Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate

Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 102; no. 6; pp. 669 - 676
Main Authors Venkataraman, Krishnan, Lee, Yong-Moon, Michaud, Jason, Thangada, Shobha, Ai, Youxi, Bonkovsky, Herbert L., Parikh, Nehal S., Habrukowich, Cheryl, Hla, Timothy
Format Journal Article
LanguageEnglish
Published Hagerstown, MD American Heart Association, Inc 28.03.2008
Lippincott
Subjects
Online AccessGet full text
ISSN0009-7330
1524-4571
1524-4571
DOI10.1161/CIRCRESAHA.107.165845

Cover

Abstract Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1Sphk2 mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1Sphk2 bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.
AbstractList Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1Sphk2 mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1Sphk2 bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.
Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of approximately 15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1(-/-)Sphk2(+/-) mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1(-/-)Sphk2(+/-) bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1(-/-) mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.
Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1 −/− Sphk2 + /− mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1 −/− Sphk2 + /− bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 −/− mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase ( Sgpl ) and S1P phosphatase-1 ( Sgpp 1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.
Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of approximately 15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1(-/-)Sphk2(+/-) mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1(-/-)Sphk2(+/-) bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1(-/-) mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of approximately 15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1(-/-)Sphk2(+/-) mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1(-/-)Sphk2(+/-) bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1(-/-) mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.
Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1 −/− Sphk2 +/− mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1 −/− Sphk2 +/− bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 −/− mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase ( Sgpl ) and S1P phosphatase-1 ( Sgpp 1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.
Author Michaud, Jason
Lee, Yong-Moon
Habrukowich, Cheryl
Venkataraman, Krishnan
Ai, Youxi
Hla, Timothy
Bonkovsky, Herbert L.
Parikh, Nehal S.
Thangada, Shobha
AuthorAffiliation From the Center for Vascular Biology (K.V., J.M., S.T., Y.A., C.H., T.H.), Department of Cell Biology, Departments of Medicine and Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington; Liver-Biliary-Pancreatic Center (H.L.B.), University of Connecticut Health Center, Farmington; College of Pharmacy and CBITRC (Y.-M.L.), Chungbuk National University, Chongju, Korea; and Division of Hematology & Oncology (N.S.P.), Connecticut Children’s Medical Center, Hartford
AuthorAffiliation_xml – name: From the Center for Vascular Biology (K.V., J.M., S.T., Y.A., C.H., T.H.), Department of Cell Biology, Departments of Medicine and Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington; Liver-Biliary-Pancreatic Center (H.L.B.), University of Connecticut Health Center, Farmington; College of Pharmacy and CBITRC (Y.-M.L.), Chungbuk National University, Chongju, Korea; and Division of Hematology & Oncology (N.S.P.), Connecticut Children’s Medical Center, Hartford
Author_xml – sequence: 1
  givenname: Krishnan
  surname: Venkataraman
  fullname: Venkataraman, Krishnan
  organization: From the Center for Vascular Biology (K.V., J.M., S.T., Y.A., C.H., T.H.), Department of Cell Biology, Departments of Medicine and Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington; Liver-Biliary-Pancreatic Center (H.L.B.), University of Connecticut Health Center, Farmington; College of Pharmacy and CBITRC (Y.-M.L.), Chungbuk National University, Chongju, Korea; and Division of Hematology & Oncology (N.S.P.), Connecticut Children’s Medical Center, Hartford
– sequence: 2
  givenname: Yong-Moon
  surname: Lee
  fullname: Lee, Yong-Moon
– sequence: 3
  givenname: Jason
  surname: Michaud
  fullname: Michaud, Jason
– sequence: 4
  givenname: Shobha
  surname: Thangada
  fullname: Thangada, Shobha
– sequence: 5
  givenname: Youxi
  surname: Ai
  fullname: Ai, Youxi
– sequence: 6
  givenname: Herbert
  surname: Bonkovsky
  middlename: L.
  fullname: Bonkovsky, Herbert L.
– sequence: 7
  givenname: Nehal
  surname: Parikh
  middlename: S.
  fullname: Parikh, Nehal S.
– sequence: 8
  givenname: Cheryl
  surname: Habrukowich
  fullname: Habrukowich, Cheryl
– sequence: 9
  givenname: Timothy
  surname: Hla
  fullname: Hla, Timothy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20242883$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18258856$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUtFAR3RZ-AigXuGV5_oodISGtoqWtVImqBa7WS-I0Bm-8tRMq_j1Z7bJ8XDhZep6ZN5p5Z-RkCIMl5CWFJaUFfVtd3Va367vV5WpJQS1pIbWQT8iCSiZyIRU9IQsAKHPFOZySs5S-AlDBWfmMnFLNpNayWJCLL5iayWPM1kMbxt56N22yVcowq8IwRldPY4hZ6LIbj2mD2d22d8N9SG6wGc1v-pC2PY72OXnaoU_2xeE9J58_rD9Vl_n1x4uranWdN1IrnZcNo4pZhtAVrKNcSaURGl4LVSjJNYOuZKJEWihVF9h2SrRC11ZSxkvZcn5O3u91t1O9sW1jZ4_ozTa6DcYfJqAzf_8Mrjf34bthhSx5yWaBNweBGB4mm0azcamx3uNgw5SMAiGAlzADX_256bjiV3Yz4PUBMEeIvos4NC4dcQyYYFrvLL_b45oYUoq2M40bcXS7eNF5Q8HsGjW_G51HyuwbndnyH_bRyH94Ys97DH60MX3z06ONprfox97MlwEcKMsZgAbONOS7keY_AV9rs6s
CODEN CIRUAL
CitedBy_id crossref_primary_10_1194_jlr_M039685
crossref_primary_10_1038_nature24053
crossref_primary_10_1080_09273948_2023_2273963
crossref_primary_10_1186_s12933_025_02624_9
crossref_primary_10_1007_s11882_016_0628_3
crossref_primary_10_1038_ncomms8893
crossref_primary_10_1371_journal_pgen_1004688
crossref_primary_10_1182_blood_2012_11_467191
crossref_primary_10_2478_v10039_011_0057_4
crossref_primary_10_1016_j_bbalip_2020_158681
crossref_primary_10_1084_jem_20082502
crossref_primary_10_1093_cvr_cvp070
crossref_primary_10_1016_j_atherosclerosis_2018_02_025
crossref_primary_10_1016_j_bbrc_2009_01_106
crossref_primary_10_1253_circj_CJ_14_0178
crossref_primary_10_1371_journal_pone_0101276
crossref_primary_10_1093_cvr_cvp064
crossref_primary_10_1186_s12967_020_02322_y
crossref_primary_10_1186_s13054_015_1089_0
crossref_primary_10_1002_1873_3468_14973
crossref_primary_10_1126_science_aar5551
crossref_primary_10_12677_acm_2024_1451505
crossref_primary_10_3390_ijms20246361
crossref_primary_10_3390_ijms20246364
crossref_primary_10_3390_ijms20225545
crossref_primary_10_1016_j_prostaglandins_2013_10_001
crossref_primary_10_1096_fj_201700445RR
crossref_primary_10_1111_j_1582_4934_2010_01136_x
crossref_primary_10_1007_s40846_021_00629_9
crossref_primary_10_2337_db21_0920
crossref_primary_10_1016_j_bbalip_2018_07_009
crossref_primary_10_1016_j_jlr_2022_100225
crossref_primary_10_1093_intimm_dxz037
crossref_primary_10_1016_j_jsb_2015_10_009
crossref_primary_10_1016_j_advenzreg_2011_09_015
crossref_primary_10_1038_s41580_024_00742_y
crossref_primary_10_3390_ijms231911948
crossref_primary_10_1002_JLB_3MR0717_269R
crossref_primary_10_1007_s10517_018_4078_x
crossref_primary_10_1152_ajplung_00017_2022
crossref_primary_10_1177_1010428317699133
crossref_primary_10_1016_j_cca_2021_06_020
crossref_primary_10_1146_annurev_immunol_081519_083952
crossref_primary_10_1007_s40263_021_00798_w
crossref_primary_10_1016_j_neulet_2010_04_052
crossref_primary_10_1007_s00005_013_0264_8
crossref_primary_10_1152_ajprenal_00572_2018
crossref_primary_10_1161_CIRCRESAHA_115_306901
crossref_primary_10_1084_jem_20102551
crossref_primary_10_1096_fj_09_150540
crossref_primary_10_1016_j_prostaglandins_2012_08_003
crossref_primary_10_1111_j_1476_5381_2011_01260_x
crossref_primary_10_1152_ajpheart_00281_2008
crossref_primary_10_1016_j_bbalip_2021_158955
crossref_primary_10_3892_ijmm_2016_2731
crossref_primary_10_1016_j_cytogfr_2010_09_004
crossref_primary_10_1038_s41569_021_00536_1
crossref_primary_10_1096_fj_12_219618
crossref_primary_10_1182_bloodadvances_2020002888
crossref_primary_10_1089_ars_2017_7129
crossref_primary_10_1016_j_jphs_2016_05_010
crossref_primary_10_1016_j_bbalip_2014_08_013
crossref_primary_10_1038_s41598_017_15043_y
crossref_primary_10_1016_j_biomaterials_2017_05_012
crossref_primary_10_3390_ijms21176242
crossref_primary_10_2353_ajpath_2010_091016
crossref_primary_10_1016_j_lfs_2020_117542
crossref_primary_10_1093_cvr_cvp088
crossref_primary_10_1371_journal_pone_0063007
crossref_primary_10_1172_JCI76369
crossref_primary_10_4062_biomolther_2008_16_2_095
crossref_primary_10_3390_ijms21197189
crossref_primary_10_4331_wjbc_v1_i11_327
crossref_primary_10_1002_jcb_26707
crossref_primary_10_1074_jbc_M113_499913
crossref_primary_10_1507_endocrj_K08E_228
crossref_primary_10_1161_HYPERTENSIONAHA_119_14507
crossref_primary_10_1016_j_tcm_2009_07_005
crossref_primary_10_1194_jlr_TR120000972
crossref_primary_10_1016_j_jbiomech_2021_110917
crossref_primary_10_1016_j_tem_2016_07_005
crossref_primary_10_1172_jci_insight_85484
crossref_primary_10_5936_csbj_201403003
crossref_primary_10_1016_j_arr_2022_101818
crossref_primary_10_1111_j_1600_065X_2012_01114_x
crossref_primary_10_1093_jbmr_zjae006
crossref_primary_10_1242_dev_078550
crossref_primary_10_1080_08830185_2020_1840567
crossref_primary_10_1177_1087057110391656
crossref_primary_10_1016_j_jaci_2013_07_026
crossref_primary_10_1111_1759_7714_13409
crossref_primary_10_1007_s00424_024_03018_8
crossref_primary_10_1161_CIRCRESAHA_116_308929
crossref_primary_10_1093_molehr_gaaa022
crossref_primary_10_4049_jimmunol_1200282
crossref_primary_10_1182_bloodadvances_2019031948
crossref_primary_10_1681_ASN_2013060656
crossref_primary_10_1097_SHK_0000000000001618
crossref_primary_10_1016_j_jbc_2024_107837
crossref_primary_10_1172_JCI77685
crossref_primary_10_1007_s11010_023_04658_7
crossref_primary_10_1371_journal_pone_0016571
crossref_primary_10_1007_s40265_016_0603_2
crossref_primary_10_1093_ecco_jcc_jjx107
crossref_primary_10_3390_cells10102507
crossref_primary_10_1007_s11882_014_0434_8
crossref_primary_10_1016_j_devcel_2012_08_005
crossref_primary_10_3390_cells9061515
crossref_primary_10_1371_journal_pone_0022436
crossref_primary_10_3390_cells11182914
crossref_primary_10_1016_j_bbalip_2012_07_022
crossref_primary_10_3390_ijms25073790
crossref_primary_10_1111_jnc_14246
crossref_primary_10_1002_hep4_1561
crossref_primary_10_3390_cells11060969
crossref_primary_10_3390_ijms13010977
crossref_primary_10_1007_s12975_016_0477_3
crossref_primary_10_3109_09537104_2016_1144179
crossref_primary_10_1016_j_biochi_2010_02_014
crossref_primary_10_1002_biof_1030
crossref_primary_10_5551_jat_RV17010
crossref_primary_10_1016_j_cellsig_2020_109849
crossref_primary_10_1016_j_diff_2013_06_004
crossref_primary_10_1038_sj_bjc_6604896
crossref_primary_10_1155_2015_709846
crossref_primary_10_3389_fcimb_2020_00353
crossref_primary_10_1111_apha_12076
crossref_primary_10_4049_jimmunol_0903358
crossref_primary_10_1093_ndt_gfw427
crossref_primary_10_1097_MOL_0000000000000142
crossref_primary_10_1038_nm_3934
crossref_primary_10_1016_j_chemphyslip_2016_04_007
crossref_primary_10_1089_scd_2012_0488
crossref_primary_10_3390_cells9071682
crossref_primary_10_1194_jlr_R059543
crossref_primary_10_1371_journal_pone_0135025
crossref_primary_10_3390_ph6091145
crossref_primary_10_1371_journal_pone_0266055
crossref_primary_10_1002_mco2_480
crossref_primary_10_1161_JAHA_121_021261
crossref_primary_10_1080_17425255_2024_2402931
crossref_primary_10_1093_cvr_cvn309
crossref_primary_10_1161_HYPERTENSIONAHA_117_09088
crossref_primary_10_1007_s00281_011_0287_3
crossref_primary_10_1371_journal_pone_0177543
crossref_primary_10_3389_fped_2022_869381
crossref_primary_10_1016_j_bbagen_2019_04_001
crossref_primary_10_1042_BJ20110817
crossref_primary_10_1016_j_bmcl_2013_06_030
crossref_primary_10_1016_j_jbior_2016_09_007
crossref_primary_10_1016_j_clim_2023_109764
crossref_primary_10_1161_ATVBAHA_123_320227
crossref_primary_10_1007_s00441_014_1821_0
crossref_primary_10_1016_j_msec_2019_109761
crossref_primary_10_1016_j_phrs_2020_104793
crossref_primary_10_1111_micc_12271
crossref_primary_10_1016_j_yexcr_2015_08_013
crossref_primary_10_3390_cells10051200
crossref_primary_10_1165_rcmb_2010_0422OC
crossref_primary_10_1016_j_atherosclerosis_2013_04_024
crossref_primary_10_1177_0271678X211033362
crossref_primary_10_1038_s41467_025_56869_9
crossref_primary_10_1007_s12307_011_0088_1
crossref_primary_10_1042_BSR20200157
crossref_primary_10_1016_j_ydbio_2011_01_026
crossref_primary_10_1038_s41584_022_00784_6
crossref_primary_10_1182_blood_2011_04_348904
crossref_primary_10_1007_s40629_014_0008_2
crossref_primary_10_1038_nri2400
crossref_primary_10_1016_j_metabol_2018_11_005
crossref_primary_10_3390_antiox12010143
crossref_primary_10_1146_annurev_pathol_050420_025929
crossref_primary_10_1212_WNL_0b013e31820d5ec1
crossref_primary_10_1016_j_celrep_2020_107828
crossref_primary_10_1097_FJC_0b013e3181926706
crossref_primary_10_1165_rcmb_2012_0411TR
crossref_primary_10_3390_biomedicines9040349
crossref_primary_10_1002_iub_1489
crossref_primary_10_1097_TA_0000000000002446
crossref_primary_10_1007_s00005_011_0159_5
crossref_primary_10_1186_1476_511X_13_163
crossref_primary_10_4049_jimmunol_1201309
crossref_primary_10_1126_scisignal_aal2722
crossref_primary_10_1007_s15007_014_0516_x
crossref_primary_10_3390_ijms23020866
crossref_primary_10_1007_s11064_012_0728_y
crossref_primary_10_1146_annurev_biochem_78_072407_103733
crossref_primary_10_1186_s13578_022_00807_5
crossref_primary_10_1111_sms_12910
crossref_primary_10_1084_jem_20091619
crossref_primary_10_1038_s41598_018_25015_5
crossref_primary_10_1517_14728222_2014_851671
crossref_primary_10_1007_s00109_015_1292_0
crossref_primary_10_1152_ajpheart_00181_2012
crossref_primary_10_1158_1078_0432_CCR_10_2323
crossref_primary_10_1161_ATVBAHA_122_317565
crossref_primary_10_1002_jcb_22507
crossref_primary_10_1016_j_prostaglandins_2012_06_002
crossref_primary_10_1007_s10439_015_1400_x
crossref_primary_10_1016_j_prostaglandins_2010_06_001
crossref_primary_10_1124_jpet_115_225862
crossref_primary_10_1016_j_biopha_2024_116575
crossref_primary_10_1172_JCI40659
crossref_primary_10_3892_mmr_2016_5342
crossref_primary_10_1161_ATVBAHA_120_305565
crossref_primary_10_1016_j_molmed_2017_02_002
crossref_primary_10_1007_s11883_016_0586_1
crossref_primary_10_1016_j_ajpath_2012_03_014
crossref_primary_10_1002_JLB_1MR0220_276R
crossref_primary_10_1016_j_bbalip_2014_06_012
crossref_primary_10_1371_journal_pone_0072449
crossref_primary_10_1016_j_cellsig_2013_08_017
crossref_primary_10_1016_j_addr_2019_12_003
crossref_primary_10_1038_s41596_019_0212_0
crossref_primary_10_1146_annurev_physiol_021014_071635
crossref_primary_10_1194_jlr_D071068
crossref_primary_10_1016_j_cellsig_2010_06_009
crossref_primary_10_1172_JCI38575
crossref_primary_10_1002_iub_2795
crossref_primary_10_1038_s41598_021_99765_0
crossref_primary_10_3389_fendo_2020_00491
crossref_primary_10_2147_TCRM_S336139
crossref_primary_10_4049_jimmunol_1002169
crossref_primary_10_1002_jcp_27353
crossref_primary_10_1016_j_bbalip_2012_06_007
crossref_primary_10_1016_j_bbalip_2012_06_006
crossref_primary_10_1016_j_jaci_2013_01_046
crossref_primary_10_1158_1541_7786_MCR_07_2048
crossref_primary_10_1016_j_cmet_2012_06_017
crossref_primary_10_1042_BCJ20190730
crossref_primary_10_3390_ph4010117
crossref_primary_10_1016_j_bbalip_2009_02_011
crossref_primary_10_1124_jpet_111_179168
crossref_primary_10_1016_j_rechem_2024_101467
crossref_primary_10_1007_s00395_012_0294_0
crossref_primary_10_1016_j_burns_2009_02_012
crossref_primary_10_1177_17562864221133163
crossref_primary_10_1111_j_1538_7836_2009_03405_x
crossref_primary_10_1096_fj_201701121R
crossref_primary_10_1093_cvr_cvu136
crossref_primary_10_2119_molmed_2010_00214
crossref_primary_10_3389_fimmu_2016_00613
crossref_primary_10_1016_j_fct_2013_12_019
crossref_primary_10_3390_ijms221910617
crossref_primary_10_1152_ajpcell_00586_2008
crossref_primary_10_1016_j_jinf_2015_06_014
crossref_primary_10_1097_SHK_0000000000000814
crossref_primary_10_1172_JCI60746
crossref_primary_10_1074_jbc_M110_171819
crossref_primary_10_1111_jcmm_15744
crossref_primary_10_1177_1744806920903515
crossref_primary_10_1186_1476_511X_13_150
crossref_primary_10_1152_ajpcell_00437_2010
crossref_primary_10_1161_ATVBAHA_116_308435
crossref_primary_10_1016_j_bbalip_2013_12_013
crossref_primary_10_1016_j_cellsig_2024_111252
crossref_primary_10_1194_jlr_R800065_JLR200
crossref_primary_10_1021_cb5008426
crossref_primary_10_3389_fphar_2017_00556
crossref_primary_10_1021_cr200273u
crossref_primary_10_3390_biom13050818
crossref_primary_10_5966_sctm_2016_0059
crossref_primary_10_1007_s13105_017_0553_5
crossref_primary_10_1016_j_advms_2015_09_006
crossref_primary_10_1093_jb_mvs090
crossref_primary_10_3390_ijms232113538
crossref_primary_10_1146_annurev_pharmtox_010919_023429
crossref_primary_10_1002_prp2_68
crossref_primary_10_1371_journal_pone_0094114
crossref_primary_10_1042_CS20110236
crossref_primary_10_1126_science_1188222
crossref_primary_10_1089_ars_2017_7069
crossref_primary_10_3390_cells12192405
crossref_primary_10_3390_ijms25105184
crossref_primary_10_1155_2012_924042
crossref_primary_10_3390_cancers14030535
crossref_primary_10_15252_emmm_202013424
crossref_primary_10_1177_1087057113488629
crossref_primary_10_3390_biom3020303
crossref_primary_10_1007_s11010_011_1154_1
crossref_primary_10_3390_ijms21031019
crossref_primary_10_3109_08820139_2013_823804
crossref_primary_10_3389_fimmu_2019_01409
crossref_primary_10_1038_nature13475
crossref_primary_10_3389_fimmu_2021_761475
crossref_primary_10_3389_fneur_2020_00985
crossref_primary_10_3389_fimmu_2017_01336
crossref_primary_10_1080_09537104_2017_1378807
crossref_primary_10_15252_embr_202254689
crossref_primary_10_1097_FJC_0000000000000480
crossref_primary_10_1016_j_clinbiochem_2015_03_019
crossref_primary_10_1007_s13105_016_0504_6
crossref_primary_10_1016_j_rbmo_2011_10_012
crossref_primary_10_1074_jbc_M114_597146
crossref_primary_10_1186_s40560_019_0376_2
crossref_primary_10_3892_or_2015_4162
crossref_primary_10_1016_j_bbadis_2025_167761
crossref_primary_10_1038_s41575_021_00574_7
crossref_primary_10_1152_ajpcell_00148_2016
crossref_primary_10_2478_ams_2013_0021
crossref_primary_10_1038_bjc_2012_14
crossref_primary_10_3390_ijms231810278
crossref_primary_10_3390_ijms19020420
crossref_primary_10_1016_j_cellsig_2021_110041
crossref_primary_10_1089_ten_teb_2015_0107
crossref_primary_10_1146_annurev_physiol_042222_030731
crossref_primary_10_1515_jpm_2020_0536
crossref_primary_10_2353_ajpath_2009_081016
crossref_primary_10_1155_2013_282870
crossref_primary_10_2147_JIR_S503058
crossref_primary_10_1194_jlr_RA119000277
crossref_primary_10_1681_ASN_2020050697
crossref_primary_10_2353_ajpath_2009_090076
crossref_primary_10_1194_jlr_R046656
crossref_primary_10_1111_j_1748_1716_2011_02322_x
crossref_primary_10_1016_j_trsl_2022_11_003
crossref_primary_10_1016_j_exer_2022_109222
crossref_primary_10_1016_j_cca_2021_03_025
crossref_primary_10_1038_s41598_019_39222_1
crossref_primary_10_3934_molsci_2014_4_183
crossref_primary_10_1021_acsptsci_0c00006
crossref_primary_10_1093_jb_mvad037
crossref_primary_10_1146_annurev_bioeng_071813_104908
crossref_primary_10_1517_14728220903039722
crossref_primary_10_1002_rmv_1718
crossref_primary_10_3389_fmed_2021_754490
crossref_primary_10_1172_JCI42315
crossref_primary_10_1016_j_devcel_2012_07_015
crossref_primary_10_3390_cells10113217
crossref_primary_10_1096_fj_201801748R
crossref_primary_10_3390_ijms25063354
crossref_primary_10_1111_apha_12913
crossref_primary_10_2217_17460875_3_6_665
crossref_primary_10_4199_C00032ED1V01Y201105ISP020
crossref_primary_10_1146_annurev_immunol_020711_075011
crossref_primary_10_1038_ni_2047
crossref_primary_10_1073_pnas_1103187108
crossref_primary_10_4199_C00031ED1V01Y201105ISP019
crossref_primary_10_1038_icb_2009_45
crossref_primary_10_1093_cvr_cvae168
crossref_primary_10_1152_ajpheart_00829_2013
crossref_primary_10_1101_cshperspect_a041153
crossref_primary_10_1186_s12964_024_01626_6
crossref_primary_10_1074_jbc_RA120_012941
crossref_primary_10_3390_ijms14034419
crossref_primary_10_1124_jpet_116_233205
crossref_primary_10_3390_cells9081770
crossref_primary_10_1371_journal_pone_0038941
crossref_primary_10_3390_ijms21238985
crossref_primary_10_1097_MOL_0b013e32830f4a90
crossref_primary_10_3390_biology11060809
crossref_primary_10_1007_s00421_014_3080_x
crossref_primary_10_1080_21688370_2021_1959243
crossref_primary_10_1016_j_bbalip_2013_07_012
crossref_primary_10_1371_journal_pone_0168302
crossref_primary_10_1016_j_tcm_2020_12_010
Cites_doi 10.1083/jcb.147.3.545
10.1091/mbc.10.4.1179
10.1016/S0161-5890(02)00070-6
10.1194/jlr.M500468-JLR200
10.1074/jbc.M102841200
10.1042/BJ20050342
10.1074/jbc.M104353200
10.1046/j.1365-2141.1999.01697.x
10.1093/oxfordjournals.jbchem.a021681
10.1016/S0090-6980(01)00103-4
10.1128/MCB.25.24.11113-11121.2005
10.1073/pnas.90.7.2812
10.1016/j.febslet.2006.07.035
10.1182/blood.V96.7.2520
10.1111/j.1365-2796.2006.01624.x
10.1096/fj.06-7433com
10.1182/blood.V97.10.3040
10.1126/science.1139221
10.1016/j.immuni.2007.02.008
10.1006/abio.2002.5579
10.1128/MCB.02341-05
10.1016/j.bbrc.2007.03.123
10.1152/ajpheart.00222.2004
10.1182/blood-2005-07-2628
10.1359/jbmr.2002.17.2.266
10.1126/science.1065323
10.1161/01.res.0000255691.76142.4a
10.1126/science.1113640
10.1016/S0021-9258(18)54392-1
10.1083/jcb.43.3.506
10.1016/j.atherosclerosis.2004.08.024
10.1042/BJ20060251
10.1182/blood-2005-04-1418
10.1073/pnas.0603734103
10.1016/S1388-1981(02)00135-X
10.1074/jbc.M701279200
10.1016/S0092-8674(00)81661-X
ContentType Journal Article
Copyright 2008 American Heart Association, Inc.
2008 INIST-CNRS
Copyright_xml – notice: 2008 American Heart Association, Inc.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/CIRCRESAHA.107.165845
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 676
ExternalDocumentID PMC2659392
18258856
20242883
10_1161_CIRCRESAHA_107_165845
00003012-200803280-00008
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R37 HL067330
– fundername: NHLBI NIH HHS
  grantid: HL-67330
– fundername: NHLBI NIH HHS
  grantid: R01 HL089934
– fundername: NHLBI NIH HHS
  grantid: P01 HL070694
– fundername: NIDDK NIH HHS
  grantid: DK-38825
– fundername: NHLBI NIH HHS
  grantid: HL70694
– fundername: NIDDK NIH HHS
  grantid: R01 DK038825
– fundername: NHLBI NIH HHS
  grantid: R01 HL067330
GroupedDBID ---
-~X
.-D
.3C
.55
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AARTV
AASOK
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACNWC
ACPRK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFDTB
AFFNX
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
BAWUL
BOYCO
BQLVK
C1A
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
J5H
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OCUKA
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
YFH
YOC
ZFV
ZZMQN
AAYXX
ADGHP
CITATION
.GJ
1CY
41~
AAQKA
AASCR
ABASU
ABVCZ
ABZZY
ACLDA
ACXJB
ADFPA
AFBFQ
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
BYPQX
EEVPB
ERAAH
GNXGY
GQDEL
HLJTE
IPNFZ
IQODW
JF9
JG8
MVM
N~M
ODA
OWU
OWV
OWX
OWZ
P-K
R58
RIG
TSPGW
XXN
XYM
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADKSD
5PM
ID FETCH-LOGICAL-c5878-9c2172e2a0f62f137578a0c3b476753820f9249a1677b6adf74d48be512395d33
ISSN 0009-7330
1524-4571
IngestDate Thu Aug 21 18:10:28 EDT 2025
Mon Sep 08 02:50:22 EDT 2025
Fri May 30 11:01:15 EDT 2025
Mon Jul 21 09:15:55 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Tue Jul 01 01:24:38 EDT 2025
Fri May 16 03:47:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Phosphates
Gradient
sphingosine 1-phosphate (SIP)
sphingosine kinase (Sphk)
Enzyme
Transferases
plasma SIP gradient
Endothelium
Vertebrata
Mammalia
Kinase
Shear stress
Circulatory system
SIP lyase (Sgpl)
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5878-9c2172e2a0f62f137578a0c3b476753820f9249a1677b6adf74d48be512395d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Both authors contributed equally to this work.
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.107.165845
PMID 18258856
PQID 70440390
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2659392
proquest_miscellaneous_70440390
pubmed_primary_18258856
pascalfrancis_primary_20242883
crossref_citationtrail_10_1161_CIRCRESAHA_107_165845
crossref_primary_10_1161_CIRCRESAHA_107_165845
wolterskluwer_health_00003012-200803280-00008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-March-28
PublicationDateYYYYMMDD 2008-03-28
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-March-28
  day: 28
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2008
Publisher American Heart Association, Inc
Lippincott
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
18369161 - Circ Res. 2008 Mar 28;102(6):630-2. doi: 10.1161/CIRCRESAHA.108.173799.
References_xml – ident: e_1_3_3_3_2
  doi: 10.1083/jcb.147.3.545
– ident: e_1_3_3_2_2
  doi: 10.1091/mbc.10.4.1179
– ident: e_1_3_3_14_2
  doi: 10.1016/S0161-5890(02)00070-6
– ident: e_1_3_3_11_2
  doi: 10.1194/jlr.M500468-JLR200
– ident: e_1_3_3_16_2
  doi: 10.1074/jbc.M102841200
– ident: e_1_3_3_37_2
  doi: 10.1042/BJ20050342
– ident: e_1_3_3_5_2
  doi: 10.1074/jbc.M104353200
– ident: e_1_3_3_9_2
  doi: 10.1046/j.1365-2141.1999.01697.x
– ident: e_1_3_3_10_2
  doi: 10.1093/oxfordjournals.jbchem.a021681
– ident: e_1_3_3_20_2
  doi: 10.1016/S0090-6980(01)00103-4
– ident: e_1_3_3_17_2
  doi: 10.1128/MCB.25.24.11113-11121.2005
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.90.7.2812
– ident: e_1_3_3_30_2
  doi: 10.1016/j.febslet.2006.07.035
– ident: e_1_3_3_24_2
  doi: 10.1182/blood.V96.7.2520
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1365-2796.2006.01624.x
– ident: e_1_3_3_12_2
  doi: 10.1096/fj.06-7433com
– ident: e_1_3_3_25_2
  doi: 10.1182/blood.V97.10.3040
– ident: e_1_3_3_8_2
  doi: 10.1126/science.1139221
– ident: e_1_3_3_15_2
  doi: 10.1016/j.immuni.2007.02.008
– ident: e_1_3_3_22_2
  doi: 10.1006/abio.2002.5579
– ident: e_1_3_3_26_2
  doi: 10.1128/MCB.02341-05
– ident: e_1_3_3_13_2
  doi: 10.1016/j.bbrc.2007.03.123
– ident: e_1_3_3_35_2
  doi: 10.1152/ajpheart.00222.2004
– ident: e_1_3_3_18_2
  doi: 10.1182/blood-2005-07-2628
– ident: e_1_3_3_29_2
  doi: 10.1359/jbmr.2002.17.2.266
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1065323
– ident: e_1_3_3_34_2
  doi: 10.1161/01.res.0000255691.76142.4a
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1113640
– ident: e_1_3_3_21_2
– ident: e_1_3_3_27_2
  doi: 10.1016/S0021-9258(18)54392-1
– ident: e_1_3_3_28_2
  doi: 10.1083/jcb.43.3.506
– ident: e_1_3_3_6_2
  doi: 10.1016/j.atherosclerosis.2004.08.024
– ident: e_1_3_3_19_2
  doi: 10.1042/BJ20060251
– ident: e_1_3_3_23_2
  doi: 10.1182/blood-2005-04-1418
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.0603734103
– ident: e_1_3_3_36_2
  doi: 10.1016/S1388-1981(02)00135-X
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.M701279200
– ident: e_1_3_3_1_2
  doi: 10.1016/S0092-8674(00)81661-X
– reference: 18369161 - Circ Res. 2008 Mar 28;102(6):630-2. doi: 10.1161/CIRCRESAHA.108.173799.
SSID ssj0014329
Score 2.4634545
Snippet Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 669
SubjectTerms Adenoviridae - genetics
Aldehyde-Lyases - genetics
Aldehyde-Lyases - metabolism
Anemia - blood
Anemia - chemically induced
Animals
Antibodies, Monoclonal
Biological and medical sciences
Bone Marrow Cells - enzymology
Bone Marrow Cells - metabolism
Bone Marrow Cells - radiation effects
Bone Marrow Transplantation
Cell Line
Cell Line, Tumor
Cells, Cultured
Disease Models, Animal
Endothelial Cells - enzymology
Endothelial Cells - metabolism
Endothelium, Vascular - enzymology
Endothelium, Vascular - metabolism
Fundamental and applied biological sciences. Psychology
Genetic Vectors
Half-Life
Humans
Leukopenia - blood
Liver - enzymology
Liver - metabolism
Lysophospholipids - blood
Lysophospholipids - metabolism
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Phenylhydrazines
Phosphoric Monoester Hydrolases - metabolism
Phosphotransferases (Alcohol Group Acceptor) - deficiency
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Platelet Glycoprotein GPIb-IX Complex - immunology
RNA Interference
RNA, Small Interfering - metabolism
Sphingosine - analogs & derivatives
Sphingosine - blood
Sphingosine - metabolism
Stress, Mechanical
Thrombocytopenia - blood
Thrombocytopenia - immunology
Time Factors
Transduction, Genetic
Vertebrates: cardiovascular system
Whole-Body Irradiation
Title Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-200803280-00008
https://www.ncbi.nlm.nih.gov/pubmed/18258856
https://www.proquest.com/docview/70440390
https://pubmed.ncbi.nlm.nih.gov/PMC2659392
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBDShPgmfIw88FZlpEnsOI9VNShIRYV103iKnA-Tal1SNa2Q-Ou5s900oZWAvUSVG9dpfufz-Xx3P0LepZGgsGxJh3sJc4KcMYenoAxhciWuL3MRSUxwnnxh44vg8xW96vXaUUubdXKa_jqYV3IbVKENcMUs2f9AtvlRaIDPgC9cAWG4_hPGl9sw0rMyw0yqxRzd7XVfYCKfprKq1CnAFGzkG9E_X6K_qcJQ9_7AmRZVvSzEulutYL5KDaNX3xQCahzGl3l5LdZiJYzXFBVEUe4F9Xyvyh_OpNqd76vQ_E2mg3LrXfsMndUiU-breVElhej4IFRSnsc7ejVyQt-csORGlXqBE1BNsNLoWtdrCVVbczLN2GIWYaZJYfb1O0P9Pvr0bQTyORwPTwfKQQZWFG3fDzAtbxTosH2inNM_qm2r9Xs6GXmMRmAg3iF3vRBMLzzT_7o7hAp8L9oS8eGfMwlg8AzvDz4BFqA1w3WsnOMlSINYSM2Ucmgrsx-Re_yzwmiJ-lolS7RMntlD8sDsVeyhFrxHpJeXj8m9iYnGeEI-buXPbsmfPaxtYbfkz66kreXPbsmf3ZK_p-Tiw9lsNHYMMYeTUh7CApkirVnuCVcyTw585EQQbuonAZYG8sGolLitFwMWhgkTmQyDLOBJDsalH9HM95-Ro7Iq8xfERvYn2MOHCbztgNMgSrNUZrmUTLqUptwiwfZFxqmpWo_kKYtY7V7ZIN5BAU1hrKGwyGnTbanLtvytw0kHpaaXh0Ys575F3m5hi0ED47GaKPNqU8chsrb7kWuR5xrE3YhGGiwSduBtbsDa7t1vynmharwbybSI0xGEWGdHY8gI-jI8VIccS2Kq8hAuf3nrkV6R-7uZ_ZocrVeb_A3Y2-vkRM2K3-6z0L0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+Endothelium+As+a+Contributor+of+Plasma+Sphingosine+1-Phosphate&rft.jtitle=Circulation+research&rft.au=Venkataraman%2C+Krishnan&rft.au=Lee%2C+Yong-Moon&rft.au=Michaud%2C+Jason&rft.au=Thangada%2C+Shobha&rft.date=2008-03-28&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=102&rft.issue=6&rft.spage=669&rft.epage=676&rft_id=info:doi/10.1161%2FCIRCRESAHA.107.165845&rft_id=info%3Apmid%2F18258856&rft.externalDocID=PMC2659392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon