joseph disease deubiquitylase ataxin-3 interacts with LC3C/GABARAP and promotes autophagy
  publication-title: Aging Cell
– volume: 30
  start-page: 171
  year: 2018
  end-page: 174
  ident: bib33
  article-title: Generation of an induced pluripotent stem cell line from a patient with spinocerebellar ataxia type 3 (SCA3): HIHCNi002-A
  publication-title: Stem Cell Res.
– volume: 100
  start-page: 7195
  year: 2003
  end-page: 7200
  ident: bib40
  article-title: Allele-specific silencing of dominant disease genes
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 8
  start-page: 669
  year: 1998
  end-page: 679
  ident: bib5
  article-title: An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients
  publication-title: Brain Pathol.
– volume: 545
  start-page: 108
  year: 2017
  end-page: 111
  ident: bib10
  article-title: Polyglutamine tracts regulate beclin 1-dependent autophagy
  publication-title: Nature
– volume: 21
  start-page: 333
  year: 2006
  end-page: 345
  ident: bib15
  article-title: Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL
  publication-title: Neurobiol. Dis.
– volume: 8
  start-page: 673
  year: 1999
  end-page: 682
  ident: bib3
  article-title: Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro
  publication-title: Hum. Mol. Genet.
– volume: 8
  start-page: 221
  year: 1994
  end-page: 228
  ident: bib1
  article-title: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1
  publication-title: Nat. Genet.
– volume: 8
  start-page: 232
  year: 2017
  end-page: 242
  ident: bib19
  article-title: Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice
  publication-title: Mol. Ther. Nucleic Acids
– volume: 7
  start-page: 147
  year: 1999
  end-page: 156
  ident: bib30
  article-title: Study of three intragenic polymorphisms in the Machado-Joseph disease gene (MJD1) in relation to genetic instability of the (CAG) n tract
  publication-title: Eur. J. Hum. Genet.
– volume: 277
  start-page: 45004
  year: 2002
  end-page: 45012
  ident: bib14
  article-title: Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities
  publication-title: J. Biol. Chem.
– volume: 120
  start-page: 449
  year: 2010
  end-page: 460
  ident: bib4
  article-title: Axonal inclusions in spinocerebellar ataxia type 3
  publication-title: Acta Neuropathol.
– volume: 39
  start-page: 101504
  year: 2019
  ident: bib21
  article-title: Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line
  publication-title: Stem Cell Res.
– volume: 17
  start-page: 601
  year: 2019
  end-page: 614
  ident: bib29
  article-title: Suppression of mutant protein expression in SCA3 and SCA1 mice using a CAG repeat-targeting antisense oligonucleotide
  publication-title: Mol. Ther. Nucleic Acids
– volume: 21
  start-page: 1909
  year: 2013
  end-page: 1918
  ident: bib26
  article-title: Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice
  publication-title: Mol. Ther.
– volume: 31
  start-page: 89
  year: 2008
  end-page: 101
  ident: bib13
  article-title: Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation
  publication-title: Neurobiol. Dis.
– volume: 3
  start-page: e3341
  year: 2008
  ident: bib22
  article-title: Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease
  publication-title: PLoS One
– volume: 2016
  start-page: 6701793
  year: 2016
  ident: bib34
  article-title: Autophagy promoted the degradation of mutant ATXN3 in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells
  publication-title: Biomed. Res. Int.
– volume: 8
  start-page: 409
  year: 2011
  end-page: 412
  ident: bib41
  article-title: A more efficient method to generate integration-free human iPS cells
  publication-title: Nat. Methods
– volume: 42
  start-page: 153
  year: 2016
  end-page: 166
  ident: bib7
  article-title: Polyglutamine aggregation in H untington's disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 84
  start-page: 64
  year: 2018
  end-page: 77
  ident: bib17
  article-title: Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice
  publication-title: Ann. Neurol.
– volume: 8
  start-page: 544043
  year: 2020
  ident: bib39
  article-title: Comparative transcriptional profiling of motor neuron disorder-associated genes in various human cell culture models
  publication-title: Front. Cell Dev. Biol.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib35
  article-title: Modeling spinocerebellar ataxias 2 and 3 with iPSCs reveals a role for glutamate in disease pathology
  publication-title: Sci. Rep.
– volume: 13
  start-page: dmm045096
  year: 2020
  ident: bib38
  article-title: CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons
  publication-title: Dis. Model. Mech.
– volume: 30
  start-page: 841
  year: 2019
  end-page: 854
  ident: bib20
  article-title: RNA interference therapy for Machado–Joseph disease: long-term safety profile of lentiviral vectors encoding short hairpin RNAs targeting mutant ataxin-3
  publication-title: Hum. Gene Ther.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib42
  article-title: Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons
  publication-title: Sci. Rep.
– volume: 8
  start-page: e52396
  year: 2013
  ident: bib24
  article-title: Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice
  publication-title: PLoS One
– volume: 60
  start-page: 369
  year: 2001
  end-page: 376
  ident: bib6
  article-title: Recruitment of nonexpanded polyglutamine proteins to intranuclear aggregates in neuronal intranuclear hyaline inclusion disease
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 23
  start-page: 659
  year: 2004
  end-page: 669
  ident: bib8
  article-title: Molecular clearance of ataxin-3 is regulated by a mammalian E4
  publication-title: EMBO J.
– volume: 148
  start-page: 8
  year: 2019
  end-page: 28
  ident: bib2
  article-title: Machado–Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy
  publication-title: J. Neurochem.
– volume: 56
  start-page: 124
  year: 2004
  end-page: 129
  ident: bib23
  article-title: Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA
  publication-title: Ann. Neurol.
– volume: 17
  start-page: 306
  year: 2016
  end-page: 317
  ident: bib37
  article-title: Induced pluripotent stem cell-derived neurons for the study of spinocerebellar ataxia type 3
  publication-title: Stem Cell Res.
– volume: 28
  start-page: 12713
  year: 2008
  end-page: 12724
  ident: bib12
  article-title: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3
  publication-title: J. Neurosci.
– volume: 25
  start-page: 1038
  year: 2017
  end-page: 1055
  ident: bib27
  article-title: Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease
  publication-title: Mol. Ther.
– volume: 82
  start-page: 124
  year: 2016
  end-page: 137
  ident: bib25
  article-title: Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype
  publication-title: Biomaterials
– volume: 20
  start-page: 141
  year: 2011
  end-page: 154
  ident: bib9
  article-title: The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability
  publication-title: Hum. Mol. Genet.
– volume: 58
  start-page: 49
  year: 2013
  end-page: 56
  ident: bib28
  article-title: Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon
  publication-title: Neurobiol. Dis.
– volume: 8
  start-page: e52396
  year: 2013
  ident: 10.1016/j.omtn.2021.11.015_bib24
  article-title: Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052396
– volume: 31
  start-page: 89
  year: 2008
  ident: 10.1016/j.omtn.2021.11.015_bib13
  article-title: Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.03.011
– volume: 30
  start-page: 841
  year: 2019
  ident: 10.1016/j.omtn.2021.11.015_bib20
  article-title: RNA interference therapy for Machado–Joseph disease: long-term safety profile of lentiviral vectors encoding short hairpin RNAs targeting mutant ataxin-3
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2018.157
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.omtn.2021.11.015_bib32
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 23
  start-page: 659
  year: 2004
  ident: 10.1016/j.omtn.2021.11.015_bib8
  article-title: Molecular clearance of ataxin-3 is regulated by a mammalian E4
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600081
– volume: 19
  start-page: e13051
  year: 2020
  ident: 10.1016/j.omtn.2021.11.015_bib11
  article-title: The Machado–Joseph disease deubiquitylase ataxin-3 interacts with LC3C/GABARAP and promotes autophagy
  publication-title: Aging Cell
  doi: 10.1111/acel.13051
– volume: 8
  start-page: 669
  year: 1998
  ident: 10.1016/j.omtn.2021.11.015_bib5
  article-title: An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients
  publication-title: Brain Pathol.
  doi: 10.1111/j.1750-3639.1998.tb00193.x
– volume: 25
  start-page: 1038
  year: 2017
  ident: 10.1016/j.omtn.2021.11.015_bib27
  article-title: Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.01.021
– volume: 480
  start-page: 543
  year: 2011
  ident: 10.1016/j.omtn.2021.11.015_bib36
  article-title: Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease
  publication-title: Nature
  doi: 10.1038/nature10671
– volume: 17
  start-page: 306
  year: 2016
  ident: 10.1016/j.omtn.2021.11.015_bib37
  article-title: Induced pluripotent stem cell-derived neurons for the study of spinocerebellar ataxia type 3
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2016.07.004
– volume: 42
  start-page: 153
  year: 2016
  ident: 10.1016/j.omtn.2021.11.015_bib7
  article-title: Polyglutamine aggregation in H untington's disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/nan.12253
– volume: 20
  start-page: 141
  year: 2011
  ident: 10.1016/j.omtn.2021.11.015_bib9
  article-title: The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq452
– volume: 58
  start-page: 49
  year: 2013
  ident: 10.1016/j.omtn.2021.11.015_bib28
  article-title: Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2013.04.019
– volume: 28
  start-page: 12713
  year: 2008
  ident: 10.1016/j.omtn.2021.11.015_bib12
  article-title: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3909-08.2008
– volume: 277
  start-page: 45004
  year: 2002
  ident: 10.1016/j.omtn.2021.11.015_bib14
  article-title: Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205259200
– volume: 8
  start-page: 673
  year: 1999
  ident: 10.1016/j.omtn.2021.11.015_bib3
  article-title: Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.4.673
– volume: 100
  start-page: 7195
  year: 2003
  ident: 10.1016/j.omtn.2021.11.015_bib40
  article-title: Allele-specific silencing of dominant disease genes
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1231012100
– volume: 2016
  start-page: 6701793
  year: 2016
  ident: 10.1016/j.omtn.2021.11.015_bib34
  article-title: Autophagy promoted the degradation of mutant ATXN3 in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/6701793
– volume: 68
  start-page: 523
  year: 2001
  ident: 10.1016/j.omtn.2021.11.015_bib31
  article-title: Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/318184
– volume: 82
  start-page: 124
  year: 2016
  ident: 10.1016/j.omtn.2021.11.015_bib25
  article-title: Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.12.021
– volume: 8
  start-page: 409
  year: 2011
  ident: 10.1016/j.omtn.2021.11.015_bib41
  article-title: A more efficient method to generate integration-free human iPS cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1591
– volume: 545
  start-page: 108
  year: 2017
  ident: 10.1016/j.omtn.2021.11.015_bib10
  article-title: Polyglutamine tracts regulate beclin 1-dependent autophagy
  publication-title: Nature
  doi: 10.1038/nature22078
– volume: 30
  start-page: 171
  year: 2018
  ident: 10.1016/j.omtn.2021.11.015_bib33
  article-title: Generation of an induced pluripotent stem cell line from a patient with spinocerebellar ataxia type 3 (SCA3): HIHCNi002-A
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2018.06.006
– volume: 21
  start-page: 333
  year: 2006
  ident: 10.1016/j.omtn.2021.11.015_bib15
  article-title: Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2005.07.011
– volume: 8
  start-page: 232
  year: 2017
  ident: 10.1016/j.omtn.2021.11.015_bib19
  article-title: Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2017.06.019
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.omtn.2021.11.015_bib35
  article-title: Modeling spinocerebellar ataxias 2 and 3 with iPSCs reveals a role for glutamate in disease pathology
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37774-2
– volume: 148
  start-page: 8
  year: 2019
  ident: 10.1016/j.omtn.2021.11.015_bib2
  article-title: Machado–Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.14541
– volume: 11
  start-page: 368
  year: 2018
  ident: 10.1016/j.omtn.2021.11.015_bib16
  article-title: Mitochondrial morphology, function and homeostasis are impaired by expression of an N-terminal calpain cleavage fragment of ataxin-3
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2018.00368
– volume: 60
  start-page: 369
  year: 2001
  ident: 10.1016/j.omtn.2021.11.015_bib6
  article-title: Recruitment of nonexpanded polyglutamine proteins to intranuclear aggregates in neuronal intranuclear hyaline inclusion disease
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/60.4.369
– volume: 120
  start-page: 449
  year: 2010
  ident: 10.1016/j.omtn.2021.11.015_bib4
  article-title: Axonal inclusions in spinocerebellar ataxia type 3
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-010-0717-7
– volume: 84
  start-page: 64
  year: 2018
  ident: 10.1016/j.omtn.2021.11.015_bib17
  article-title: Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25264
– volume: 17
  start-page: 601
  year: 2019
  ident: 10.1016/j.omtn.2021.11.015_bib29
  article-title: Suppression of mutant protein expression in SCA3 and SCA1 mice using a CAG repeat-targeting antisense oligonucleotide
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.07.004
– volume: 8
  start-page: 221
  year: 1994
  ident: 10.1016/j.omtn.2021.11.015_bib1
  article-title: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1
  publication-title: Nat. Genet.
  doi: 10.1038/ng1194-221
– volume: 7
  start-page: 200
  year: 2017
  ident: 10.1016/j.omtn.2021.11.015_bib18
  article-title: Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2017.04.005
– volume: 39
  start-page: 101504
  year: 2019
  ident: 10.1016/j.omtn.2021.11.015_bib21
  article-title: Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2019.101504
– volume: 7
  start-page: 147
  year: 1999
  ident: 10.1016/j.omtn.2021.11.015_bib30
  article-title: Study of three intragenic polymorphisms in the Machado-Joseph disease gene (MJD1) in relation to genetic instability of the (CAG) n tract
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/sj.ejhg.5200264
– volume: 56
  start-page: 124
  year: 2004
  ident: 10.1016/j.omtn.2021.11.015_bib23
  article-title: Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20141
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.omtn.2021.11.015_bib42
  article-title: Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45246-4
– volume: 13
  start-page: dmm045096
  year: 2020
  ident: 10.1016/j.omtn.2021.11.015_bib38
  article-title: CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.045096
– volume: 21
  start-page: 1909
  year: 2013
  ident: 10.1016/j.omtn.2021.11.015_bib26
  article-title: Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.152
– volume: 3
  start-page: e3341
  year: 2008
  ident: 10.1016/j.omtn.2021.11.015_bib22
  article-title: Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003341
– volume: 8
  start-page: 544043
  year: 2020
  ident: 10.1016/j.omtn.2021.11.015_bib39
  article-title: Comparative transcriptional profiling of motor neuron disorder-associated genes in various human cell culture models
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.544043
SSID ssj0000601262
Score 2.3545728
Snippet Spinocerebellar ataxia type 3 (SCA3) is caused by an expanded polyglutamine stretch in ataxin-3. While wild-type ataxin-3 has important functions, e.g., as a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms allele-specific targeting
antisense oligonucleotides
ASO
iPSC-derived neurons
Machado-Joseph disease
MJD
Original
SCA3
SNP
spinocerebellar ataxia type 3
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT15EXR_jixbEi7Smn-kcx8FlERRhXdhb0-nHGplJFicj7r-3KskMMwrrxWOSzqO7qlNfJV9_RcirrARPUgVWemOZSqFgNpSaIRRPIanKclw7_OmzOT1XHy_0xV6pL-SEjfLA48C9E76WZVa8RuUogLM-GlOGmABphJrnQb20qIq9ZGp8B8OLd6gmKrgRTICnTStmRnJXt-pR_FTwtyjhiTVx96LSIN5_EJz-Bp9_cij3gtLJXXJnQpN0PvbiHrmV2vvkeN5CJr26pq_pwO8cPpwfk8v5cgkxhuHaSuQH0ZEEDqGLdpmuNlhOmPre_2paJml9TWG7WUOWm2i3bC67FpWPu76JaU2blp4t5pI1X84WLIIT_0yRDtKY7foBOT_58HVxyqYyCyxoW_bMxgpwjwXolLWX2etoCu-xPLhOQgJetCoGmVOMkErnrCMgniJHwIUpZV6W8iE5ars2PSZU1bXkOQQZq6QECs0oo8vMTcw-2VrPCN8OswuTBjmWwli6Ldnsu0PTODQNJCcOTDMjb3bnXI0KHDe2fo_W27VE9exhB_iUm3zK_cunZkRvbe8mIDICDLhUc-PNX24dxcEsxV8vvk3dZu0gT5WiUpDszcij0XF2jyhVJa0pqhkpD1zqoA-HR9rm26AEbo0CuGef_I9OPyW3BS7tQH6dfUaO-h-b9BwAV1-_GObWb1J7KCk
  priority: 102
  providerName: Directory of Open Access Journals
Title Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons
URI https://dx.doi.org/10.1016/j.omtn.2021.11.015
https://www.ncbi.nlm.nih.gov/pubmed/34938609
https://www.proquest.com/docview/2613294642
https://pubmed.ncbi.nlm.nih.gov/PMC8649108
https://doaj.org/article/2ab37f41b1964049ad667cde540cb1f5
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5V5cIFAeURKNEiIS5oq9i7Xq8PCIWIqoBASCVSb9Z6H8HIsWnsoObfM-NHwFBV4ui3vTPr-T575htCXngRBo4Lw2ItFRPOzJgyccQQijvjRKICrB3-9FmeLcWHi-jigAztjvoBrK-ldthParkpTq4ud29gwr_-natVrRvUMg2DE1TkxJrzW-3_Ikzl6-F-92aG13HbYzQMZMhC8L--jub604xiVSvpPwpZ_0LSvzMr_whVp3fJnR5j0nnnFPfIgSvvk6N5Cfx6vaMvaZv12X5OPyKreVFA5GFYcYlZQ7RLDYeARitP11tsMkx1o6_yknGa7Sgs5zVwX0erIl9VJeohV01uXU3zkp4v5pzlX84XzIJr_3SWtoKZZf2ALE_ffV2csb75AjORihumbAJoSAGg8pHmXkdWzrTGpuGRCzmgSCWs4d5ZCwTb-8gCDpp5C2jROR_EMX9IDsuqdI8JFVnGA28Mt4kTIcrPCBnFPpDWa6eyaEKCYZhT0yuTY4OMIh1S0L6naJoUTQOUJQXTTMir_TE_Ol2OG_d-i9bb74ma2u2KarNK-ymahjrjsRdBhhplQJy0lTI21gGmNRmMwoREg-3THp50sANOld948eeDo6Qwd_GHjC5dta1TYK88TARQwAl51DnO_ha5SLiSs2RC4pFLjZ5hvKXMv7X64EoKAIHqyX8N0VNyO8TKDkyvU8fksNls3TPAW002Babx_uO0_VoxbSfULzu6Kkg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allele-specific+targeting+of+mutant+ataxin-3+by+antisense+oligonucleotides+in+SCA3-iPSC-derived+neurons&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Hauser%2C+Stefan&rft.au=Helm%2C+Jacob&rft.au=Kraft%2C+Melanie&rft.au=Korneck%2C+Milena&rft.date=2022-03-08&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=27&rft.spage=99&rft.epage=108&rft_id=info:doi/10.1016%2Fj.omtn.2021.11.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_omtn_2021_11_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon