Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate
Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of...
Saved in:
Published in | Circulation research Vol. 102; no. 6; pp. 669 - 676 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
American Heart Association, Inc
28.03.2008
Lippincott |
Subjects | |
Online Access | Get full text |
ISSN | 0009-7330 1524-4571 1524-4571 |
DOI | 10.1161/CIRCRESAHA.107.165845 |
Cover
Abstract | Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1Sphk2 mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1Sphk2 bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P. |
---|---|
AbstractList | Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1Sphk2 mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1Sphk2 bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P. Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of approximately 15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1(-/-)Sphk2(+/-) mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1(-/-)Sphk2(+/-) bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1(-/-) mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P. Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1 −/− Sphk2 + /− mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1 −/− Sphk2 + /− bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 −/− mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase ( Sgpl ) and S1P phosphatase-1 ( Sgpp 1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P. Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of approximately 15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1(-/-)Sphk2(+/-) mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1(-/-)Sphk2(+/-) bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1(-/-) mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P.Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of approximately 15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1(-/-)Sphk2(+/-) mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1(-/-)Sphk2(+/-) bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1(-/-) mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase (Sgpl) and S1P phosphatase-1 (Sgpp1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P. Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we investigated the mechanisms by which high plasma S1P levels are maintained in mice. We found that plasma S1P turns over rapidly with a half-life of ≈15 minutes, suggesting the existence of a high-capacity biosynthetic source(s). Transplantation of bone marrow from wild-type to Sphk1 −/− Sphk2 +/− mice restored plasma S1P levels, suggesting that hematopoietic cells are capable of secreting S1P into plasma. However, plasma S1P levels were not appreciably altered in mice that were thrombocytopenic, anemic, or leukopenic. Surprisingly, reconstitution of Sphk1 −/− Sphk2 +/− bone marrow cells into wild-type hosts failed to reduce plasma S1P, suggesting the existence of an additional, nonhematopoietic source for plasma S1P. Adenoviral expression of Sphk1 in the liver of Sphk1 −/− mice restored plasma S1P levels. In vitro, vascular endothelial cells, but not hepatocytes, secreted S1P in a constitutive manner. Interestingly, laminar shear stress downregulated the expression of S1P lyase ( Sgpl ) and S1P phosphatase-1 ( Sgpp 1) while concomitantly stimulating S1P release from endothelial cells in vitro. Modulation of expression of endothelial S1P lyase with small interfering RNA and adenoviral expression altered S1P secretion, suggesting an important role played by this enzyme. These data suggest that the vascular endothelium, in addition to the hematopoietic system, is a major contributor of plasma S1P. |
Author | Michaud, Jason Lee, Yong-Moon Habrukowich, Cheryl Venkataraman, Krishnan Ai, Youxi Hla, Timothy Bonkovsky, Herbert L. Parikh, Nehal S. Thangada, Shobha |
AuthorAffiliation | From the Center for Vascular Biology (K.V., J.M., S.T., Y.A., C.H., T.H.), Department of Cell Biology, Departments of Medicine and Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington; Liver-Biliary-Pancreatic Center (H.L.B.), University of Connecticut Health Center, Farmington; College of Pharmacy and CBITRC (Y.-M.L.), Chungbuk National University, Chongju, Korea; and Division of Hematology & Oncology (N.S.P.), Connecticut Children’s Medical Center, Hartford |
AuthorAffiliation_xml | – name: From the Center for Vascular Biology (K.V., J.M., S.T., Y.A., C.H., T.H.), Department of Cell Biology, Departments of Medicine and Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington; Liver-Biliary-Pancreatic Center (H.L.B.), University of Connecticut Health Center, Farmington; College of Pharmacy and CBITRC (Y.-M.L.), Chungbuk National University, Chongju, Korea; and Division of Hematology & Oncology (N.S.P.), Connecticut Children’s Medical Center, Hartford |
Author_xml | – sequence: 1 givenname: Krishnan surname: Venkataraman fullname: Venkataraman, Krishnan organization: From the Center for Vascular Biology (K.V., J.M., S.T., Y.A., C.H., T.H.), Department of Cell Biology, Departments of Medicine and Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington; Liver-Biliary-Pancreatic Center (H.L.B.), University of Connecticut Health Center, Farmington; College of Pharmacy and CBITRC (Y.-M.L.), Chungbuk National University, Chongju, Korea; and Division of Hematology & Oncology (N.S.P.), Connecticut Children’s Medical Center, Hartford – sequence: 2 givenname: Yong-Moon surname: Lee fullname: Lee, Yong-Moon – sequence: 3 givenname: Jason surname: Michaud fullname: Michaud, Jason – sequence: 4 givenname: Shobha surname: Thangada fullname: Thangada, Shobha – sequence: 5 givenname: Youxi surname: Ai fullname: Ai, Youxi – sequence: 6 givenname: Herbert surname: Bonkovsky middlename: L. fullname: Bonkovsky, Herbert L. – sequence: 7 givenname: Nehal surname: Parikh middlename: S. fullname: Parikh, Nehal S. – sequence: 8 givenname: Cheryl surname: Habrukowich fullname: Habrukowich, Cheryl – sequence: 9 givenname: Timothy surname: Hla fullname: Hla, Timothy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20242883$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18258856$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUtFAR3RZ-AigXuGV5_oodISGtoqWtVImqBa7WS-I0Bm-8tRMq_j1Z7bJ8XDhZep6ZN5p5Z-RkCIMl5CWFJaUFfVtd3Va367vV5WpJQS1pIbWQT8iCSiZyIRU9IQsAKHPFOZySs5S-AlDBWfmMnFLNpNayWJCLL5iayWPM1kMbxt56N22yVcowq8IwRldPY4hZ6LIbj2mD2d22d8N9SG6wGc1v-pC2PY72OXnaoU_2xeE9J58_rD9Vl_n1x4uranWdN1IrnZcNo4pZhtAVrKNcSaURGl4LVSjJNYOuZKJEWihVF9h2SrRC11ZSxkvZcn5O3u91t1O9sW1jZ4_ozTa6DcYfJqAzf_8Mrjf34bthhSx5yWaBNweBGB4mm0azcamx3uNgw5SMAiGAlzADX_256bjiV3Yz4PUBMEeIvos4NC4dcQyYYFrvLL_b45oYUoq2M40bcXS7eNF5Q8HsGjW_G51HyuwbndnyH_bRyH94Ys97DH60MX3z06ONprfox97MlwEcKMsZgAbONOS7keY_AV9rs6s |
CODEN | CIRUAL |
CitedBy_id | crossref_primary_10_1194_jlr_M039685 crossref_primary_10_1038_nature24053 crossref_primary_10_1080_09273948_2023_2273963 crossref_primary_10_1186_s12933_025_02624_9 crossref_primary_10_1007_s11882_016_0628_3 crossref_primary_10_1038_ncomms8893 crossref_primary_10_1371_journal_pgen_1004688 crossref_primary_10_1182_blood_2012_11_467191 crossref_primary_10_2478_v10039_011_0057_4 crossref_primary_10_1016_j_bbalip_2020_158681 crossref_primary_10_1084_jem_20082502 crossref_primary_10_1093_cvr_cvp070 crossref_primary_10_1016_j_atherosclerosis_2018_02_025 crossref_primary_10_1016_j_bbrc_2009_01_106 crossref_primary_10_1253_circj_CJ_14_0178 crossref_primary_10_1371_journal_pone_0101276 crossref_primary_10_1093_cvr_cvp064 crossref_primary_10_1186_s12967_020_02322_y crossref_primary_10_1186_s13054_015_1089_0 crossref_primary_10_1002_1873_3468_14973 crossref_primary_10_1126_science_aar5551 crossref_primary_10_12677_acm_2024_1451505 crossref_primary_10_3390_ijms20246361 crossref_primary_10_3390_ijms20246364 crossref_primary_10_3390_ijms20225545 crossref_primary_10_1016_j_prostaglandins_2013_10_001 crossref_primary_10_1096_fj_201700445RR crossref_primary_10_1111_j_1582_4934_2010_01136_x crossref_primary_10_1007_s40846_021_00629_9 crossref_primary_10_2337_db21_0920 crossref_primary_10_1016_j_bbalip_2018_07_009 crossref_primary_10_1016_j_jlr_2022_100225 crossref_primary_10_1093_intimm_dxz037 crossref_primary_10_1016_j_jsb_2015_10_009 crossref_primary_10_1016_j_advenzreg_2011_09_015 crossref_primary_10_1038_s41580_024_00742_y crossref_primary_10_3390_ijms231911948 crossref_primary_10_1002_JLB_3MR0717_269R crossref_primary_10_1007_s10517_018_4078_x crossref_primary_10_1152_ajplung_00017_2022 crossref_primary_10_1177_1010428317699133 crossref_primary_10_1016_j_cca_2021_06_020 crossref_primary_10_1146_annurev_immunol_081519_083952 crossref_primary_10_1007_s40263_021_00798_w crossref_primary_10_1016_j_neulet_2010_04_052 crossref_primary_10_1007_s00005_013_0264_8 crossref_primary_10_1152_ajprenal_00572_2018 crossref_primary_10_1161_CIRCRESAHA_115_306901 crossref_primary_10_1084_jem_20102551 crossref_primary_10_1096_fj_09_150540 crossref_primary_10_1016_j_prostaglandins_2012_08_003 crossref_primary_10_1111_j_1476_5381_2011_01260_x crossref_primary_10_1152_ajpheart_00281_2008 crossref_primary_10_1016_j_bbalip_2021_158955 crossref_primary_10_3892_ijmm_2016_2731 crossref_primary_10_1016_j_cytogfr_2010_09_004 crossref_primary_10_1038_s41569_021_00536_1 crossref_primary_10_1096_fj_12_219618 crossref_primary_10_1182_bloodadvances_2020002888 crossref_primary_10_1089_ars_2017_7129 crossref_primary_10_1016_j_jphs_2016_05_010 crossref_primary_10_1016_j_bbalip_2014_08_013 crossref_primary_10_1038_s41598_017_15043_y crossref_primary_10_1016_j_biomaterials_2017_05_012 crossref_primary_10_3390_ijms21176242 crossref_primary_10_2353_ajpath_2010_091016 crossref_primary_10_1016_j_lfs_2020_117542 crossref_primary_10_1093_cvr_cvp088 crossref_primary_10_1371_journal_pone_0063007 crossref_primary_10_1172_JCI76369 crossref_primary_10_4062_biomolther_2008_16_2_095 crossref_primary_10_3390_ijms21197189 crossref_primary_10_4331_wjbc_v1_i11_327 crossref_primary_10_1002_jcb_26707 crossref_primary_10_1074_jbc_M113_499913 crossref_primary_10_1507_endocrj_K08E_228 crossref_primary_10_1161_HYPERTENSIONAHA_119_14507 crossref_primary_10_1016_j_tcm_2009_07_005 crossref_primary_10_1194_jlr_TR120000972 crossref_primary_10_1016_j_jbiomech_2021_110917 crossref_primary_10_1016_j_tem_2016_07_005 crossref_primary_10_1172_jci_insight_85484 crossref_primary_10_5936_csbj_201403003 crossref_primary_10_1016_j_arr_2022_101818 crossref_primary_10_1111_j_1600_065X_2012_01114_x crossref_primary_10_1093_jbmr_zjae006 crossref_primary_10_1242_dev_078550 crossref_primary_10_1080_08830185_2020_1840567 crossref_primary_10_1177_1087057110391656 crossref_primary_10_1016_j_jaci_2013_07_026 crossref_primary_10_1111_1759_7714_13409 crossref_primary_10_1007_s00424_024_03018_8 crossref_primary_10_1161_CIRCRESAHA_116_308929 crossref_primary_10_1093_molehr_gaaa022 crossref_primary_10_4049_jimmunol_1200282 crossref_primary_10_1182_bloodadvances_2019031948 crossref_primary_10_1681_ASN_2013060656 crossref_primary_10_1097_SHK_0000000000001618 crossref_primary_10_1016_j_jbc_2024_107837 crossref_primary_10_1172_JCI77685 crossref_primary_10_1007_s11010_023_04658_7 crossref_primary_10_1371_journal_pone_0016571 crossref_primary_10_1007_s40265_016_0603_2 crossref_primary_10_1093_ecco_jcc_jjx107 crossref_primary_10_3390_cells10102507 crossref_primary_10_1007_s11882_014_0434_8 crossref_primary_10_1016_j_devcel_2012_08_005 crossref_primary_10_3390_cells9061515 crossref_primary_10_1371_journal_pone_0022436 crossref_primary_10_3390_cells11182914 crossref_primary_10_1016_j_bbalip_2012_07_022 crossref_primary_10_3390_ijms25073790 crossref_primary_10_1111_jnc_14246 crossref_primary_10_1002_hep4_1561 crossref_primary_10_3390_cells11060969 crossref_primary_10_3390_ijms13010977 crossref_primary_10_1007_s12975_016_0477_3 crossref_primary_10_3109_09537104_2016_1144179 crossref_primary_10_1016_j_biochi_2010_02_014 crossref_primary_10_1002_biof_1030 crossref_primary_10_5551_jat_RV17010 crossref_primary_10_1016_j_cellsig_2020_109849 crossref_primary_10_1016_j_diff_2013_06_004 crossref_primary_10_1038_sj_bjc_6604896 crossref_primary_10_1155_2015_709846 crossref_primary_10_3389_fcimb_2020_00353 crossref_primary_10_1111_apha_12076 crossref_primary_10_4049_jimmunol_0903358 crossref_primary_10_1093_ndt_gfw427 crossref_primary_10_1097_MOL_0000000000000142 crossref_primary_10_1038_nm_3934 crossref_primary_10_1016_j_chemphyslip_2016_04_007 crossref_primary_10_1089_scd_2012_0488 crossref_primary_10_3390_cells9071682 crossref_primary_10_1194_jlr_R059543 crossref_primary_10_1371_journal_pone_0135025 crossref_primary_10_3390_ph6091145 crossref_primary_10_1371_journal_pone_0266055 crossref_primary_10_1002_mco2_480 crossref_primary_10_1161_JAHA_121_021261 crossref_primary_10_1080_17425255_2024_2402931 crossref_primary_10_1093_cvr_cvn309 crossref_primary_10_1161_HYPERTENSIONAHA_117_09088 crossref_primary_10_1007_s00281_011_0287_3 crossref_primary_10_1371_journal_pone_0177543 crossref_primary_10_3389_fped_2022_869381 crossref_primary_10_1016_j_bbagen_2019_04_001 crossref_primary_10_1042_BJ20110817 crossref_primary_10_1016_j_bmcl_2013_06_030 crossref_primary_10_1016_j_jbior_2016_09_007 crossref_primary_10_1016_j_clim_2023_109764 crossref_primary_10_1161_ATVBAHA_123_320227 crossref_primary_10_1007_s00441_014_1821_0 crossref_primary_10_1016_j_msec_2019_109761 crossref_primary_10_1016_j_phrs_2020_104793 crossref_primary_10_1111_micc_12271 crossref_primary_10_1016_j_yexcr_2015_08_013 crossref_primary_10_3390_cells10051200 crossref_primary_10_1165_rcmb_2010_0422OC crossref_primary_10_1016_j_atherosclerosis_2013_04_024 crossref_primary_10_1177_0271678X211033362 crossref_primary_10_1038_s41467_025_56869_9 crossref_primary_10_1007_s12307_011_0088_1 crossref_primary_10_1042_BSR20200157 crossref_primary_10_1016_j_ydbio_2011_01_026 crossref_primary_10_1038_s41584_022_00784_6 crossref_primary_10_1182_blood_2011_04_348904 crossref_primary_10_1007_s40629_014_0008_2 crossref_primary_10_1038_nri2400 crossref_primary_10_1016_j_metabol_2018_11_005 crossref_primary_10_3390_antiox12010143 crossref_primary_10_1146_annurev_pathol_050420_025929 crossref_primary_10_1212_WNL_0b013e31820d5ec1 crossref_primary_10_1016_j_celrep_2020_107828 crossref_primary_10_1097_FJC_0b013e3181926706 crossref_primary_10_1165_rcmb_2012_0411TR crossref_primary_10_3390_biomedicines9040349 crossref_primary_10_1002_iub_1489 crossref_primary_10_1097_TA_0000000000002446 crossref_primary_10_1007_s00005_011_0159_5 crossref_primary_10_1186_1476_511X_13_163 crossref_primary_10_4049_jimmunol_1201309 crossref_primary_10_1126_scisignal_aal2722 crossref_primary_10_1007_s15007_014_0516_x crossref_primary_10_3390_ijms23020866 crossref_primary_10_1007_s11064_012_0728_y crossref_primary_10_1146_annurev_biochem_78_072407_103733 crossref_primary_10_1186_s13578_022_00807_5 crossref_primary_10_1111_sms_12910 crossref_primary_10_1084_jem_20091619 crossref_primary_10_1038_s41598_018_25015_5 crossref_primary_10_1517_14728222_2014_851671 crossref_primary_10_1007_s00109_015_1292_0 crossref_primary_10_1152_ajpheart_00181_2012 crossref_primary_10_1158_1078_0432_CCR_10_2323 crossref_primary_10_1161_ATVBAHA_122_317565 crossref_primary_10_1002_jcb_22507 crossref_primary_10_1016_j_prostaglandins_2012_06_002 crossref_primary_10_1007_s10439_015_1400_x crossref_primary_10_1016_j_prostaglandins_2010_06_001 crossref_primary_10_1124_jpet_115_225862 crossref_primary_10_1016_j_biopha_2024_116575 crossref_primary_10_1172_JCI40659 crossref_primary_10_3892_mmr_2016_5342 crossref_primary_10_1161_ATVBAHA_120_305565 crossref_primary_10_1016_j_molmed_2017_02_002 crossref_primary_10_1007_s11883_016_0586_1 crossref_primary_10_1016_j_ajpath_2012_03_014 crossref_primary_10_1002_JLB_1MR0220_276R crossref_primary_10_1016_j_bbalip_2014_06_012 crossref_primary_10_1371_journal_pone_0072449 crossref_primary_10_1016_j_cellsig_2013_08_017 crossref_primary_10_1016_j_addr_2019_12_003 crossref_primary_10_1038_s41596_019_0212_0 crossref_primary_10_1146_annurev_physiol_021014_071635 crossref_primary_10_1194_jlr_D071068 crossref_primary_10_1016_j_cellsig_2010_06_009 crossref_primary_10_1172_JCI38575 crossref_primary_10_1002_iub_2795 crossref_primary_10_1038_s41598_021_99765_0 crossref_primary_10_3389_fendo_2020_00491 crossref_primary_10_2147_TCRM_S336139 crossref_primary_10_4049_jimmunol_1002169 crossref_primary_10_1002_jcp_27353 crossref_primary_10_1016_j_bbalip_2012_06_007 crossref_primary_10_1016_j_bbalip_2012_06_006 crossref_primary_10_1016_j_jaci_2013_01_046 crossref_primary_10_1158_1541_7786_MCR_07_2048 crossref_primary_10_1016_j_cmet_2012_06_017 crossref_primary_10_1042_BCJ20190730 crossref_primary_10_3390_ph4010117 crossref_primary_10_1016_j_bbalip_2009_02_011 crossref_primary_10_1124_jpet_111_179168 crossref_primary_10_1016_j_rechem_2024_101467 crossref_primary_10_1007_s00395_012_0294_0 crossref_primary_10_1016_j_burns_2009_02_012 crossref_primary_10_1177_17562864221133163 crossref_primary_10_1111_j_1538_7836_2009_03405_x crossref_primary_10_1096_fj_201701121R crossref_primary_10_1093_cvr_cvu136 crossref_primary_10_2119_molmed_2010_00214 crossref_primary_10_3389_fimmu_2016_00613 crossref_primary_10_1016_j_fct_2013_12_019 crossref_primary_10_3390_ijms221910617 crossref_primary_10_1152_ajpcell_00586_2008 crossref_primary_10_1016_j_jinf_2015_06_014 crossref_primary_10_1097_SHK_0000000000000814 crossref_primary_10_1172_JCI60746 crossref_primary_10_1074_jbc_M110_171819 crossref_primary_10_1111_jcmm_15744 crossref_primary_10_1177_1744806920903515 crossref_primary_10_1186_1476_511X_13_150 crossref_primary_10_1152_ajpcell_00437_2010 crossref_primary_10_1161_ATVBAHA_116_308435 crossref_primary_10_1016_j_bbalip_2013_12_013 crossref_primary_10_1016_j_cellsig_2024_111252 crossref_primary_10_1194_jlr_R800065_JLR200 crossref_primary_10_1021_cb5008426 crossref_primary_10_3389_fphar_2017_00556 crossref_primary_10_1021_cr200273u crossref_primary_10_3390_biom13050818 crossref_primary_10_5966_sctm_2016_0059 crossref_primary_10_1007_s13105_017_0553_5 crossref_primary_10_1016_j_advms_2015_09_006 crossref_primary_10_1093_jb_mvs090 crossref_primary_10_3390_ijms232113538 crossref_primary_10_1146_annurev_pharmtox_010919_023429 crossref_primary_10_1002_prp2_68 crossref_primary_10_1371_journal_pone_0094114 crossref_primary_10_1042_CS20110236 crossref_primary_10_1126_science_1188222 crossref_primary_10_1089_ars_2017_7069 crossref_primary_10_3390_cells12192405 crossref_primary_10_3390_ijms25105184 crossref_primary_10_1155_2012_924042 crossref_primary_10_3390_cancers14030535 crossref_primary_10_15252_emmm_202013424 crossref_primary_10_1177_1087057113488629 crossref_primary_10_3390_biom3020303 crossref_primary_10_1007_s11010_011_1154_1 crossref_primary_10_3390_ijms21031019 crossref_primary_10_3109_08820139_2013_823804 crossref_primary_10_3389_fimmu_2019_01409 crossref_primary_10_1038_nature13475 crossref_primary_10_3389_fimmu_2021_761475 crossref_primary_10_3389_fneur_2020_00985 crossref_primary_10_3389_fimmu_2017_01336 crossref_primary_10_1080_09537104_2017_1378807 crossref_primary_10_15252_embr_202254689 crossref_primary_10_1097_FJC_0000000000000480 crossref_primary_10_1016_j_clinbiochem_2015_03_019 crossref_primary_10_1007_s13105_016_0504_6 crossref_primary_10_1016_j_rbmo_2011_10_012 crossref_primary_10_1074_jbc_M114_597146 crossref_primary_10_1186_s40560_019_0376_2 crossref_primary_10_3892_or_2015_4162 crossref_primary_10_1016_j_bbadis_2025_167761 crossref_primary_10_1038_s41575_021_00574_7 crossref_primary_10_1152_ajpcell_00148_2016 crossref_primary_10_2478_ams_2013_0021 crossref_primary_10_1038_bjc_2012_14 crossref_primary_10_3390_ijms231810278 crossref_primary_10_3390_ijms19020420 crossref_primary_10_1016_j_cellsig_2021_110041 crossref_primary_10_1089_ten_teb_2015_0107 crossref_primary_10_1146_annurev_physiol_042222_030731 crossref_primary_10_1515_jpm_2020_0536 crossref_primary_10_2353_ajpath_2009_081016 crossref_primary_10_1155_2013_282870 crossref_primary_10_2147_JIR_S503058 crossref_primary_10_1194_jlr_RA119000277 crossref_primary_10_1681_ASN_2020050697 crossref_primary_10_2353_ajpath_2009_090076 crossref_primary_10_1194_jlr_R046656 crossref_primary_10_1111_j_1748_1716_2011_02322_x crossref_primary_10_1016_j_trsl_2022_11_003 crossref_primary_10_1016_j_exer_2022_109222 crossref_primary_10_1016_j_cca_2021_03_025 crossref_primary_10_1038_s41598_019_39222_1 crossref_primary_10_3934_molsci_2014_4_183 crossref_primary_10_1021_acsptsci_0c00006 crossref_primary_10_1093_jb_mvad037 crossref_primary_10_1146_annurev_bioeng_071813_104908 crossref_primary_10_1517_14728220903039722 crossref_primary_10_1002_rmv_1718 crossref_primary_10_3389_fmed_2021_754490 crossref_primary_10_1172_JCI42315 crossref_primary_10_1016_j_devcel_2012_07_015 crossref_primary_10_3390_cells10113217 crossref_primary_10_1096_fj_201801748R crossref_primary_10_3390_ijms25063354 crossref_primary_10_1111_apha_12913 crossref_primary_10_2217_17460875_3_6_665 crossref_primary_10_4199_C00032ED1V01Y201105ISP020 crossref_primary_10_1146_annurev_immunol_020711_075011 crossref_primary_10_1038_ni_2047 crossref_primary_10_1073_pnas_1103187108 crossref_primary_10_4199_C00031ED1V01Y201105ISP019 crossref_primary_10_1038_icb_2009_45 crossref_primary_10_1093_cvr_cvae168 crossref_primary_10_1152_ajpheart_00829_2013 crossref_primary_10_1101_cshperspect_a041153 crossref_primary_10_1186_s12964_024_01626_6 crossref_primary_10_1074_jbc_RA120_012941 crossref_primary_10_3390_ijms14034419 crossref_primary_10_1124_jpet_116_233205 crossref_primary_10_3390_cells9081770 crossref_primary_10_1371_journal_pone_0038941 crossref_primary_10_3390_ijms21238985 crossref_primary_10_1097_MOL_0b013e32830f4a90 crossref_primary_10_3390_biology11060809 crossref_primary_10_1007_s00421_014_3080_x crossref_primary_10_1080_21688370_2021_1959243 crossref_primary_10_1016_j_bbalip_2013_07_012 crossref_primary_10_1371_journal_pone_0168302 crossref_primary_10_1016_j_tcm_2020_12_010 |
Cites_doi | 10.1083/jcb.147.3.545 10.1091/mbc.10.4.1179 10.1016/S0161-5890(02)00070-6 10.1194/jlr.M500468-JLR200 10.1074/jbc.M102841200 10.1042/BJ20050342 10.1074/jbc.M104353200 10.1046/j.1365-2141.1999.01697.x 10.1093/oxfordjournals.jbchem.a021681 10.1016/S0090-6980(01)00103-4 10.1128/MCB.25.24.11113-11121.2005 10.1073/pnas.90.7.2812 10.1016/j.febslet.2006.07.035 10.1182/blood.V96.7.2520 10.1111/j.1365-2796.2006.01624.x 10.1096/fj.06-7433com 10.1182/blood.V97.10.3040 10.1126/science.1139221 10.1016/j.immuni.2007.02.008 10.1006/abio.2002.5579 10.1128/MCB.02341-05 10.1016/j.bbrc.2007.03.123 10.1152/ajpheart.00222.2004 10.1182/blood-2005-07-2628 10.1359/jbmr.2002.17.2.266 10.1126/science.1065323 10.1161/01.res.0000255691.76142.4a 10.1126/science.1113640 10.1016/S0021-9258(18)54392-1 10.1083/jcb.43.3.506 10.1016/j.atherosclerosis.2004.08.024 10.1042/BJ20060251 10.1182/blood-2005-04-1418 10.1073/pnas.0603734103 10.1016/S1388-1981(02)00135-X 10.1074/jbc.M701279200 10.1016/S0092-8674(00)81661-X |
ContentType | Journal Article |
Copyright | 2008 American Heart Association, Inc. 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 American Heart Association, Inc. – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/CIRCRESAHA.107.165845 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 676 |
ExternalDocumentID | PMC2659392 18258856 20242883 10_1161_CIRCRESAHA_107_165845 00003012-200803280-00008 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R37 HL067330 – fundername: NHLBI NIH HHS grantid: HL-67330 – fundername: NHLBI NIH HHS grantid: R01 HL089934 – fundername: NHLBI NIH HHS grantid: P01 HL070694 – fundername: NIDDK NIH HHS grantid: DK-38825 – fundername: NHLBI NIH HHS grantid: HL70694 – fundername: NIDDK NIH HHS grantid: R01 DK038825 – fundername: NHLBI NIH HHS grantid: R01 HL067330 |
GroupedDBID | --- -~X .-D .3C .55 .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AARTV AASOK AAXQO ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACNWC ACPRK ACWDW ACWRI ACXNZ ACZKN ADBBV ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFDTB AFFNX AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI BAWUL BOYCO BQLVK C1A C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ J5H JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OCUKA OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M YFH YOC ZFV ZZMQN AAYXX ADGHP CITATION .GJ 1CY 41~ AAQKA AASCR ABASU ABVCZ ABZZY ACLDA ACXJB ADFPA AFBFQ AKCTQ AKULP ALMTX AMKUR AOHHW AOQMC BS7 BYPQX EEVPB ERAAH GNXGY GQDEL HLJTE IPNFZ IQODW JF9 JG8 MVM N~M ODA OWU OWV OWX OWZ P-K R58 RIG TSPGW XXN XYM ZGI CGR CUY CVF ECM EIF NPM 7X8 ADKSD 5PM |
ID | FETCH-LOGICAL-c5878-9c2172e2a0f62f137578a0c3b476753820f9249a1677b6adf74d48be512395d33 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Thu Aug 21 18:10:28 EDT 2025 Mon Sep 08 02:50:22 EDT 2025 Fri May 30 11:01:15 EDT 2025 Mon Jul 21 09:15:55 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Tue Jul 01 01:24:38 EDT 2025 Fri May 16 03:47:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Phosphates Gradient sphingosine 1-phosphate (SIP) sphingosine kinase (Sphk) Enzyme Transferases plasma SIP gradient Endothelium Vertebrata Mammalia Kinase Shear stress Circulatory system SIP lyase (Sgpl) |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5878-9c2172e2a0f62f137578a0c3b476753820f9249a1677b6adf74d48be512395d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Both authors contributed equally to this work. |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.107.165845 |
PMID | 18258856 |
PQID | 70440390 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2659392 proquest_miscellaneous_70440390 pubmed_primary_18258856 pascalfrancis_primary_20242883 crossref_citationtrail_10_1161_CIRCRESAHA_107_165845 crossref_primary_10_1161_CIRCRESAHA_107_165845 wolterskluwer_health_00003012-200803280-00008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-March-28 |
PublicationDateYYYYMMDD | 2008-03-28 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-March-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2008 |
Publisher | American Heart Association, Inc Lippincott |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 18369161 - Circ Res. 2008 Mar 28;102(6):630-2. doi: 10.1161/CIRCRESAHA.108.173799. |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1083/jcb.147.3.545 – ident: e_1_3_3_2_2 doi: 10.1091/mbc.10.4.1179 – ident: e_1_3_3_14_2 doi: 10.1016/S0161-5890(02)00070-6 – ident: e_1_3_3_11_2 doi: 10.1194/jlr.M500468-JLR200 – ident: e_1_3_3_16_2 doi: 10.1074/jbc.M102841200 – ident: e_1_3_3_37_2 doi: 10.1042/BJ20050342 – ident: e_1_3_3_5_2 doi: 10.1074/jbc.M104353200 – ident: e_1_3_3_9_2 doi: 10.1046/j.1365-2141.1999.01697.x – ident: e_1_3_3_10_2 doi: 10.1093/oxfordjournals.jbchem.a021681 – ident: e_1_3_3_20_2 doi: 10.1016/S0090-6980(01)00103-4 – ident: e_1_3_3_17_2 doi: 10.1128/MCB.25.24.11113-11121.2005 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.90.7.2812 – ident: e_1_3_3_30_2 doi: 10.1016/j.febslet.2006.07.035 – ident: e_1_3_3_24_2 doi: 10.1182/blood.V96.7.2520 – ident: e_1_3_3_33_2 doi: 10.1111/j.1365-2796.2006.01624.x – ident: e_1_3_3_12_2 doi: 10.1096/fj.06-7433com – ident: e_1_3_3_25_2 doi: 10.1182/blood.V97.10.3040 – ident: e_1_3_3_8_2 doi: 10.1126/science.1139221 – ident: e_1_3_3_15_2 doi: 10.1016/j.immuni.2007.02.008 – ident: e_1_3_3_22_2 doi: 10.1006/abio.2002.5579 – ident: e_1_3_3_26_2 doi: 10.1128/MCB.02341-05 – ident: e_1_3_3_13_2 doi: 10.1016/j.bbrc.2007.03.123 – ident: e_1_3_3_35_2 doi: 10.1152/ajpheart.00222.2004 – ident: e_1_3_3_18_2 doi: 10.1182/blood-2005-07-2628 – ident: e_1_3_3_29_2 doi: 10.1359/jbmr.2002.17.2.266 – ident: e_1_3_3_4_2 doi: 10.1126/science.1065323 – ident: e_1_3_3_34_2 doi: 10.1161/01.res.0000255691.76142.4a – ident: e_1_3_3_7_2 doi: 10.1126/science.1113640 – ident: e_1_3_3_21_2 – ident: e_1_3_3_27_2 doi: 10.1016/S0021-9258(18)54392-1 – ident: e_1_3_3_28_2 doi: 10.1083/jcb.43.3.506 – ident: e_1_3_3_6_2 doi: 10.1016/j.atherosclerosis.2004.08.024 – ident: e_1_3_3_19_2 doi: 10.1042/BJ20060251 – ident: e_1_3_3_23_2 doi: 10.1182/blood-2005-04-1418 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.0603734103 – ident: e_1_3_3_36_2 doi: 10.1016/S1388-1981(02)00135-X – ident: e_1_3_3_38_2 doi: 10.1074/jbc.M701279200 – ident: e_1_3_3_1_2 doi: 10.1016/S0092-8674(00)81661-X – reference: 18369161 - Circ Res. 2008 Mar 28;102(6):630-2. doi: 10.1161/CIRCRESAHA.108.173799. |
SSID | ssj0014329 |
Score | 2.4634545 |
Snippet | Sphingosine 1-phosphate (S1P), an abundant lipid mediator in plasma, regulates vascular and immune cells by activating S1P receptors. In this report, we... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 669 |
SubjectTerms | Adenoviridae - genetics Aldehyde-Lyases - genetics Aldehyde-Lyases - metabolism Anemia - blood Anemia - chemically induced Animals Antibodies, Monoclonal Biological and medical sciences Bone Marrow Cells - enzymology Bone Marrow Cells - metabolism Bone Marrow Cells - radiation effects Bone Marrow Transplantation Cell Line Cell Line, Tumor Cells, Cultured Disease Models, Animal Endothelial Cells - enzymology Endothelial Cells - metabolism Endothelium, Vascular - enzymology Endothelium, Vascular - metabolism Fundamental and applied biological sciences. Psychology Genetic Vectors Half-Life Humans Leukopenia - blood Liver - enzymology Liver - metabolism Lysophospholipids - blood Lysophospholipids - metabolism Membrane Proteins - metabolism Mice Mice, Inbred C57BL Mice, Knockout Phenylhydrazines Phosphoric Monoester Hydrolases - metabolism Phosphotransferases (Alcohol Group Acceptor) - deficiency Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - metabolism Platelet Glycoprotein GPIb-IX Complex - immunology RNA Interference RNA, Small Interfering - metabolism Sphingosine - analogs & derivatives Sphingosine - blood Sphingosine - metabolism Stress, Mechanical Thrombocytopenia - blood Thrombocytopenia - immunology Time Factors Transduction, Genetic Vertebrates: cardiovascular system Whole-Body Irradiation |
Title | Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-200803280-00008 https://www.ncbi.nlm.nih.gov/pubmed/18258856 https://www.proquest.com/docview/70440390 https://pubmed.ncbi.nlm.nih.gov/PMC2659392 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBDShPgmfIw88FZlpEnsOI9VNShIRYV103iKnA-Tal1SNa2Q-Ou5s900oZWAvUSVG9dpfufz-Xx3P0LepZGgsGxJh3sJc4KcMYenoAxhciWuL3MRSUxwnnxh44vg8xW96vXaUUubdXKa_jqYV3IbVKENcMUs2f9AtvlRaIDPgC9cAWG4_hPGl9sw0rMyw0yqxRzd7XVfYCKfprKq1CnAFGzkG9E_X6K_qcJQ9_7AmRZVvSzEulutYL5KDaNX3xQCahzGl3l5LdZiJYzXFBVEUe4F9Xyvyh_OpNqd76vQ_E2mg3LrXfsMndUiU-breVElhej4IFRSnsc7ejVyQt-csORGlXqBE1BNsNLoWtdrCVVbczLN2GIWYaZJYfb1O0P9Pvr0bQTyORwPTwfKQQZWFG3fDzAtbxTosH2inNM_qm2r9Xs6GXmMRmAg3iF3vRBMLzzT_7o7hAp8L9oS8eGfMwlg8AzvDz4BFqA1w3WsnOMlSINYSM2Ucmgrsx-Re_yzwmiJ-lolS7RMntlD8sDsVeyhFrxHpJeXj8m9iYnGeEI-buXPbsmfPaxtYbfkz66kreXPbsmf3ZK_p-Tiw9lsNHYMMYeTUh7CApkirVnuCVcyTw585EQQbuonAZYG8sGolLitFwMWhgkTmQyDLOBJDsalH9HM95-Ro7Iq8xfERvYn2MOHCbztgNMgSrNUZrmUTLqUptwiwfZFxqmpWo_kKYtY7V7ZIN5BAU1hrKGwyGnTbanLtvytw0kHpaaXh0Ys575F3m5hi0ED47GaKPNqU8chsrb7kWuR5xrE3YhGGiwSduBtbsDa7t1vynmharwbybSI0xGEWGdHY8gI-jI8VIccS2Kq8hAuf3nrkV6R-7uZ_ZocrVeb_A3Y2-vkRM2K3-6z0L0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+Endothelium+As+a+Contributor+of+Plasma+Sphingosine+1-Phosphate&rft.jtitle=Circulation+research&rft.au=Venkataraman%2C+Krishnan&rft.au=Lee%2C+Yong-Moon&rft.au=Michaud%2C+Jason&rft.au=Thangada%2C+Shobha&rft.date=2008-03-28&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=102&rft.issue=6&rft.spage=669&rft.epage=676&rft_id=info:doi/10.1161%2FCIRCRESAHA.107.165845&rft_id=info%3Apmid%2F18258856&rft.externalDocID=PMC2659392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |