快速鲁棒的城市场景分段平面重建

对于基于图像的城市场景重建,由于光照变化、透视畸变、弱纹理区域等因素的影响,传统像素级与区域级的重建算法通常难以获得可靠的重建结果.为了解决此问题,本文提出一种快速、鲁棒的分段平面重建算法.根据城市场景结构特征与分段平面假设,本文算法首先利用基于连通域检测的空间平面拟合方法从初始空间点中抽取充分且可靠的候选空间平面,然后在MRF(Markov random field)能量最小化框架下将场景的完整结构推断问题转化为平面标记问题进行求解.由于候选平面集与融合灰度一致性度量、空间几何与可见性约束的能量模型的高可靠性,场景的完整结构因此可被有效地重建.实验结果表明,本文算法能较好地克服传统算法可靠性...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 43; no. 4; pp. 674 - 684
Main Author 王伟 高伟 朱海 胡占义
Format Journal Article
LanguageChinese
Published 中国科学院大学 北京100049 2017
周口师范学院网络工程学院 周口466000%中国科学院自动化研究所模式识别国家重点实验室 北京100190
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2017.c160261

Cover

Abstract 对于基于图像的城市场景重建,由于光照变化、透视畸变、弱纹理区域等因素的影响,传统像素级与区域级的重建算法通常难以获得可靠的重建结果.为了解决此问题,本文提出一种快速、鲁棒的分段平面重建算法.根据城市场景结构特征与分段平面假设,本文算法首先利用基于连通域检测的空间平面拟合方法从初始空间点中抽取充分且可靠的候选空间平面,然后在MRF(Markov random field)能量最小化框架下将场景的完整结构推断问题转化为平面标记问题进行求解.由于候选平面集与融合灰度一致性度量、空间几何与可见性约束的能量模型的高可靠性,场景的完整结构因此可被有效地重建.实验结果表明,本文算法能较好地克服传统算法可靠性差、重建场景不完整等缺点,同时具有较高的计算效率.
AbstractList 对于基于图像的城市场景重建,由于光照变化、透视畸变、弱纹理区域等因素的影响,传统像素级与区域级的重建算法通常难以获得可靠的重建结果.为了解决此问题,本文提出一种快速、鲁棒的分段平面重建算法.根据城市场景结构特征与分段平面假设,本文算法首先利用基于连通域检测的空间平面拟合方法从初始空间点中抽取充分且可靠的候选空间平面,然后在MRF(Markov random field)能量最小化框架下将场景的完整结构推断问题转化为平面标记问题进行求解.由于候选平面集与融合灰度一致性度量、空间几何与可见性约束的能量模型的高可靠性,场景的完整结构因此可被有效地重建.实验结果表明,本文算法能较好地克服传统算法可靠性差、重建场景不完整等缺点,同时具有较高的计算效率.
对于基于图像的城市场景重建,由于光照变化、透视畸变、弱纹理区域等因素的影响,传统像素级与区域级的重建算法通常难以获得可靠的重建结果.为了解决此问题,本文提出一种快速、鲁棒的分段平面重建算法.根据城市场景结构特征与分段平面假设,本文算法首先利用基于连通域检测的空间平面拟合方法从初始空间点中抽取充分且可靠的候选空间平面,然后在MRF (Markov random field)能量最小化框架下将场景的完整结构推断问题转化为平面标记问题进行求解.由于候选平面集与融合灰度一致性度量、空间几何与可见性约束的能量模型的高可靠性,场景的完整结构因此可被有效地重建.实验结果表明,本文算法能较好地克服传统算法可靠性差、重建场景不完整等缺点,同时具有较高的计算效率.
Abstract_FL For image-based urban scene reconstruction,traditional pixeMevel or region-level methods often fail to achieve satisfactory results because of various negative factors such as illumination variations,perspective distortion,poorly textured regions,etc.To address this problem,a rapid and robust piecewise planar stereo method is proposed in this paper.Under the scene piecewise planar assumption and by taking into account the structural characteristics of urban scenes,the proposed method at first extracts sufficient and reliable candidate planes from initial spatial points based on the connected-region detection;then the problem of scene reconstruction is converted into a plane labeling problem under the Markov random field (MRF) framework.By virtue of the high reliability of our extracted candidate planes and the energy model properly designed by incorporating geometric constraints,spatial visibility and photo-consistency measures,a complete scene structure is effectively reconstructed.Experiment results show that the proposed method can satisfactorily handle the low-reliability and incomplete-reconstruction problems in traditional methods with computational efficiency.
Author 王伟 高伟 朱海 胡占义
AuthorAffiliation 周口师范学院网络工程学院,周口466000 中国科学院自动化研究所模式识别国家重点实验室,北京100190 中国科学院大学,北京100049
AuthorAffiliation_xml – name: 周口师范学院网络工程学院 周口466000%中国科学院自动化研究所模式识别国家重点实验室 北京100190;中国科学院大学 北京100049
Author_FL WANG Wei
ZHU Hai
GAO Wei
HU Zhan-Yi
Author_FL_xml – sequence: 1
  fullname: WANG Wei
– sequence: 2
  fullname: GAO Wei
– sequence: 3
  fullname: ZHU Hai
– sequence: 4
  fullname: HU Zhan-Yi
Author_xml – sequence: 1
  fullname: 王伟 高伟 朱海 胡占义
BookMark eNotkDtLA0EUhQeJYIz5BXYWdrvO-86WEnxBwCb9Mjs7STboRrOIj0pF1EYLO0UJaCkoKILGwl8zK_sv3BCbc5qPc-49s6iS9lOL0DzBPpFMsaWer3XmU0zAN0RiKskUqhIF3COYBhVUxVRwjxMhZ1A9y5KoJDkElOEq8tzPc3E8LN5O8qeb37szN7x2n6fufpTfvrrL8_zlw329Fw-PxcWV-x7Noem23sps_d9rqLW60mqse83NtY3GctMzQoFnJcM2ikUsIgiUiS1VjGLglnCsYwOWmgiA8fGxJqIBgLYcc6EYxxKUZjW0OInd12lbp52w198bpGVheBR3D6Lxp5iXUoILE9B0-2lnNynRnUGyrQeHoYRyAQGEsT9rbmL4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2017.c160261
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Rapid and Robust Piecewise Planar Reconstruction of Urban Scenes
DocumentTitle_FL Rapid and Robust Piecewise Planar Reconstruction of Urban Scenes
EISSN 1874-1029
EndPage 684
ExternalDocumentID zdhxb201704017
671875713
GrantInformation_xml – fundername: 国家高技术研究发展计划(863计划); 国家自然科学基金; 河南省自然科学基金; 河南省科技攻关项目; 河南省高校重点科研项目; 周口师范学院高层次人才科研启动基金; National High Technology Research and Development Program of China (863 Program); National Natural Science Foundation of China; Natural Science Foundation of of Henan Province; Key Scientific and Technological Project of Henan; College Key Research Project of Henan; Scientific Research Starting Foundation for Advanced Talents of Zhoukou Normal University
  funderid: (2015AA124102); (61273280,61333015,61472419); (162300410347); (162102310589,162102210396); (17A520018,17A520019,15A520116,16B520034); (zknuc2015103); (2015AA124102); (61273280,61333015,61472419); (162300410347); (162102310589,162102210396); (17A520018,17A520019,15A520116,16B520034); (zknuc2015103)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c587-e630ebd5d5b798cde2832074e140adc7e2cb7734c160cb2977ae40458340678a3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:03:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 深度图
3D reconstruction
能量最小化
depth map
plane fitting
平面拟合
Energy minimization
三维重建
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c587-e630ebd5d5b798cde2832074e140adc7e2cb7734c160cb2977ae40458340678a3
Notes Energy minimization; plane fitting; 3D reconstruction; depth map
WANG Wei1, GAO Wei2,3, ZHU Hai1 ,HU Zhan-Yi2,3 (1. School of Network Engineering, Zhoukou Normal University, Zhoukou 466000 2. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 3. University of Chinese Academy of Sciences, Beijing 100049)
For image-based urban scene reconstruction, traditional pixel-level or region-level methods often fail to achieve satisfactory results because of various negative factors such as illumination variations, perspective distortion, poorly textured regions, etc. To address this problem, a rapid and robust piecewise planar stereo method is proposed in this paper. Under the scene piecewise planar assumption and by taking into account the structural characteristics of urban scenes, the proposed method at first extracts sufficient and reliable candidate planes from initial spatial points based on the connected-region detection; then the problem of scene recons
PageCount 11
ParticipantIDs wanfang_journals_zdhxb201704017
chongqing_primary_671875713
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2017
Publisher 中国科学院大学 北京100049
周口师范学院网络工程学院 周口466000%中国科学院自动化研究所模式识别国家重点实验室 北京100190
Publisher_xml – name: 周口师范学院网络工程学院 周口466000%中国科学院自动化研究所模式识别国家重点实验室 北京100190
– name: 中国科学院大学 北京100049
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1914573
Snippet 对于基于图像的城市场景重建,由于光照变化、透视畸变、弱纹理区域等因素的影响,传统像素级与区域级的重建算法通常难以获得可靠的重建结果.为了解决此问题,本文提出一种快速、...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 674
SubjectTerms 三维重建
平面拟合
深度图
能量最小化
Title 快速鲁棒的城市场景分段平面重建
URI http://lib.cqvip.com/qk/90250X/201704/671875713.html
https://d.wanfangdata.com.cn/periodical/zdhxb201704017
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsAmbix7EJ8b4yME-hYk7j34dezazBlFPq-S29Mz0ZvGw8ZGA5KQi6kUP3hQlokdBQRE0HvyaiexfWNXT2R2IiMrC0NNdU109NVuPflQRcl4NwoEsIxMMcpEHiWnbIGdWBVa1y1BwK6yL033lKl-5llxaZaszM28au5Y2N_KlYuu350r-h6tQB3zFU7L_wNkJUqiAMvAXrsBhuP4Vj2nGaNqlOqWZclsWulhIIzAPacapjqmKaCao0lQmCAwAMnNPSSojV9OhqUZgpajuYo2EJu4ez2jKHDDgjBGzWqY6cn0JKpddU0q9p39jjySJrVo7VJpq6QodqjgWNGBwyLGJ7XEbaQS6JIwjoSnAdhexFxiXks0q7sh1YwPKUrHoeoupDl0ngLvtwIFA1ZzOqM9tenkHvmqA_mStmmp5LEUCmsJPiniBXcd18h9m0pC-vE744xU5r3PP7dMRIHFipySMwXjtoVgqQkzEFU5V4mSjIgfVLZjAtMizEc74tMjsxfTydT01OZG6hoxkCsRgw6TiDEP-Te8FLlw3VprhPo6nLhw4iBjRcXKP8f15w2VnYQwOJrrMtbXBMPqSm0f0L89H1sJBXtg_RIwgMlwfrd0Cu8gdUxsNzGitYVH1DpND3hVa0PV3fYTMbA2PkoONAJnHSFD9eD--tz3-dH_33fOfLx9W28-qrw-qVzu7Lz5WTx7tfvhSffs8fv12_Php9X3nOOl1s15nJfAJPoKCgW6zPG7bvGQly4WSRWkxbRaYtBacflMWwkZFLkScIO1FHoGnYmziFvoTtLFMfIK0Rusje5IsxKowRoWRgV-SJwOlDCYOKDAwCeMDM0fmJ-Pu36zjuPQnzJ0j5_yb6Pt_953-Vjm8m-OrAy0XilN_fH6eHEDIembuNGlt3N60Z8BW3cjP-s_lF4q-bvk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%BF%AB%E9%80%9F%E9%B2%81%E6%A3%92%E7%9A%84%E5%9F%8E%E5%B8%82%E5%9C%BA%E6%99%AF%E5%88%86%E6%AE%B5%E5%B9%B3%E9%9D%A2%E9%87%8D%E5%BB%BA&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E4%BC%9F+%E9%AB%98%E4%BC%9F+%E6%9C%B1%E6%B5%B7+%E8%83%A1%E5%8D%A0%E4%B9%89&rft.date=2017&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=43&rft.issue=4&rft.spage=674&rft.epage=684&rft_id=info:doi/10.16383%2Fj.aas.2017.c160261&rft.externalDocID=671875713
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg