Recent progress in consolidated bioprocessing
► Substantial progress has been made in the development of CBP. ► Production of ethanol at high yield and titer using ‘native strategy’. ► Production of CBHI and CBHII in yeast at levels sufficient for industrial process. ► Economic benefits of CBP result from more-effective biomass solubilization....
Saved in:
Published in | Current opinion in biotechnology Vol. 23; no. 3; pp. 396 - 405 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0958-1669 1879-0429 1879-0429 |
DOI | 10.1016/j.copbio.2011.11.026 |
Cover
Abstract | ► Substantial progress has been made in the development of CBP. ► Production of ethanol at high yield and titer using ‘native strategy’. ► Production of CBHI and CBHII in yeast at levels sufficient for industrial process. ► Economic benefits of CBP result from more-effective biomass solubilization.
Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems. |
---|---|
AbstractList | Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems. Highlights ► Substantial progress has been made in the development of CBP. ► Production of ethanol at high yield and titer using ‘native strategy’. ► Production of CBHI and CBHII in yeast at levels sufficient for industrial process. ► Economic benefits of CBP result from more-effective biomass solubilization. ► Substantial progress has been made in the development of CBP. ► Production of ethanol at high yield and titer using ‘native strategy’. ► Production of CBHI and CBHII in yeast at levels sufficient for industrial process. ► Economic benefits of CBP result from more-effective biomass solubilization. Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems. Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems.Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems. |
Author | Joe Shaw, A Lynd, Lee R Olson, Daniel G McBride, John E |
Author_xml | – sequence: 1 givenname: Daniel G surname: Olson fullname: Olson, Daniel G organization: Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States – sequence: 2 givenname: John E surname: McBride fullname: McBride, John E organization: Mascoma Corporation, Lebanon, NH 03766, United States – sequence: 3 givenname: A surname: Joe Shaw fullname: Joe Shaw, A organization: Mascoma Corporation, Lebanon, NH 03766, United States – sequence: 4 givenname: Lee R surname: Lynd fullname: Lynd, Lee R email: Lee.R.Lynd@Dartmouth.EDU organization: Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22176748$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1152018$$D View this record in Osti.gov |
BookMark | eNqNkl1rFDEUhoNU7Lb6D0QXr3oza84kk2REBCl-QUGw9jpkMmfXrLPJmswK_fc9w1QvCrJCIBfnOV_ve87YSUwRGXsOfAUc1Ovtyqd9F9Kq5gArerxWj9gCjG4rLuv2hC1425gKlGpP2VkpW855IzR_wk7rGrTS0ixY9Q09xnG5z2mTsZRliEufYklD6N2I_ZI6UMxTKMTNU_Z47YaCz-7_c3bz8cP3y8_V1ddPXy7fX1W-MXqshEPAhmNntNReNdJ3co1egK6VVOA5d50gVOmuNRJc26PuO08DSdFrjeKcvZrrpjIGW3wY0f-gsSL60QI0tLIh6GKGaL5fByyj3YXicRhcxHQotqZ9udDGqKMocCENaG30f6BUtyEeCH1xjx66HfZ2n8PO5Vv7R10C5Az4nErJuP6LALeTiXZrZxPtZCJtZslESnvzII0EcGNIccwuDMeSX87Ja5es2-RQ7M01AYrEgFobQcS7mUBy8HfAPAmM0WMf8qRvn8KxFg8L-CHE4N3wE2-xbNMhR7oOC7bUltvr6QynKwTgXAs9TfD23wWO978DCWXpQA |
CitedBy_id | crossref_primary_10_1186_1754_6834_6_19 crossref_primary_10_1016_j_mib_2021_11_007 crossref_primary_10_1016_j_biortech_2021_126261 crossref_primary_10_1039_D0SC01812K crossref_primary_10_1186_1754_6834_5_49 crossref_primary_10_1016_j_biortech_2014_03_145 crossref_primary_10_1016_j_isci_2022_104640 crossref_primary_10_4161_bioe_27461 crossref_primary_10_1186_s13068_016_0505_2 crossref_primary_10_1186_s12918_015_0159_x crossref_primary_10_1016_j_fluid_2015_05_039 crossref_primary_10_1016_j_meteno_2015_03_002 crossref_primary_10_3390_en8010001 crossref_primary_10_1039_c3ee40932e crossref_primary_10_1016_j_ymben_2017_06_011 crossref_primary_10_1016_j_tibtech_2019_04_011 crossref_primary_10_1186_s13068_017_0934_6 crossref_primary_10_1016_j_coche_2016_09_003 crossref_primary_10_3390_en7020607 crossref_primary_10_1126_sciadv_1701475 crossref_primary_10_3389_fpls_2016_01854 crossref_primary_10_1111_1574_6976_12044 crossref_primary_10_1007_s12033_020_00288_2 crossref_primary_10_1007_s10295_016_1893_9 crossref_primary_10_3390_en17051048 crossref_primary_10_1007_s12155_013_9382_8 crossref_primary_10_1186_s12934_022_01977_0 crossref_primary_10_2516_ogst_2012098 crossref_primary_10_1016_j_rser_2018_06_036 crossref_primary_10_3390_pr9091583 crossref_primary_10_1007_s12155_015_9660_8 crossref_primary_10_1128_AEM_03555_13 crossref_primary_10_1186_s13036_015_0011_2 crossref_primary_10_1186_s13068_018_1245_2 crossref_primary_10_1016_j_copbio_2018_11_004 crossref_primary_10_1007_s00253_016_7899_4 crossref_primary_10_1111_1758_2229_12943 crossref_primary_10_1080_21655979_2019_1682213 crossref_primary_10_1186_s40643_017_0141_0 crossref_primary_10_1016_j_ijbiomac_2015_10_090 crossref_primary_10_3389_fmicb_2016_01648 crossref_primary_10_1186_s13568_018_0692_2 crossref_primary_10_1016_j_biotechadv_2019_107500 crossref_primary_10_1134_S0006297921140121 crossref_primary_10_1016_j_biortech_2015_03_105 crossref_primary_10_3389_fbioe_2020_00772 crossref_primary_10_1007_s10295_018_2073_x crossref_primary_10_1186_s13068_018_1232_7 crossref_primary_10_1007_s41742_024_00681_8 crossref_primary_10_1016_j_biotechadv_2016_10_001 crossref_primary_10_1016_j_copbio_2014_10_003 crossref_primary_10_1128_mbio_01476_22 crossref_primary_10_1016_j_jbiosc_2017_04_013 crossref_primary_10_1016_j_ymben_2022_01_005 crossref_primary_10_1002_bbb_1414 crossref_primary_10_1021_sc500210w crossref_primary_10_15433_ksmb_2014_6_1_008 crossref_primary_10_1016_j_procbio_2019_11_009 crossref_primary_10_3389_fenrg_2022_741570 crossref_primary_10_1080_09168451_2017_1364619 crossref_primary_10_1002_bit_27789 crossref_primary_10_1016_j_biortech_2014_03_110 crossref_primary_10_1128_AEM_01684_14 crossref_primary_10_1021_acssynbio_2c00597 crossref_primary_10_3390_ijms20133354 crossref_primary_10_1016_j_mimet_2016_09_013 crossref_primary_10_1002_biot_202100064 crossref_primary_10_1016_j_biortech_2018_02_039 crossref_primary_10_1007_s12010_020_03433_4 crossref_primary_10_3390_catal8030094 crossref_primary_10_3390_ijms16023116 crossref_primary_10_1007_s00253_019_10146_0 crossref_primary_10_1016_j_ijbiomac_2016_08_056 crossref_primary_10_1016_j_chemosphere_2019_05_142 crossref_primary_10_1016_j_biortech_2017_07_108 crossref_primary_10_1016_j_jclepro_2018_09_118 crossref_primary_10_1186_1754_6834_6_117 crossref_primary_10_1007_s00253_016_7735_x crossref_primary_10_1016_j_jenvman_2021_114333 crossref_primary_10_1186_s13068_017_0796_y crossref_primary_10_1016_j_chemosphere_2020_129390 crossref_primary_10_1016_j_bej_2022_108682 crossref_primary_10_1186_s13068_017_0750_z crossref_primary_10_3389_fmicb_2021_757741 crossref_primary_10_1007_s00253_018_9514_3 crossref_primary_10_1002_prot_26326 crossref_primary_10_1007_s12257_018_0011_4 crossref_primary_10_1007_s10295_020_02299_z crossref_primary_10_1016_j_biortech_2014_03_137 crossref_primary_10_1016_j_biortech_2016_10_075 crossref_primary_10_1016_j_ijhydene_2019_03_066 crossref_primary_10_1371_journal_pone_0144870 crossref_primary_10_3390_fermentation6010008 crossref_primary_10_1016_j_renene_2022_02_093 crossref_primary_10_1016_j_jbiosc_2016_03_009 crossref_primary_10_3389_fmicb_2021_628308 crossref_primary_10_1002_bit_26400 crossref_primary_10_1088_1755_1315_1449_1_012069 crossref_primary_10_1186_s13068_021_01995_x crossref_primary_10_1016_j_biotechadv_2025_108531 crossref_primary_10_1016_j_biotechadv_2013_03_009 crossref_primary_10_1016_j_rser_2019_109472 crossref_primary_10_1186_s13068_014_0186_7 crossref_primary_10_1049_enb2_12020 crossref_primary_10_1016_j_biombioe_2015_07_009 crossref_primary_10_1073_pnas_1605482113 crossref_primary_10_5458_bag_8_2_94 crossref_primary_10_1016_j_bcab_2014_04_003 crossref_primary_10_1007_s00253_015_7141_9 crossref_primary_10_1128_genomeA_01315_16 crossref_primary_10_1016_j_biortech_2013_11_024 crossref_primary_10_1128_aem_01857_21 crossref_primary_10_1016_j_ymben_2015_12_004 crossref_primary_10_1016_j_ssci_2017_12_004 crossref_primary_10_4161_bioe_29595 crossref_primary_10_1016_j_bej_2021_108032 crossref_primary_10_1016_j_biortech_2020_124072 crossref_primary_10_1021_acssuschemeng_5b01600 crossref_primary_10_1074_jbc_RA117_000639 crossref_primary_10_1186_s13068_017_0819_8 crossref_primary_10_1002_bit_26782 crossref_primary_10_1016_j_biortech_2018_04_013 crossref_primary_10_1039_D1RA09396G crossref_primary_10_3390_microorganisms9030593 crossref_primary_10_1016_j_procbio_2012_11_015 crossref_primary_10_3390_microorganisms8030385 crossref_primary_10_1038_s41522_020_00170_8 crossref_primary_10_1186_s13068_014_0165_z crossref_primary_10_1186_s40694_019_0083_8 crossref_primary_10_1002_btpr_2180 crossref_primary_10_1016_j_bej_2015_08_015 crossref_primary_10_1016_j_biortech_2016_07_117 crossref_primary_10_1128_AEM_03017_20 crossref_primary_10_1016_j_biortech_2018_04_120 crossref_primary_10_1016_j_biteb_2021_100842 crossref_primary_10_1016_j_ymben_2018_09_006 crossref_primary_10_1080_10643389_2021_1880259 crossref_primary_10_1007_s12155_014_9575_9 crossref_primary_10_1016_j_biombioe_2020_105673 crossref_primary_10_1016_j_biortech_2022_127919 crossref_primary_10_1016_j_copbio_2015_02_006 crossref_primary_10_1016_j_copbio_2017_12_024 crossref_primary_10_1186_s13068_019_1524_6 crossref_primary_10_1016_j_biortech_2015_07_051 crossref_primary_10_1186_s13068_017_0896_8 crossref_primary_10_1007_s11274_020_02885_4 crossref_primary_10_1371_journal_pone_0070631 crossref_primary_10_1186_s12934_016_0567_7 crossref_primary_10_1186_s13068_017_0940_8 crossref_primary_10_1016_j_biortech_2024_130973 crossref_primary_10_3390_pr8101310 crossref_primary_10_1002_slct_201701572 crossref_primary_10_1002_bit_27705 crossref_primary_10_1186_s12934_015_0232_6 crossref_primary_10_1186_s13068_016_0588_9 crossref_primary_10_1002_bbb_1387 crossref_primary_10_1016_j_chemosphere_2019_125080 crossref_primary_10_1038_srep43355 crossref_primary_10_1186_s13068_017_0975_x crossref_primary_10_1007_s12155_012_9278_z crossref_primary_10_1007_s00792_018_1023_x crossref_primary_10_1016_j_biotechadv_2020_107658 crossref_primary_10_1021_acssuschemeng_0c07805 crossref_primary_10_1186_s40643_021_00447_6 crossref_primary_10_1002_bit_26507 crossref_primary_10_1016_j_biotechadv_2020_107535 crossref_primary_10_1515_revce_2018_0014 crossref_primary_10_1016_j_procbio_2015_09_005 crossref_primary_10_1186_s13068_018_1248_z crossref_primary_10_4236_jsbs_2016_63008 crossref_primary_10_1002_jctb_5700 crossref_primary_10_1016_j_indcrop_2023_117117 crossref_primary_10_1007_s00248_014_0500_8 crossref_primary_10_1186_s13068_018_1301_y crossref_primary_10_1016_j_jbiotec_2015_10_022 crossref_primary_10_1021_ie504071f crossref_primary_10_1039_D1EE02540F crossref_primary_10_1186_s13068_020_01856_z crossref_primary_10_1002_bit_26515 crossref_primary_10_1016_j_meteno_2016_04_001 crossref_primary_10_1186_s13068_014_0178_7 crossref_primary_10_1016_j_biortech_2021_126606 crossref_primary_10_14720_aas_2020_116_1_1331 crossref_primary_10_1002_bit_26509 crossref_primary_10_1007_s00253_018_9062_x crossref_primary_10_3390_en13143648 crossref_primary_10_1007_s13399_020_01186_y crossref_primary_10_1007_s00253_014_5897_y crossref_primary_10_1093_pnasnexus_pgae053 crossref_primary_10_1186_s13068_016_0641_8 crossref_primary_10_3390_pr7040230 crossref_primary_10_1016_j_cej_2022_139783 crossref_primary_10_1007_s10295_018_2049_x crossref_primary_10_1016_j_rser_2018_11_031 crossref_primary_10_1016_j_cej_2022_138690 crossref_primary_10_1093_femsyr_fox044 crossref_primary_10_1002_bbb_2142 crossref_primary_10_1016_j_ymben_2020_02_004 crossref_primary_10_1007_s11157_016_9393_y crossref_primary_10_3390_ijms232315254 crossref_primary_10_1016_j_ymben_2021_12_012 crossref_primary_10_1016_j_biortech_2013_05_033 crossref_primary_10_1007_s11814_016_0019_4 crossref_primary_10_1080_07388551_2019_1619157 crossref_primary_10_1093_femsle_fny126 crossref_primary_10_1007_s10295_013_1245_y crossref_primary_10_1186_s13068_017_0961_3 crossref_primary_10_1016_j_ymben_2019_06_006 crossref_primary_10_1007_s00253_015_7124_x crossref_primary_10_1021_acssynbio_9b00331 crossref_primary_10_1186_s13068_019_1495_7 crossref_primary_10_1186_s13068_022_02137_7 crossref_primary_10_1016_j_jbiotec_2018_01_007 crossref_primary_10_1016_j_apenergy_2012_05_062 crossref_primary_10_1016_j_biortech_2022_128275 crossref_primary_10_1186_s12934_018_0971_2 crossref_primary_10_1007_s00449_020_02490_7 crossref_primary_10_1186_s12934_015_0406_2 crossref_primary_10_1016_j_ijhydene_2015_05_121 crossref_primary_10_3390_fermentation9070605 crossref_primary_10_3390_microorganisms10030502 crossref_primary_10_1016_j_ymben_2018_04_008 crossref_primary_10_1016_j_anaerobe_2015_05_007 crossref_primary_10_1186_s12934_017_0783_9 crossref_primary_10_1016_j_renene_2013_07_025 crossref_primary_10_3390_agronomy10111834 crossref_primary_10_1007_s11244_024_01941_9 crossref_primary_10_1016_j_pep_2014_03_008 crossref_primary_10_1007_s00253_020_10567_2 crossref_primary_10_1073_pnas_1218447110 crossref_primary_10_3389_fchem_2022_1035825 crossref_primary_10_1088_1757_899X_736_2_022005 crossref_primary_10_1016_j_fuel_2022_124975 crossref_primary_10_1111_1751_7915_12408 crossref_primary_10_1016_j_ces_2014_09_004 crossref_primary_10_1186_s13068_017_0960_4 crossref_primary_10_3389_fmicb_2024_1349016 crossref_primary_10_1016_j_matpr_2020_04_045 crossref_primary_10_1016_j_ijhydene_2017_09_040 crossref_primary_10_1080_13102818_2016_1236671 crossref_primary_10_1039_D0GC02546A crossref_primary_10_1016_j_ejbt_2017_03_009 crossref_primary_10_1186_s13068_017_0756_6 crossref_primary_10_1111_jam_12905 crossref_primary_10_1016_j_biortech_2017_05_146 crossref_primary_10_1073_pnas_1402210111 crossref_primary_10_1016_j_jece_2021_105798 crossref_primary_10_1002_jctb_4544 crossref_primary_10_1007_s12010_016_2383_2 crossref_primary_10_1016_j_biortech_2022_127153 crossref_primary_10_1002_biot_201700509 crossref_primary_10_1186_s13068_020_01680_5 crossref_primary_10_1186_1472_6750_13_95 crossref_primary_10_1016_j_bej_2015_10_017 crossref_primary_10_1186_s13068_021_02042_5 crossref_primary_10_1093_femsle_fnw020 crossref_primary_10_1016_j_indcrop_2021_114349 crossref_primary_10_3390_membranes12030258 crossref_primary_10_3390_life3010052 crossref_primary_10_3390_microorganisms10122514 crossref_primary_10_1021_acssynbio_1c00138 crossref_primary_10_1021_acssuschemeng_6b01877 crossref_primary_10_1038_srep04776 crossref_primary_10_1016_j_biotechadv_2015_06_002 crossref_primary_10_1016_j_ymben_2021_03_011 crossref_primary_10_1016_j_ymben_2013_10_012 crossref_primary_10_1016_j_enzmictec_2016_01_003 crossref_primary_10_1074_jbc_RA118_007120 crossref_primary_10_1007_s12104_021_10025_8 crossref_primary_10_1186_s13068_015_0346_4 crossref_primary_10_1186_s13068_014_0135_5 crossref_primary_10_5936_csbj_201210007 crossref_primary_10_1016_j_mset_2020_12_004 crossref_primary_10_1021_sb5002517 crossref_primary_10_3390_catal11060680 crossref_primary_10_25269_jsel_v7i02_215 crossref_primary_10_1016_j_coche_2014_09_003 crossref_primary_10_3109_07388551_2013_841638 crossref_primary_10_1007_s11274_014_1726_9 crossref_primary_10_1007_s00253_013_5398_4 crossref_primary_10_1186_1754_6834_7_82 crossref_primary_10_1088_1757_899X_1051_1_012100 crossref_primary_10_3390_fermentation9020137 crossref_primary_10_1007_s00253_019_09916_7 crossref_primary_10_1007_s12155_015_9626_x crossref_primary_10_1016_j_enconman_2017_06_073 crossref_primary_10_1016_j_renene_2018_02_124 crossref_primary_10_3389_fmicb_2017_00635 crossref_primary_10_1186_s13068_015_0214_2 crossref_primary_10_1016_j_ymben_2019_05_007 crossref_primary_10_1186_s13068_021_02078_7 crossref_primary_10_1002_bit_25940 crossref_primary_10_1038_s41598_018_37979_5 crossref_primary_10_1111_1751_7915_12733 crossref_primary_10_1039_C9GC02634G crossref_primary_10_1002_wene_49 crossref_primary_10_1186_s13068_020_01749_1 crossref_primary_10_1021_cr300361t crossref_primary_10_1073_pnas_1601926113 crossref_primary_10_1007_s12155_015_9659_1 crossref_primary_10_1021_sb500364q crossref_primary_10_1016_j_enzmictec_2019_109382 crossref_primary_10_1016_j_biortech_2014_01_140 crossref_primary_10_3390_s17112587 crossref_primary_10_1007_s00253_021_11383_y crossref_primary_10_1186_s13068_016_0536_8 crossref_primary_10_1111_1751_7915_13478 crossref_primary_10_1080_10643389_2015_1053727 crossref_primary_10_1186_s13068_018_1178_9 crossref_primary_10_1073_pnas_1222607110 crossref_primary_10_1039_C9GC00262F crossref_primary_10_1021_acssynbio_9b00061 crossref_primary_10_3389_fmicb_2018_03276 crossref_primary_10_1007_s00253_016_7545_1 crossref_primary_10_1007_s00253_013_5504_7 crossref_primary_10_1007_s11274_020_02979_z crossref_primary_10_1186_s13068_020_01872_z crossref_primary_10_3390_jof7060430 crossref_primary_10_1007_s10295_019_02211_4 crossref_primary_10_1016_j_enzmictec_2012_12_010 crossref_primary_10_1186_s13068_016_0526_x crossref_primary_10_1186_1754_6834_7_75 crossref_primary_10_3389_fbioe_2023_1272429 crossref_primary_10_1007_s10295_013_1275_5 crossref_primary_10_1371_journal_pone_0059362 crossref_primary_10_1002_biot_201700040 crossref_primary_10_3389_fmicb_2018_03264 crossref_primary_10_1007_s12155_017_9882_z crossref_primary_10_1016_j_copbio_2013_03_023 crossref_primary_10_3389_fbioe_2022_780409 crossref_primary_10_1016_j_ymben_2016_10_002 crossref_primary_10_1128_JB_02450_14 crossref_primary_10_1016_j_heliyon_2024_e28615 crossref_primary_10_3389_fmicb_2017_02060 crossref_primary_10_1016_j_mec_2019_e00116 crossref_primary_10_1016_j_mec_2020_e00122 crossref_primary_10_1016_j_cbpa_2013_03_037 crossref_primary_10_1016_j_ymben_2023_06_009 crossref_primary_10_1016_j_biortech_2015_10_009 crossref_primary_10_1002_cite_201200190 crossref_primary_10_1186_s13068_015_0218_y crossref_primary_10_1002_bbb_1913 crossref_primary_10_1016_j_ymben_2016_10_013 crossref_primary_10_1016_j_copbio_2022_102840 crossref_primary_10_1007_s12010_018_2873_5 crossref_primary_10_1007_s12155_013_9337_0 crossref_primary_10_1038_s41586_024_07506_w crossref_primary_10_1016_j_coche_2016_07_005 crossref_primary_10_1007_s00253_016_7448_1 crossref_primary_10_1016_j_greenca_2024_01_003 crossref_primary_10_1016_j_cbpa_2016_08_024 crossref_primary_10_1016_j_ymben_2016_10_018 crossref_primary_10_1186_s13068_017_0991_x crossref_primary_10_1186_s13068_017_0937_3 crossref_primary_10_1039_c3ee41753k crossref_primary_10_1186_1754_6834_6_59 crossref_primary_10_1016_j_biortech_2019_121316 crossref_primary_10_1016_j_ymben_2014_07_007 crossref_primary_10_1007_s00253_014_6106_8 crossref_primary_10_1007_s00203_024_04172_4 crossref_primary_10_1186_s12934_022_01999_8 crossref_primary_10_1371_journal_pone_0170524 crossref_primary_10_3389_fenrg_2020_00072 crossref_primary_10_1186_s13068_017_0790_4 crossref_primary_10_1186_s13068_017_0738_8 crossref_primary_10_1007_s42452_019_0409_4 crossref_primary_10_1007_s00253_016_7358_2 crossref_primary_10_1002_biot_201400716 crossref_primary_10_1016_j_ymben_2015_09_001 crossref_primary_10_1039_c3mb70333a crossref_primary_10_19053_01217488_v13_n2_2022_14088 crossref_primary_10_1016_j_biotechadv_2019_06_002 crossref_primary_10_1128_mSystems_00736_19 crossref_primary_10_1016_j_procbio_2017_07_009 crossref_primary_10_1111_jam_12494 crossref_primary_10_1002_bbb_1824 crossref_primary_10_1128_JB_00347_15 crossref_primary_10_1016_j_biombioe_2013_08_027 crossref_primary_10_1128_AEM_02070_14 crossref_primary_10_1016_j_mec_2018_e00073 crossref_primary_10_1128_AEM_02433_12 crossref_primary_10_1186_1754_6834_6_32 crossref_primary_10_1016_j_biochi_2013_05_018 crossref_primary_10_1016_j_ijbiomac_2018_04_159 crossref_primary_10_1038_s41929_021_00648_4 crossref_primary_10_1186_s13068_018_1296_4 crossref_primary_10_1016_j_funbio_2021_02_005 crossref_primary_10_1186_s13068_016_0494_1 crossref_primary_10_1002_biot_201400860 crossref_primary_10_1088_1748_9326_8_2_025013 crossref_primary_10_1007_s12257_022_0301_8 crossref_primary_10_1016_j_biortech_2024_131164 crossref_primary_10_1016_j_procbio_2018_09_005 crossref_primary_10_1128_AEM_03526_15 crossref_primary_10_1016_j_apenergy_2013_04_085 crossref_primary_10_3390_pr10020210 crossref_primary_10_1016_j_biortech_2016_04_019 crossref_primary_10_1002_jctb_4068 crossref_primary_10_1007_s00253_017_8091_1 crossref_primary_10_1021_acssuschemeng_7b01203 crossref_primary_10_1002_btpr_1850 crossref_primary_10_1186_s13068_016_0528_8 crossref_primary_10_3390_en5125372 crossref_primary_10_1016_j_biotechadv_2014_07_005 crossref_primary_10_3389_fbioe_2020_00483 crossref_primary_10_1016_j_micres_2019_01_003 crossref_primary_10_1093_femsyr_foz018 crossref_primary_10_1128_genomeA_00323_13 crossref_primary_10_1139_cjm_2016_0040 crossref_primary_10_1128_AEM_02560_18 crossref_primary_10_1016_j_biortech_2015_02_117 crossref_primary_10_1186_s13068_017_0780_6 |
Cites_doi | 10.1016/j.copbio.2009.05.006 10.1023/A:1023072311980 10.1128/AEM.00454-10 10.1007/s00253-009-2416-7 10.1073/pnas.1010456108 10.1186/1754-6834-1-18 10.1128/AEM.01777-10 10.1007/BF00582119 10.1038/nbt1208-1319 10.1134/S0003683808010079 10.1016/j.biombioe.2010.10.021 10.1016/j.enzmictec.2010.12.001 10.1007/BF02920584 10.1016/j.ymben.2011.04.003 10.1128/AEM.01731-10 10.1073/pnas.1012175107 10.1016/j.jbiotec.2011.06.025 10.1186/1754-6834-4-30 10.1128/AEM.01484-10 10.1002/prot.340140408 10.1128/AEM.01538-09 10.1128/AEM.02454-10 10.1007/BF02941755 10.1128/AEM.00236-09 10.1016/0168-1656(90)90075-M 10.1128/AEM.00908-10 10.1073/pnas.0901417106 10.1073/pnas.0801266105 10.1073/pnas.1102444108 10.1007/s00792-011-0391-2 10.1128/AEM.68.1.53-58.2002 10.1271/bbb.62.1615 10.1016/j.copbio.2005.08.009 10.1128/AEM.00402-10 10.1016/j.enzmictec.2010.12.014 10.1073/pnas.0700087104 10.1007/s00253-009-2101-x 10.1007/s10529-006-9184-6 10.1186/1754-6834-2-4 10.1128/MMBR.66.3.506-577.2002 10.1186/1471-2180-11-134 10.1016/j.ymben.2006.08.005 10.1016/j.enzmictec.2011.01.002 10.1111/j.1567-1364.2009.00564.x 10.1038/nature08721 10.1002/bit.20576 10.1074/jbc.M414449200 10.1016/0378-1119(88)90549-5 10.1007/s10295-008-0521-8 10.1128/JB.00256-09 10.1371/journal.pone.0005271 10.1111/j.1365-2958.2009.06890.x 10.1073/pnas.0408734102 10.1093/protein/gzq063 10.1128/MMBR.69.1.124-154.2005 10.1128/AEM.01687-09 10.1128/AEM.00646-11 10.1128/JB.00882-07 10.1002/bit.23059 10.1016/j.copbio.2003.08.005 10.1073/pnas.1003584107 10.1007/s00253-010-2703-3 10.1128/JB.01160-07 10.1073/pnas.0605381103 10.1016/j.ymben.2009.08.005 10.1016/j.enzmictec.2010.10.006 10.1007/s00253-006-0689-7 10.1016/j.fgb.2009.02.001 10.1016/j.enzmictec.2006.09.022 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd Elsevier Ltd Copyright © 2011 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2011 Elsevier Ltd. All rights reserved. |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC) |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TB 8FD FR3 7S9 L.6 OTOTI |
DOI | 10.1016/j.copbio.2011.11.026 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0429 |
EndPage | 405 |
ExternalDocumentID | 1152018 22176748 10_1016_j_copbio_2011_11_026 US201600012783 S0958166911007373 1_s2_0_S0958166911007373 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABEFU ABFRF ABGSF ABJNI ABMAC ABNUV ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TWZ VH1 WUQ Z5R ~02 ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABYKQ AJBFU DOVZS EFLBG XFK ABPIF ABPTK FBQ AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7TB 8FD FR3 7S9 L.6 AALMO AAPBV ABQIS OTOTI |
ID | FETCH-LOGICAL-c587t-3ae1e50eb8747c654cb4fec31726461c00ab3c5867b9841a9de7dbc74843d77e3 |
IEDL.DBID | AIKHN |
ISSN | 0958-1669 1879-0429 |
IngestDate | Fri May 19 01:42:36 EDT 2023 Thu Sep 04 19:59:17 EDT 2025 Fri Sep 05 09:46:46 EDT 2025 Fri Sep 05 00:03:33 EDT 2025 Thu Apr 03 06:58:15 EDT 2025 Tue Jul 01 00:50:54 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Wed Dec 27 19:27:00 EST 2023 Fri Feb 23 02:22:51 EST 2024 Sun Feb 23 10:19:06 EST 2025 Tue Aug 26 16:55:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-3ae1e50eb8747c654cb4fec31726461c00ab3c5867b9841a9de7dbc74843d77e3 |
Notes | http://dx.doi.org/10.1016/j.copbio.2011.11.026 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
PMID | 22176748 |
PQID | 1020050341 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1152018 proquest_miscellaneous_2000037886 proquest_miscellaneous_1034817787 proquest_miscellaneous_1020050341 pubmed_primary_22176748 crossref_primary_10_1016_j_copbio_2011_11_026 crossref_citationtrail_10_1016_j_copbio_2011_11_026 fao_agris_US201600012783 elsevier_sciencedirect_doi_10_1016_j_copbio_2011_11_026 elsevier_clinicalkeyesjournals_1_s2_0_S0958166911007373 elsevier_clinicalkey_doi_10_1016_j_copbio_2011_11_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | Current opinion in biotechnology |
PublicationTitleAlternate | Curr Opin Biotechnol |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Takada, Kawaguchi, Sumitani, Arai (bib0330) 1998; 62 Okamoto, Nitta, Maekawa, Yanase (bib0385) 2011; 48 Kataeva, Yang, Dam, Poole, Yin, Zhou, Chou, Xu, Goodwin, Sims (bib0080) 2009; 191 Matsushika, Inoue, Kodaki, Sawayama (bib0180) 2009; 84 Lynd, Weimer, van Zyl, Pretorius (bib0005) 2002; 66 Lynd, Elander, Wyman (bib0095) 1996; 57 Gold, Martin (bib0240) 2007; 189 in press. Sakamoto, Hasunuma, Hori, Yamada, Kondo (bib0190) 2012; 158 Tsai, Oh, Singh, Chen, Chen (bib0145) 2009; 75 Brown, Guss, Karpinets, Parks, Smolin, Yang, Land, Klingeman, Bhandiwad, Rodriguez (bib0100) 2011; 108 Hettenhaus (bib0270) 2000 Verduyn, Stouthamer, Scheffers, Vandijken (bib0355) 1991; 59 Zhang, Lynd (bib0205) 2005; 102 Reinikainen, Ruohonen, Nevanen, Laaksonen, Kraulis, Jones, Knowles, Teeri (bib0315) 1992; 14 Herpoel-Gimbert, Margeot, Dolla, Jan, Molle, Lignon, Mathis, Sigoillot, Monot, Asther (bib0120) 2008; 1 Den Haan, McBride, La Grange, Lynd, Van Zyl (bib0320) 2007; 40 Brown, Raman, McKeown, Kale, He, Mielenz (bib0365) 2007 Newcomb, Chen, Wu (bib0245) 2007; 104 Demain (bib0010) 2009; 36 2010. Tsai, Goyal, Chen (bib0155) 2010; 76 Xiros, Christakopoulos (bib0030) 2009; 2 Ilmen, den Haan, Brevnova, McBride, Wiswall, Froehlich, Koivula, Voutilainen, Siika-aho, la Grange (bib0340) 2011; 4 Shaw, Hogsett, Lynd (bib0055) 2010; 76 . McMillan (bib0300) 2004 Penttila, Andre, Lehtovaara, Bailey, Teeri, Knowles (bib0310) 1988; 63 Heinzelman, Snow, Wu, Nguyen, Villalobos, Govindarajan, Minshull, Arnold (bib0350) 2009; 106 Lu, Zhang, Lynd (bib0020) 2006; 103 Tripathi, Olson, Argyros, Miller, Barrett, Murphy, McCool, Warner, Rajgarhia, Lynd (bib0085) 2010; 76 McBride JE, Brevnova E, Ghandi C, Mellon M, Froehlich A, Deleault K, Rajgharia V, Flatt J, Van Zyl E, Den Haan R Fan, McBride, van Zyl, Lynd (bib0210) 2005; 92 Abdou, Boileau, de Philip, Pages, Fierobe, Tardif (bib0235) 2008; 190 Olson, Tripathi, Giannone, Lo, Caiazza, Hogsett, Hettich, Guss, Dubrovsky, Lynd (bib0250) 2010; 107 Tuli (bib0285) 2004 Zambare, Bhalla, Muthukumarappan, Sani, Christopher (bib0380) 2011; 15 Sheridan (bib0295) 2008; 26 Shaw, Covalla, Hogsett, Herring (bib0050) 2011; 77 Lee, Venditti, Jameel, Kenealy (bib0405) 2011; 35 Cripps, Eley, Leak, Rudd, Taylor, Todd, Boakes, Martin, Atkinson (bib0070) 2009; 11 Steen, Kang, Bokinsky, Hu, Schirmer, McClure, del Cardayre, Keasling (bib0200) 2010; 463 Zurbriggen, Bailey, Penttila, Poutanen, Linko (bib0345) 1990; 13 Yamada, Yamakawa, Tanaka, Ogino, Fukuda, Kondo (bib0165) 2011; 48 2011 Hong, Tamaki, Yamamoto, Kumagai (bib0325) 2003; 25 Den Haan, Rose, Lynd, van Zyl (bib0160) 2007; 9 Nataf, Bahari, Kahel-Raifer, Borovok, Lamed, Bayer, Sonenshein, Shoham (bib0230) 2010; 107 Jin, Balan, Gunawan, Dale (bib0375) 2011; 108 Cai, Lai, Li, Liang, Zhu, Liang, Wang (bib0395) 2011; 48 Gardner, Keating (bib0045) 2010; 76 Bryant (bib0305) 2011 Raman, Pan, Hurst, Rodriguez, McKeown, Lankford, Samatova, Mielenz (bib0220) 2009; 4 Raman, McKeown, Rodriguez, Brown, Mielenz (bib0215) 2011; 11 Ha, Galazka, Rin Kim, Choi, Yang, Seo, Louise Glass, Cate, Jin (bib0185) 2011; 108 Tolonen, Haas, Chilaka, Aach, Gygi, Church (bib0390) 2011; 6 Hyeon, Jeon, Whang, Han (bib0135) 2011; 48 Demain, Newcomb, Wu (bib0110) 2005; 69 Yang, Kataeva, Hamilton-Brehm, Engle, Tschaplinski, Doeppke, Davis, Westpheling, Adams (bib0075) 2009; 75 Guedon, Desvaux, Petitdemange (bib0370) 2002; 68 Shaw, Podkaminer, Desai, Bardsley, Rogers, Thorne, Hogsett, Lynd (bib0065) 2008; 105 Williams, Combs, Lynn, Strobel (bib0105) 2007; 74 Wen, Sun, Zhao (bib0150) 2009; 76 Hinman, Schell, Riley, Bergeron, Walter (bib0255) 1992; 34 Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, et al. Petiot (bib0290) 2008; 26 Berezina, Sineoky, Velikodvorskaya, Schwarz, Zverlov (bib0410) 2008; 44 Lynd, van Zyl, McBride, Laser (bib0015) 2005; 16 Nagendran, Hallen-Adams, Paper, Aslam, Walton (bib0125) 2009; 46 Heinzelman, Komor, Kanaan, Romero, Yu, Mohler, Snow, Arnold (bib0335) 2010; 23 Kuck, Hoff (bib0025) 2010; 86 Tolonen, Chilaka, Church (bib0040) 2009; 74 Nakamura, Whited (bib0115) 2003; 14 Shin, McClendon, Vo, Chen (bib0195) 2010; 76 Zhang, Sathitsuksanoh, Zhu, Zhang (bib0170) 2011; 13 Peng, Fu, Mao, Shao (bib0060) 2006; 28 Fierobe, Mingardon, Mechaly, Belaich, Rincon, Pages, Lamed, Tardif, Belaich, Bayer (bib0130) 2005; 280 Lilly, Fierobe, van Zyl, Volschenk (bib0140) 2009; 9 Tetarenko (bib0275) 2000 Hettenhaus, Glassner (bib0260) 1997 (bib0280) 2004 Wiselogel (bib0265) 1998 Yao, Mikkelsen (bib0400) 2010; 88 Xu, Singh, Himmel (bib0035) 2009; 20 Higashide, Li, Yang, Liao (bib0090) 2011; 77 Tsai (10.1016/j.copbio.2011.11.026_bib0145) 2009; 75 Hettenhaus (10.1016/j.copbio.2011.11.026_bib0270) 2000 Hinman (10.1016/j.copbio.2011.11.026_bib0255) 1992; 34 Zambare (10.1016/j.copbio.2011.11.026_bib0380) 2011; 15 Tsai (10.1016/j.copbio.2011.11.026_bib0155) 2010; 76 Lilly (10.1016/j.copbio.2011.11.026_bib0140) 2009; 9 Steen (10.1016/j.copbio.2011.11.026_bib0200_1) 2010; 463 Sheridan (10.1016/j.copbio.2011.11.026_bib0295) 2008; 26 Tolonen (10.1016/j.copbio.2011.11.026_bib0390) 2011; 6 Penttila (10.1016/j.copbio.2011.11.026_bib0310) 1988; 63 Gardner (10.1016/j.copbio.2011.11.026_bib0045) 2010; 76 Petiot (10.1016/j.copbio.2011.11.026_bib0290) 2008; 26 Peng (10.1016/j.copbio.2011.11.026_bib0060) 2006; 28 Shaw (10.1016/j.copbio.2011.11.026_bib0065_1) 2008; 105 Matsushika (10.1016/j.copbio.2011.11.026_bib0180) 2009; 84 Tuli (10.1016/j.copbio.2011.11.026_bib0285) 2004 Abdou (10.1016/j.copbio.2011.11.026_bib0235) 2008; 190 Newcomb (10.1016/j.copbio.2011.11.026_bib0245) 2007; 104 Ha (10.1016/j.copbio.2011.11.026_bib0185) 2011; 108 Jin (10.1016/j.copbio.2011.11.026_bib0375) 2011; 108 Verduyn (10.1016/j.copbio.2011.11.026_bib0355) 1991; 59 Okamoto (10.1016/j.copbio.2011.11.026_bib0385) 2011; 48 Bryant (10.1016/j.copbio.2011.11.026_bib0305) 2011 Guedon (10.1016/j.copbio.2011.11.026_bib0370) 2002; 68 Cai (10.1016/j.copbio.2011.11.026_bib0395) 2011; 48 10.1016/j.copbio.2011.11.026_bib0175 Brown (10.1016/j.copbio.2011.11.026_bib0100) 2011; 108 Berezina (10.1016/j.copbio.2011.11.026_bib0410) 2008; 44 Wiselogel (10.1016/j.copbio.2011.11.026_bib0265) 1998 Hyeon (10.1016/j.copbio.2011.11.026_bib0135) 2011; 48 Zhang (10.1016/j.copbio.2011.11.026_bib0205) 2005; 102 Tetarenko (10.1016/j.copbio.2011.11.026_bib0275) 2000 Heinzelman (10.1016/j.copbio.2011.11.026_bib0335) 2010; 23 Shaw (10.1016/j.copbio.2011.11.026_bib0050) 2011; 77 Zurbriggen (10.1016/j.copbio.2011.11.026_bib0345) 1990; 13 10.1016/j.copbio.2011.11.026_bib0360_1 McMillan (10.1016/j.copbio.2011.11.026_bib0300) 2004 Lee (10.1016/j.copbio.2011.11.026_bib0405) 2011; 35 Hettenhaus (10.1016/j.copbio.2011.11.026_bib0260) 1997 Lu (10.1016/j.copbio.2011.11.026_bib0020) 2006; 103 Raman (10.1016/j.copbio.2011.11.026_bib0215) 2011; 11 Heinzelman (10.1016/j.copbio.2011.11.026_bib0350) 2009; 106 Shaw (10.1016/j.copbio.2011.11.026_bib0055) 2010; 76 Nagendran (10.1016/j.copbio.2011.11.026_bib0125) 2009; 46 Lynd (10.1016/j.copbio.2011.11.026_bib0005) 2002; 66 Den Haan (10.1016/j.copbio.2011.11.026_bib0320) 2007; 40 Tripathi (10.1016/j.copbio.2011.11.026_bib0085) 2010; 76 Reinikainen (10.1016/j.copbio.2011.11.026_bib0315) 1992; 14 Demain (10.1016/j.copbio.2011.11.026_bib0110) 2005; 69 Herpoel-Gimbert (10.1016/j.copbio.2011.11.026_bib0120) 2008; 1 Hong (10.1016/j.copbio.2011.11.026_bib0325) 2003; 25 Yao (10.1016/j.copbio.2011.11.026_bib0400) 2010; 88 Demain (10.1016/j.copbio.2011.11.026_bib0010) 2009; 36 Higashide (10.1016/j.copbio.2011.11.026_bib0090) 2011; 77 Nakamura (10.1016/j.copbio.2011.11.026_bib0115) 2003; 14 Zhang (10.1016/j.copbio.2011.11.026_bib0170) 2011; 13 (10.1016/j.copbio.2011.11.026_bib0280) 2004 Kataeva (10.1016/j.copbio.2011.11.026_bib0080) 2009; 191 Yang (10.1016/j.copbio.2011.11.026_bib0075_1) 2009; 75 Yamada (10.1016/j.copbio.2011.11.026_bib0165) 2011; 48 Fan (10.1016/j.copbio.2011.11.026_bib0210) 2005; 92 Raman (10.1016/j.copbio.2011.11.026_bib0220) 2009; 4 Xiros (10.1016/j.copbio.2011.11.026_bib0030) 2009; 2 Den Haan (10.1016/j.copbio.2011.11.026_bib0160) 2007; 9 Lynd (10.1016/j.copbio.2011.11.026_bib0015_1) 2005; 16 Sakamoto (10.1016/j.copbio.2011.11.026_bib0190) 2012; 158 Cripps (10.1016/j.copbio.2011.11.026_bib0070_1) 2009; 11 Olson (10.1016/j.copbio.2011.11.026_bib0250_1) 2010; 107 Gold (10.1016/j.copbio.2011.11.026_bib0240) 2007; 189 Ilmen (10.1016/j.copbio.2011.11.026_bib0340) 2011; 4 Williams (10.1016/j.copbio.2011.11.026_bib0105) 2007; 74 Shin (10.1016/j.copbio.2011.11.026_bib0195) 2010; 76 Wen (10.1016/j.copbio.2011.11.026_bib0150) 2009; 76 Lynd (10.1016/j.copbio.2011.11.026_bib0095) 1996; 57 Tolonen (10.1016/j.copbio.2011.11.026_bib0040) 2009; 74 Takada (10.1016/j.copbio.2011.11.026_bib0330) 1998; 62 Brown (10.1016/j.copbio.2011.11.026_bib0365) 2007 Kuck (10.1016/j.copbio.2011.11.026_bib0025) 2010; 86 Xu (10.1016/j.copbio.2011.11.026_bib0035_1) 2009; 20 Fierobe (10.1016/j.copbio.2011.11.026_bib0130) 2005; 280 Nataf (10.1016/j.copbio.2011.11.026_bib0230_1) 2010; 107 |
References_xml | – volume: 76 start-page: 5079 year: 2010 end-page: 5087 ident: bib0045 article-title: Requirement of the Type II secretion system for utilization of cellulosic substrates by publication-title: Appl Environ Microbiol – volume: 463 year: 2010 ident: bib0200 article-title: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass publication-title: Nature – reference: Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, et al.: – volume: 74 start-page: 1300 year: 2009 end-page: 1313 ident: bib0040 article-title: Targeted gene inactivation in publication-title: Mol Microbiol – volume: 77 start-page: 2534 year: 2011 end-page: 2536 ident: bib0050 article-title: Marker removal system for publication-title: Appl Environ Microbiol – volume: 68 start-page: 53 year: 2002 end-page: 58 ident: bib0370 article-title: Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering publication-title: Appl Environ Microbiol – volume: 75 start-page: 4762 year: 2009 end-page: 4769 ident: bib0075 article-title: Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe publication-title: Appl Environ Microbiol – volume: 14 start-page: 454 year: 2003 end-page: 459 ident: bib0115 article-title: Metabolic engineering for the microbial production of 1,3-propanediol publication-title: Curr Opin Biotechnol – volume: 9 start-page: 1236 year: 2009 end-page: 1249 ident: bib0140 article-title: Heterologous expression of a publication-title: Fems Yeast Res – volume: 92 start-page: 35 year: 2005 end-page: 44 ident: bib0210 article-title: Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes publication-title: Biotechnol Bioeng – volume: 13 start-page: 267 year: 1990 end-page: 278 ident: bib0345 article-title: Pilot scale production of a heterologous publication-title: J Biotechnol – volume: 108 start-page: 504 year: 2011 end-page: 509 ident: bib0185 article-title: Engineered publication-title: Proc Natl Acad Sci – volume: 26 start-page: 20 year: 2008 end-page: 22 ident: bib0290 article-title: On the road to cost-competitive cellulosic ethanol publication-title: Chimica Oggi-Chemistry Today – volume: 23 start-page: 871 year: 2010 end-page: 880 ident: bib0335 article-title: Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination publication-title: Protein Eng Design Selection – volume: 66 start-page: 506 year: 2002 ident: bib0005 article-title: Microbial cellulose utilization: fundamentals and biotechnology publication-title: Microbiol Mol Biol Rev – volume: 280 start-page: 16325 year: 2005 end-page: 16334 ident: bib0130 article-title: Action of designer cellulosomes on homogeneous versus complex substrates publication-title: J Biol Chem – volume: 107 start-page: 17727 year: 2010 end-page: 17732 ident: bib0250 article-title: Deletion of the Cel48S cellulase from publication-title: Proc Natl Acad Sci – volume: 76 start-page: 7514 year: 2010 end-page: 7520 ident: bib0155 article-title: Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production publication-title: Appl Environ Microbiol – year: 2004 ident: bib0280 publication-title: Genencor Celebrates Major Progressin the Conversion of Biomass to Ethanol. (Press release) – volume: 44 start-page: 42 year: 2008 end-page: 47 ident: bib0410 article-title: Extracellular glycosyl hydrolase activity of the Clostridium strains producing acetone, butanol, and ethanol publication-title: Appl Biochem Microbiol – year: 2000 ident: bib0270 article-title: Biomass Commercialization Prospects in the Next 2–5 Years. Biomass Colloquies 2000 – volume: 26 start-page: 1319 year: 2008 end-page: 1321 ident: bib0295 article-title: Europe lags, US leads 2nd-generation biofuels publication-title: Nat Biotechnol – volume: 103 start-page: 19605 year: 2006 ident: bib0020 article-title: Enzyme-microbe synergy during cellulose hydrolysis by publication-title: Proc Natl Acad Sci USA – volume: 48 start-page: 273 year: 2011 end-page: 277 ident: bib0385 article-title: Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta publication-title: Enzyme Microb Technol – volume: 108 start-page: 1290 year: 2011 end-page: 1297 ident: bib0375 article-title: Consolidated Bioprocessing (CBP) Performance of Clostridium phytofermentans on AFEX-Treated Corn Stover for Ethanol Production publication-title: Biotechnol Bioeng – volume: 191 start-page: 3760 year: 2009 end-page: 3761 ident: bib0080 article-title: Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium publication-title: J Bacteriol – volume: 76 start-page: 1251 year: 2009 end-page: 1260 ident: bib0150 article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol publication-title: Appl Environ Microbiol – reference: McBride JE, Brevnova E, Ghandi C, Mellon M, Froehlich A, Deleault K, Rajgharia V, Flatt J, Van Zyl E, Den Haan R, – volume: 86 start-page: 51 year: 2010 end-page: 62 ident: bib0025 article-title: New tools for the genetic manipulation of filamentous fungi publication-title: Appl Microbiol Biotechnol – volume: 107 start-page: 18646 year: 2010 end-page: 18651 ident: bib0230 article-title: cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 398 year: 2009 end-page: 408 ident: bib0070 article-title: Metabolic engineering of publication-title: Metabolic Eng – volume: 158 start-page: 203 year: 2012 end-page: 210 ident: bib0190 article-title: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells publication-title: J Biotechnol – year: 1998 ident: bib0265 article-title: Bioethanol from the Corn Industry – volume: 48 start-page: 371 year: 2011 end-page: 377 ident: bib0135 article-title: Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant publication-title: Enzyme Microb Technol – volume: 16 start-page: 577 year: 2005 end-page: 583 ident: bib0015 article-title: Consolidated bioprocessing of cellulosic biomass: an update publication-title: Curr Opin Biotechnol – volume: 105 start-page: 13769 year: 2008 end-page: 13774 ident: bib0065 article-title: Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield publication-title: Proc Natl Acad Sci – volume: 48 start-page: 393 year: 2011 end-page: 396 ident: bib0165 article-title: Direct and efficient ethanol production from high-yielding rice using a publication-title: Enzyme Microb Technol – volume: 189 start-page: 6787 year: 2007 end-page: 6795 ident: bib0240 article-title: Global view of the publication-title: J Bacteriol – volume: 35 start-page: 626 year: 2011 end-page: 636 ident: bib0405 article-title: Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum publication-title: Biomass Bioenergy – volume: 108 start-page: 13752 year: 2011 end-page: 13757 ident: bib0100 article-title: Mutant alcohol dehydrogenase leads to improved ethanol tolerance in publication-title: Proc Natl Acad Sci USA – start-page: 663 year: 2007 end-page: 674 ident: bib0365 article-title: Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray publication-title: Appl Biochem Biotechnol – volume: 15 start-page: 611 year: 2011 end-page: 618 ident: bib0380 article-title: Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile publication-title: Extremophiles – reference: . – volume: 34 start-page: 639 year: 1992 end-page: 649 ident: bib0255 article-title: Preliminary estimate of the cost of ethanol production for ssf technology publication-title: Appl Biochem Biotechnol – reference: 2011, – volume: 25 start-page: 657 year: 2003 end-page: 661 ident: bib0325 article-title: Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from publication-title: Biotechnol Lett – volume: 2 start-page: 4 year: 2009 ident: bib0030 article-title: Enhanced ethanol production from brewer's spent grain by a publication-title: Biotechnol Biofuels – volume: 28 start-page: 1913 year: 2006 end-page: 1917 ident: bib0060 article-title: Electrotransformation of publication-title: Biotechnol Lett – reference: .: – volume: 11 year: 2011 ident: bib0215 article-title: Transcriptomic analysis of publication-title: BMC Microbiol – volume: 104 start-page: 3747 year: 2007 end-page: 3752 ident: bib0245 article-title: Induction of the celC operon of publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: e5271 year: 2009 ident: bib0220 article-title: Impact of pretreated switchgrass and biomass carbohydrates on publication-title: PLoS ONE – volume: 48 start-page: 155 year: 2011 end-page: 161 ident: bib0395 article-title: Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense publication-title: Enzyme Microb Technol – volume: 6 year: 2011 ident: bib0390 article-title: Proteome-wide systems analysis of a cellulosic biofuel-producing microbe publication-title: Mol Sys Biol – volume: 69 start-page: 124 year: 2005 end-page: 154 ident: bib0110 article-title: Cellulase, clostridia, and ethanol publication-title: Microbiol Mol Biol Rev – volume: 190 start-page: 1499 year: 2008 end-page: 1506 ident: bib0235 article-title: Transcriptional regulation of the publication-title: J Bacteriol – volume: 62 start-page: 1615 year: 1998 end-page: 1618 ident: bib0330 article-title: Expression of publication-title: Biosci Biotechnol Biochem – volume: 102 start-page: 9430 year: 2005 ident: bib0205 article-title: Cellulose utilization by publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 364 year: 2009 end-page: 371 ident: bib0035 article-title: Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose publication-title: Curr Opin Biotechnol – volume: 76 start-page: 8150 year: 2010 end-page: 8159 ident: bib0195 article-title: binary culture engineered for direct fermentation of hemicellulose to a biofuel publication-title: Appl Environ Microbiol – volume: 13 start-page: 364 year: 2011 end-page: 372 ident: bib0170 article-title: One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic publication-title: Metab Eng – volume: 75 start-page: 6087 year: 2009 end-page: 6093 ident: bib0145 article-title: Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production publication-title: Appl Environ Microbiol – reference: 2010. – volume: 76 start-page: 6591 year: 2010 end-page: 6599 ident: bib0085 article-title: Development of pyrF-based genetic system for targeted gene deletion in publication-title: Appl Environ Microbiol – volume: 4 start-page: 30 year: 2011 ident: bib0340 article-title: High level secretion of cellobiohydrolases by publication-title: Biotechnol Biofuels – year: 2011 ident: bib0305 article-title: Putting the pieces together, cellulosic commercialization publication-title: National Ethanol Conference – year: 2004 ident: bib0285 article-title: R&D for Bio-Energy – volume: 14 start-page: 475 year: 1992 end-page: 482 ident: bib0315 article-title: Investigation of the function of mutated cellulose-binding domains of publication-title: Proteins Struct Funct Bioinform – volume: 46 start-page: 427 year: 2009 end-page: 435 ident: bib0125 article-title: Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus publication-title: Fungal Genet Biol – volume: 88 start-page: 199 year: 2010 end-page: 208 ident: bib0400 article-title: Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii publication-title: Appl Microbiol Biotechnol – volume: 1 start-page: 18 year: 2008 ident: bib0120 article-title: Comparative secretome analyses of two publication-title: Biotechnol Biofuels – volume: 9 start-page: 87 year: 2007 end-page: 94 ident: bib0160 article-title: Hydrolysis and fermentation of amorphous cellulose by recombinant publication-title: Metab Eng – volume: 84 start-page: 37 year: 2009 end-page: 53 ident: bib0180 article-title: Ethanol production from xylose in engineered publication-title: Appl Microbiol Biotechnol – volume: 59 start-page: 49 year: 1991 end-page: 63 ident: bib0355 article-title: A theoretical evaluation of growth yields of yeasts publication-title: Antonie Van Leeuwenhoek Int J Gen Mol Microbiol – year: 1997 ident: bib0260 article-title: Enzyme Hydrolysis of Cellulose: Short-Term Commercialization Prospects for Conversion of Lignocellulosics to Ethanol – volume: 40 start-page: 1291 year: 2007 end-page: 1299 ident: bib0320 article-title: Functional expression of cellobiohydrolases in publication-title: Enzyme Microb Technol – volume: 76 start-page: 4713 year: 2010 end-page: 4719 ident: bib0055 article-title: Natural competence in publication-title: Appl Environ Microbiol – volume: 74 start-page: 422 year: 2007 end-page: 432 ident: bib0105 article-title: Proteomic profile changes in membranes of ethanol-tolerant publication-title: Appl Microbiol Biotechnol – volume: 63 start-page: 103 year: 1988 end-page: 112 ident: bib0310 article-title: Efficient secretion of 2 fungal cellobiohydrolases by publication-title: Gene – volume: 77 start-page: 2727 year: 2011 end-page: 2733 ident: bib0090 article-title: Metabolic engineering of publication-title: Appl Environ Microbiol – year: 2004 ident: bib0300 article-title: Biotechnological Routes to Biomass Conversion. DOE/NASULGC Biomass and Solar Energy Workshops – volume: 106 start-page: 5610 year: 2009 end-page: 5615 ident: bib0350 article-title: A family of thermostable fungal cellulases created by structure-guided recombination publication-title: Proc Natl Acad Sci USA – volume: 36 start-page: 319 year: 2009 end-page: 332 ident: bib0010 article-title: Biosolutions to the energy problem publication-title: J Ind Microbiol Biotechnol – reference: , in press. – volume: 57 start-page: 741 year: 1996 end-page: 761 ident: bib0095 article-title: Likely features and costs of mature biomass ethanol technology publication-title: Appl Biochem Biotechnol – year: 2000 ident: bib0275 article-title: Building a Bridge to the Corn Ethanol Industry – volume: 20 start-page: 364 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0035_1 article-title: Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2009.05.006 – year: 2004 ident: 10.1016/j.copbio.2011.11.026_bib0300 – volume: 25 start-page: 657 year: 2003 ident: 10.1016/j.copbio.2011.11.026_bib0325 article-title: Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast publication-title: Biotechnol Lett doi: 10.1023/A:1023072311980 – volume: 76 start-page: 5079 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0045 article-title: Requirement of the Type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00454-10 – volume: 86 start-page: 51 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0025 article-title: New tools for the genetic manipulation of filamentous fungi publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2416-7 – volume: 108 start-page: 504 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0185 article-title: Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1010456108 – volume: 1 start-page: 18 year: 2008 ident: 10.1016/j.copbio.2011.11.026_bib0120 article-title: Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-1-18 – volume: 76 start-page: 7514 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0155 article-title: Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01777-10 – volume: 59 start-page: 49 year: 1991 ident: 10.1016/j.copbio.2011.11.026_bib0355 article-title: A theoretical evaluation of growth yields of yeasts publication-title: Antonie Van Leeuwenhoek Int J Gen Mol Microbiol doi: 10.1007/BF00582119 – year: 2004 ident: 10.1016/j.copbio.2011.11.026_bib0285 – year: 1997 ident: 10.1016/j.copbio.2011.11.026_bib0260 – volume: 26 start-page: 1319 year: 2008 ident: 10.1016/j.copbio.2011.11.026_bib0295 article-title: Europe lags, US leads 2nd-generation biofuels publication-title: Nat Biotechnol doi: 10.1038/nbt1208-1319 – volume: 44 start-page: 42 year: 2008 ident: 10.1016/j.copbio.2011.11.026_bib0410 article-title: Extracellular glycosyl hydrolase activity of the Clostridium strains producing acetone, butanol, and ethanol publication-title: Appl Biochem Microbiol doi: 10.1134/S0003683808010079 – volume: 35 start-page: 626 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0405 article-title: Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2010.10.021 – volume: 48 start-page: 273 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0385 article-title: Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2010.12.001 – volume: 34 start-page: 639 year: 1992 ident: 10.1016/j.copbio.2011.11.026_bib0255 article-title: Preliminary estimate of the cost of ethanol production for ssf technology publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02920584 – volume: 26 start-page: 20 year: 2008 ident: 10.1016/j.copbio.2011.11.026_bib0290 article-title: On the road to cost-competitive cellulosic ethanol publication-title: Chimica Oggi-Chemistry Today – volume: 13 start-page: 364 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0170 article-title: One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis publication-title: Metab Eng doi: 10.1016/j.ymben.2011.04.003 – volume: 77 start-page: 2534 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0050 article-title: Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01731-10 – volume: 107 start-page: 18646 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0230_1 article-title: Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1012175107 – volume: 158 start-page: 203 year: 2012 ident: 10.1016/j.copbio.2011.11.026_bib0190 article-title: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2011.06.025 – volume: 4 start-page: 30 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0340 article-title: High level secretion of cellobiohydrolases by Saccharomyces cerevisiae publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-4-30 – volume: 76 start-page: 6591 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0085 article-title: Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01484-10 – volume: 14 start-page: 475 year: 1992 ident: 10.1016/j.copbio.2011.11.026_bib0315 article-title: Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I publication-title: Proteins Struct Funct Bioinform doi: 10.1002/prot.340140408 – volume: 75 start-page: 6087 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0145 article-title: Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01538-09 – volume: 77 start-page: 2727 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0090 article-title: Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02454-10 – volume: 57 start-page: 741 year: 1996 ident: 10.1016/j.copbio.2011.11.026_bib0095 article-title: Likely features and costs of mature biomass ethanol technology publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02941755 – volume: 75 start-page: 4762 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0075_1 article-title: Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00236-09 – volume: 13 start-page: 267 year: 1990 ident: 10.1016/j.copbio.2011.11.026_bib0345 article-title: Pilot scale production of a heterologous Trichoderma reesei cellulase by Saccharomyces cerevisiae publication-title: J Biotechnol doi: 10.1016/0168-1656(90)90075-M – volume: 76 start-page: 8150 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0195 article-title: Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00908-10 – year: 2000 ident: 10.1016/j.copbio.2011.11.026_bib0275 – volume: 106 start-page: 5610 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0350 article-title: A family of thermostable fungal cellulases created by structure-guided recombination publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0901417106 – year: 1998 ident: 10.1016/j.copbio.2011.11.026_bib0265 – volume: 105 start-page: 13769 year: 2008 ident: 10.1016/j.copbio.2011.11.026_bib0065_1 article-title: Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0801266105 – volume: 108 start-page: 13752 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0100 article-title: Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1102444108 – volume: 15 start-page: 611 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0380 article-title: Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile publication-title: Extremophiles doi: 10.1007/s00792-011-0391-2 – volume: 68 start-page: 53 year: 2002 ident: 10.1016/j.copbio.2011.11.026_bib0370 article-title: Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.1.53-58.2002 – volume: 62 start-page: 1615 year: 1998 ident: 10.1016/j.copbio.2011.11.026_bib0330 article-title: Expression of Aspergillus aculeatus no. F-50 cellobiohydrolase I (cbhI) and beta-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.62.1615 – volume: 16 start-page: 577 year: 2005 ident: 10.1016/j.copbio.2011.11.026_bib0015_1 article-title: Consolidated bioprocessing of cellulosic biomass: an update publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2005.08.009 – volume: 76 start-page: 4713 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0055 article-title: Natural competence in Thermoanaerobacter and Thermoanaerobacterium species publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00402-10 – volume: 48 start-page: 371 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0135 article-title: Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2010.12.014 – volume: 104 start-page: 3747 year: 2007 ident: 10.1016/j.copbio.2011.11.026_bib0245 article-title: Induction of the celC operon of Clostridium thermocellum by laminaribiose publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0700087104 – volume: 84 start-page: 37 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0180 article-title: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2101-x – volume: 28 start-page: 1913 year: 2006 ident: 10.1016/j.copbio.2011.11.026_bib0060 article-title: Electrotransformation of Thermoanaerobacter ethanolicus JW200 publication-title: Biotechnol Lett doi: 10.1007/s10529-006-9184-6 – year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0305 article-title: Putting the pieces together, cellulosic commercialization – volume: 2 start-page: 4 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0030 article-title: Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-2-4 – volume: 66 start-page: 506 year: 2002 ident: 10.1016/j.copbio.2011.11.026_bib0005 article-title: Microbial cellulose utilization: fundamentals and biotechnology publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.66.3.506-577.2002 – volume: 11 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0215 article-title: Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation publication-title: BMC Microbiol doi: 10.1186/1471-2180-11-134 – volume: 9 start-page: 87 year: 2007 ident: 10.1016/j.copbio.2011.11.026_bib0160 article-title: Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae publication-title: Metab Eng doi: 10.1016/j.ymben.2006.08.005 – volume: 48 start-page: 393 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0165 article-title: Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2011.01.002 – volume: 9 start-page: 1236 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0140 article-title: Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae publication-title: Fems Yeast Res doi: 10.1111/j.1567-1364.2009.00564.x – volume: 463 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0200_1 article-title: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass publication-title: Nature doi: 10.1038/nature08721 – volume: 92 start-page: 35 year: 2005 ident: 10.1016/j.copbio.2011.11.026_bib0210 article-title: Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes publication-title: Biotechnol Bioeng doi: 10.1002/bit.20576 – volume: 280 start-page: 16325 year: 2005 ident: 10.1016/j.copbio.2011.11.026_bib0130 article-title: Action of designer cellulosomes on homogeneous versus complex substrates—controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin publication-title: J Biol Chem doi: 10.1074/jbc.M414449200 – volume: 63 start-page: 103 year: 1988 ident: 10.1016/j.copbio.2011.11.026_bib0310 article-title: Efficient secretion of 2 fungal cellobiohydrolases by Saccharomyces cerevisiae publication-title: Gene doi: 10.1016/0378-1119(88)90549-5 – volume: 36 start-page: 319 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0010 article-title: Biosolutions to the energy problem publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-008-0521-8 – year: 2004 ident: 10.1016/j.copbio.2011.11.026_bib0280 – volume: 191 start-page: 3760 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0080 article-title: Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium Anaerocellum thermophilum DSM 6725 publication-title: J Bacteriol doi: 10.1128/JB.00256-09 – volume: 4 start-page: e5271 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0220 article-title: Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0005271 – volume: 74 start-page: 1300 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0040 article-title: Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2009.06890.x – volume: 102 start-page: 9430 year: 2005 ident: 10.1016/j.copbio.2011.11.026_bib0205 article-title: Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0408734102 – volume: 6 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0390 article-title: Proteome-wide systems analysis of a cellulosic biofuel-producing microbe publication-title: Mol Sys Biol – volume: 23 start-page: 871 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0335 article-title: Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination publication-title: Protein Eng Design Selection doi: 10.1093/protein/gzq063 – volume: 69 start-page: 124 year: 2005 ident: 10.1016/j.copbio.2011.11.026_bib0110 article-title: Cellulase, clostridia, and ethanol publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.69.1.124-154.2005 – volume: 76 start-page: 1251 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0150 article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01687-09 – ident: 10.1016/j.copbio.2011.11.026_bib0360_1 doi: 10.1128/AEM.00646-11 – volume: 189 start-page: 6787 year: 2007 ident: 10.1016/j.copbio.2011.11.026_bib0240 article-title: Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis publication-title: J Bacteriol doi: 10.1128/JB.00882-07 – start-page: 663 year: 2007 ident: 10.1016/j.copbio.2011.11.026_bib0365 article-title: Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray publication-title: Appl Biochem Biotechnol – volume: 108 start-page: 1290 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0375 article-title: Consolidated Bioprocessing (CBP) Performance of Clostridium phytofermentans on AFEX-Treated Corn Stover for Ethanol Production publication-title: Biotechnol Bioeng doi: 10.1002/bit.23059 – volume: 14 start-page: 454 year: 2003 ident: 10.1016/j.copbio.2011.11.026_bib0115 article-title: Metabolic engineering for the microbial production of 1,3-propanediol publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2003.08.005 – year: 2000 ident: 10.1016/j.copbio.2011.11.026_bib0270 – volume: 107 start-page: 17727 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0250_1 article-title: Deletion of the Cel48S cellulase from Clostridium thermocellum publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1003584107 – volume: 88 start-page: 199 year: 2010 ident: 10.1016/j.copbio.2011.11.026_bib0400 article-title: Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-010-2703-3 – volume: 190 start-page: 1499 year: 2008 ident: 10.1016/j.copbio.2011.11.026_bib0235 article-title: Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element publication-title: J Bacteriol doi: 10.1128/JB.01160-07 – volume: 103 start-page: 19605 year: 2006 ident: 10.1016/j.copbio.2011.11.026_bib0020 article-title: Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605381103 – ident: 10.1016/j.copbio.2011.11.026_bib0175 – volume: 11 start-page: 398 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0070_1 article-title: Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production publication-title: Metabolic Eng doi: 10.1016/j.ymben.2009.08.005 – volume: 48 start-page: 155 year: 2011 ident: 10.1016/j.copbio.2011.11.026_bib0395 article-title: Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2010.10.006 – volume: 74 start-page: 422 year: 2007 ident: 10.1016/j.copbio.2011.11.026_bib0105 article-title: Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-006-0689-7 – volume: 46 start-page: 427 year: 2009 ident: 10.1016/j.copbio.2011.11.026_bib0125 article-title: Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2009.02.001 – volume: 40 start-page: 1291 year: 2007 ident: 10.1016/j.copbio.2011.11.026_bib0320 article-title: Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2006.09.022 |
SSID | ssj0005370 |
Score | 2.5698464 |
SecondaryResourceType | review_article |
Snippet | ► Substantial progress has been made in the development of CBP. ► Production of ethanol at high yield and titer using ‘native strategy’. ► Production of CBHI... Highlights ► Substantial progress has been made in the development of CBP. ► Production of ethanol at high yield and titer using ‘native strategy’. ►... Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased... |
SourceID | osti proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 396 |
SubjectTerms | Bacteria Bacteria - genetics Bacteria - metabolism Biofuels Biomass Bioprocessing butanol cellulolytic microorganisms cellulose Cellulose - metabolism Consolidation Conversion engineering Enzymes ethanol Ethanol - metabolism Ethyl alcohol heterologous gene expression Humans Internal Medicine Lignin - metabolism lignocellulose Microalgae - metabolism Microorganisms motivation Organisms Plants - metabolism thermophilic bacteria yeasts Yeasts - metabolism |
Title | Recent progress in consolidated bioprocessing |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0958166911007373 https://www.clinicalkey.es/playcontent/1-s2.0-S0958166911007373 https://dx.doi.org/10.1016/j.copbio.2011.11.026 https://www.ncbi.nlm.nih.gov/pubmed/22176748 https://www.proquest.com/docview/1020050341 https://www.proquest.com/docview/1034817787 https://www.proquest.com/docview/2000037886 https://www.osti.gov/biblio/1152018 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB416aUcEJRCQ0u1lbiaeNf22nusKqoAopcSqTfL9nrRIrQbNem1v52ZfZQi-kAcE804zmj8eUae-QbgfVXlPiqVMZmVhkmJeYozRrDK56KqQshjQQ3OX8_zxVJ-vlSXW3A69sJQWeWA_T2md2g9fDMfrDlf1fX8AoMDevQqiPRMCy0msJ2JIldT2D759GVx_rvSQ3Qz40iekcLYQdeVeYV25eu25_IkOk9iWbj_hppUrkXgbvHoPRyOdtfS2Qt4PsSTyUm_5ZewFZtdeHaHZfAVMAwN8WpJulIsBLakbhLMgtHpakr3ywR3tur7BVB-D5ZnH7-dLtgwJYEFZfSGCRfTqHj0BjODkCsZvKxiwLgAY508DZw7L1A0174wMnVFGXXpA3GIilLrKF7DtGmbuA9JqYUzrvCeiNSCk45HI50qSuKscZzPQIyWsWGgEKdJFj_tWCv2w_b2tGRPzC4s2nMG7FZr1VNoPCGvRqPbsT0UAc0ixj-hp-_Ti-vhVK5tateZ5fYvz7mr-Yfz_cNv7qNXWPcdEdkuLzLi6-te8w0uekCuQgsSHW-guiVcESNwlDIzOB49yOKBplca18T2GjfJs46kR6aPyVD_tEawfViGerA4TQvATb7pXfTW_BkmojRl5u1___ED2MFPWV80dwjTzdV1fIfh2cYfweTDTXo0HMJfTPY05Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71cSgcEFBol_IIElezTmzHzhFVrRb6uLQr9WbZjoOCULLqbq_8dmbyqBa1pYhrMnac0fjzjDzzDcCnqsp9VCpjMisNkxLjFGeMYJXPRVWFkMeCCpzPzvPZXH67UlcbcDjWwlBa5YD9PaZ3aD08mQ7anC7qenqBzgFdehVEeqaFFpuwLZXQlNf3-ddanofoOsaRNCPxsX6uS_IK7cLXbc_kSWSexLFw__m0WbkWYbvFjfewM9odSsfP4dngTSZf-gW_gI3YvISnaxyDu8DQMcSDJekSsRDWkrpJMAZGk6sp2C8TXNmirxZA-VcwPz66PJyxoUcCC8roFRMuplHx6A3GBSFXMnhZxYBeAXo6eRo4d16gaK59YWTqijLq0gdiEBWl1lG8hq2mbeI-JKUWzrjCe6JRC046Ho10qiiJscZxPgExasaGgUCc-lj8tGOm2A_b69OSPjG2sKjPCbDbUYueQOMReTUq3Y7FoQhnFhH-kXH6vnFxOezJpU3tMrPc3rGb9ZF_mN4_fHMfrcK674jHdn6REVtfd5dvcNIDMhWakMh4A2Ut4Yzof6OUmcDH0YIsbme6o3FNbG9wkTzrKHpk-jcZqp7WCLUPy1AFFqdeAbjIvd5Eb9WfYRhKPWbe_PePf4Cd2eXZqT39en5yAE_wTdanz72FrdX1TXyHjtrKv-824m_pVjWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+in+consolidated+bioprocessing&rft.jtitle=Current+opinion+in+biotechnology&rft.au=Olson%2C+Daniel+G&rft.au=McBride%2C+John+E&rft.au=Joe+Shaw%2C+A&rft.au=Lynd%2C+Lee+R&rft.date=2012-06-01&rft.issn=0958-1669&rft.volume=23&rft.issue=3&rft.spage=396&rft.epage=405&rft_id=info:doi/10.1016%2Fj.copbio.2011.11.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_copbio_2011_11_026 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09581669%2FS0958166912X00041%2Fcov150h.gif |